Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95661
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王暉zh_TW
dc.contributor.advisorHuei Wangen
dc.contributor.author張愛晨zh_TW
dc.contributor.authorAi-Chen Changen
dc.date.accessioned2024-09-15T16:40:25Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-14-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citationREFERENCE
[1] G. Nikandish and A. Medi, "Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 2, pp. 441-448, Feb. 2015.
[2] G. Nikandish, A. Yousefi and M. Kalantari, "A Broadband Multistage LNA With Bandwidth and Linearity Enhancement," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 10, pp. 834-836, Oct. 2016.
[3] Y. Yuan, J. Li, B. Yuan, J. Zeng, J. Fan and Z. Yu, "Analysis and Design of a Gain-Enhanced 1–20-GHz LNA With Output-Stage Transformer Feedback," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 9, pp. 3539-3543, Sept. 2023.
[4] K. -C. Chang, B. -Z. Lu, Y. Wang, C. -C. Chiong and H. Wang, "A 17.7-42.9-GHz Low Power Low Noise Amplifier with 83% Fractional Bandwidth for Radio Astronomical Receivers in 65-nm CMOS," 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, Hong Kong, 2020.
[5] Y. Yuan, B. Yuan, J. Li, Z. Wang, J. Zeng and Z. Yu, "A Broadband Cascode Low-Noise Amplifier Using Transformer Feedback and Darlington Techniques," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 1, pp. 41-45, Jan. 2024.
[6] J. Wang, J. Wen, P. -L. Chi and T. Yang, "A 2.8–3.8-GHz Reconfigurable GaAs Low-Noise Amplifier With Improved Blocker Tolerance," in IEEE Microwave and Wireless Technology Letters, vol. 34, no. 4, pp. 419-422, April 2024.
[7] X. Zhang, K. Wang, Y. Yan and X. Liang, "A Compact 6–24-GHz Current-Reuse LNA With Bandwidth and Noise Enhancement," in IEEE Microwave and Wireless Technology Letters, vol. 34, no. 2, pp. 203-206, Feb. 2024.
[8] X. Yan, P. Yu, J. Zhang, S. -P. Gao and Y. Guo, "A Broadband 10–43-GHz High-Gain LNA MMIC Using Coupled-Line Feedback in 0.15-μm GaAs pHEMT Technology," in IEEE Microwave and Wireless Components Letters, vol. 32, no. 12, pp. 1459-1462, Dec. 2022.
[9] X. Yan, H. Luo, J. Zhang, S. -P. Gao and Y. Guo, "A 9-to-42-GHz High-Gain Low-Noise Amplifier Using Coupled Interstage Feedback in 0.15-μm GaAs pHEMT Technology," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 4, pp. 1476-1488, April 2023.
[10] J. R. Long, "Monolithic transformers for silicon RF IC design," in IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
[11] El-Gharniti, E. Kerherve and J. -B. Begueret, "Modeling and Characterization of On-Chip Transformers for Silicon RFIC," in IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 4, pp. 607-615, April 2007.
[12] Yao Li, Xiao ‐Wei Zhu, Rui ‐Jia Liu, Ling Tian "Systematic design of 7‐to‐40‐GHz on‐chip mixer based on optimal impedance deviation coefficient", 2020 International Journal of RF and Microwave Computer-Aided Engineering.
[13] David M. Pozar, Microwave Engineering, Fourth Edition, John Wiley &Sone, Inc.,2012.
[14] B. Lu, Y. Wang, Y. Wu, C. Chiong and H. Wang, "A submilliwatt K-band low-noise amplifier for next generation radio astronomical receivers in 65-nm CMOS process," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 7, pp. 669-672, July 2020.
[15] P. -Y. Chang, S. -H. Su, S. S. H. Hsu, W. -H. Cho and J. -D. Jin, "An Ultra-Low-Power Transformer-Feedback 60 GHz Low-Noise Amplifier in 90 nm CMOS," in IEEE Microwave and Wireless Components Letters, vol. 22, no. 4, pp. 197-199, April 2012
[16] Tzyy-Sheng Horng, "A rigorous study of microstrip crossovers and their possible improvements," in IEEE Transactions on Microwave Theory and Techniques, vol. 42, no. 9, pp. 1802-1806, Sept. 1994.
[17] C. Lu, M. K. Matters-Kammerer, R. Mahmoudi and P. G. M. Baltus, "A 20 GHz 1.9 dB NF LNA with distributed notch filtering for VSAT applications," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, 2014.
[18] C. -J. Liang et al., "A Tri (K/Ka/V)-Band Monolithic CMOS Low Noise Amplifier with Shared Signal Path and Variable Gains," 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 2020.
[19] X. Xu, S. Li, L. Szilagyi, P. V. Testa, C. Carta and F. Ellinger, "A 28 GHz and 38 GHz Dual-Band LNA Using Gain Peaking Technique for 5G Wireless Systems in 22 nm FD-SOI CMOS," 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, Hong Kong, 2020.
[20] J. Lee and C. Nguyen, “A K-/Ka-band concurrent dual-band single ended input to differential output low-noise amplifier employ ing a novel transformer feedback dual-band load,” IEEE Trans. Circu its Syst . I, Reg. Papers, vol. 65, no. 9, pp. 2679–2690, Sep. 2018.
[21] J. Lee and C. Nguyen, "A Concurrent Tri-Band Low-Noise Amplifier With a Novel Tri-Band Load Resonator Employing Feedback Notches," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4195-4208, Dec. 2013.
[22] C. -J. Liang et al., "A K/Ka/V Triband Single-Signal-Path Receiver With Variable-Gain Low-Noise Amplifier and Constant-Gain Phase Shifter in 28-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 5, pp. 2579-2593, May 2021
[23] B. -J. Huang, K. -Y. Lin and H. Wang, "Millimeter-Wave Low Power and Miniature CMOS Multicascode Low-Noise Amplifiers with Noise Reduction Topology," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3049-3059, Dec. 2009
[24] Xiaoyong Li, S. Shekhar and D. J. Allstot, "G/sub m/-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-/spl mu/m CMOS," in IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2609-2619, Dec. 2005
[25] P. Agarwal, Partha Pratim Pande and D. Heo, "25.3 GHz, 4.1 mW VCO with 34.8% tuning range using a switched substrate-shield inductor," 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 2015.
[26] S. N. Ali, P. Agarwal, J. Baylon and D. Heo, "Reconfigurable high efficiency power amplifier with tunable coupling coefficient based transformer for 5G applications," 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 2017
[27] Fact Sheet: Spectrum Frontiers Proposal to Identity, Open Up Vast Amounts of New High-Band Spectrum for Next Generation (5G) Wireless Broadband. Accessed: Oct. 24, 2019. [Online]. Available: https://apps.fcc.gov/edocs_public/attachmatch /DOC-339990A1.pdf
[28] Specification Group Radio Access Network; NR; User Equipment (UE) Radio Transmission and Reception—Part 2: Range 2 Standalone (Release 17), Standard TS 38.101 V17.5.0, 3GPP, Apr. 2022.
[29] X. Sun, Y. Liu, and Y. Zhou, “Status and analysis of RF conformance test for millimeter-wave devices,” in Proc. Photon. Electromagn. Res. Symp. (PIERS), 2021, pp. 1895–1900.
[30] A. A. Nawaz, J. D. Albrecht and A. Çağrı Ulusoy, "A 28-/60-GHz Band-Switchable Bidirectional Amplifier for Reconfigurable mm-Wave Transceivers," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 3197-3205, July 2020.
[31] B. Ko et al., "A 39/48 GHz Switchless Reconfigurable Low Noise Amplifier Using Common Gate and Coupled-Line-Based Diplexer," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 11, pp. 4028-4032, Nov. 2023.
[32] S. Lee et al., "A Concurrent 26/48 GHz Low-Noise Amplifier With an Optimal Dual-Band Noise Matching Method Using GaAs 0.15 μm pHEMT," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 3, pp. 1096-1100, March 2024.
[33] B. Bae, E. Kim, S. Kim and J. Han, "Dual-Band CMOS Low-Noise Amplifier Employing Transformer-Based Band-Switchable Load for 5G NR FR2 Applications," in IEEE Microwave and Wireless Technology Letters, vol. 33, no. 3, pp. 319-322, March 2023.
[34] J. Liu, S. Liu, Y. Gao, X. Liu and Z. Zhu, "A 28-/39-GHz Dual-Band CMOS LNA With Shunt-Series Transformer Feedback," in IEEE Microwave and Wireless Technology Letters, vol. 33, no. 1, pp. 51-54, Jan. 2023
[35] Zuomin blog [Online] https://zuomin.blogspot.com/2017/09/blog-post.html
[36] Y. Chou, C. Chiong and H. Wang, "A Q-band LNA with 55.7% bandwidth for radio astronomy applications in 0.15-μm GaAs pHEMT process," 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016, pp. 1-3.
[37] A. Sulyman et al., “Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands,” IEEE Commun. Mag., vol. 52, no. 9, pp. 78-86, Sep. 2014.
[38] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Commun. Mag., vol. 49, no. 6, June 2011, pp. 101-07.
[39] S. C. Ellis, L. R. Jones, “The K Band Luminosity Function of High Redshift Clusters,” Carnegie Observatories Astrophysics Series, vol. 3, pp. 1-5, Apr. 2003.
[40] P. A. Oesch et al., “A remarkably luminous galaxy at z=11.1 measured with hubble space telescope grism spectroscopy,” Astrophysical Journal, vol. 819:129, Mar. 2016.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95661-
dc.description.abstract近年來,隨著第五代行動通訊的蓬勃發展,毫米波技術的研究與應用已成為當今的主流趨勢。然而,隨著對更高頻寬和更優異傳輸速率的需求不斷增長,目前無線通訊頻率所主要集中的6 GHz以下頻段,已達到相當飽和的程度。因此,向更高頻率方向發展成為重要的技術趨勢。在這方面,K頻段、Ka頻段和V頻段被視為第五代行動通訊的主要潛在發展頻段。在無線通訊系統中,低雜訊放大器也扮演著系統的重要角色。因此,本論文聚焦於應用變壓器於毫米波低雜訊放大器的設計與研究。
本篇論文主要分為兩個部分: 第一部分描述以0.15微米砷化鎵偽形態高電子遷移率電晶體(GaAs pHEMT)製程所設計的K頻段低雜訊放大器(LNA)。其中使用變壓器回授(transformer feedback)進行設計,變壓器對放大器的低雜訊、寬頻與良好的輸入匹配的表現皆有幫助,但因為變壓器設計對金屬層數的需求導致其較常應用於金氧半場效電晶體(CMOS FET)製程,鮮少被砷化偽形態高電子遷移率電晶體製程所採用。此低雜訊放大器工作在15.3到24.8的3dB頻寬帶內,並且有20.7 dB的峰值增益,與1.72-4.09 dB的雜訊指數。
第二部分為應用於38/48 GHz雙頻段之低雜訊放大器,使用90奈米金氧半場效電晶體製程所設計。此電路於第一級使用三重耦合變壓器(TCT)來實現良好的輸入匹配去涵蓋放大器所應用之頻段範圍,並以P型金氧半場效電晶體用作電壓開關調控切換Ka/V雙頻段。此低雜訊放大器有著37.1-44.1/43.8-50.2GHz的3dB頻寬,並且有19.9/18.8dB的增益,與7.1-8.1/6.9-7.8 dB的雜訊指數。
zh_TW
dc.description.abstractIn recent years, the vibrant expansion of fifth-generation mobile communication has propelled the research and application of millimeter wave technology into today's mainstream. However, with the escalating demand for higher bandwidth and superior transmission rates, the current concentration of wireless communication frequencies below 6 GHz has reached a considerable saturation point. Consequently, there is a pivotal shift towards higher frequency domains emerging as a significant technological trend. Within this context, the K-band, Ka-band, and V-band are identified as the primary potential development frequency bands for fifth-generation mobile communication. In wireless communication systems, the role of low-noise amplifiers is pivotal. Therefore, this paper is dedicated to exploring the design and investigation of low-noise amplifiers employing transformers.
This thesis is divided into two main sections: The first part illustrates the design of a K-band low noise amplifier (LNA) using 0.15-μm GaAs pHEMT process. In this design transformer feedback technique is utilized, which facilitates some of amplifiers favorable characteristics such as low noise, wideband, and excellent input matching. However, due to the requirement for a certain number of metal layers in transformer design, it is more commonly applied in metal oxide semiconductor field-effect transistor (CMOS FET) processes and is seldom utilized in gallium arsenide pseudomorphic high electron mobility transistor processes (GaAs pHEMT). This low noise amplifier achieves a peak gain of 20.7 dB and a 1.72-4.09 dB noise figure across a 3-dB bandwidth from 15.3 to 24.8 GHz.
The second part introduces a dual band low noise amplifier designed at 38/48 GHz using a 90-nanometer CMOS process. This circuit employs a triple-coupling transformer in the first stage to achieve excellent input matching, covering the frequency band range applied by the amplifier. Additionally, it employs P-type CMOS transistors as voltage-switching regulators to alternate between the 38/48 GHz dual-band. This low noise amplifier achieves a peak gain of 19.9 dB and a 7.1-8.1 dB noise figure across a 3-dB bandwidth from 37.1 to 44.1 GHz, and attains a maximum gain of 18.8 dB and a noise figure ranging between 6.9-7.8 dB across a 3-dB bandwidth extending from 43.8 to 50.2 GHz.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:40:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T16:40:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 i
致謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.1.1 Astronomical Observation of the Universe 1
1.1.2 Fifth Generation Communications 2
1.2 Literature Survey 3
1.2.1 LNA with Transformer Feedback in GaAs pHEMT process 3
1.2.2 Multi-band LNA 5
1.3 Contributions 7
1.3.1 A K-band LNA with Transformer Feedback Technique for Next Generation Radio Astronomical Application 7
1.3.2 A Switchable Dual-Band LNA for 38/48 GHz bands with Triple Coupling Transformer Technique for 5G Communications 8
1.4 Thesis Organization 9
Chapter 2 The Design of a K band LNA with Transformer Feedback in 0.15 µm GaAs pHEMT process 10
2.1 Introduction 10
2.2 Biasing and Device Selection 12
2.3 Gate-Source Transformer Feedback 17
2.4 Air-Bridge Structure 23
2.5 Transformer Design 30
2.5.1 Gate-Source Transformer for the First Stage 31
2.5.2 Inter-Stage Matching Between the 1st and 2nd Stages 34
2.5.3 Inter-Stage Matching Between the 2nd and 3ed Stages 37
2.5.4 Inter-Stage Matching Between the 3ed and 4th Stages 39
2.6 Circuit Schematic and Post-Layout simulations 42
2.7 Experimental Result 44
2.8 Summery 50
Chapter 3 The Design of A Switchable Dual-band LNA at 38/48 GHz in 90-nm CMOS process 52
3.1 Introduction 52
3.2 Biasing and Device Selection 53
3.3 Triple coupling Transformer (TCT) Technique [18][22] 62
3.4 PMOS Switch Design 70
3.5 Circuit Schematic and Post-Layout simulations 72
3.6 Off Chip Bypass 78
3.7 Measurement Result 81
3.8 Summery 87
Chapter 4 Conclusions 89
REFERENCE 90
-
dc.language.isoen-
dc.subject變壓器zh_TW
dc.subject雙頻段zh_TW
dc.subject低雜訊放大器zh_TW
dc.subject互補式金屬氧化物半導體zh_TW
dc.subject砷化鎵zh_TW
dc.subjectdual banden
dc.subjectGaAsen
dc.subjectCMOSen
dc.subjectlow noise amplifieren
dc.subjectTransformeren
dc.title低雜訊放大器及變壓器回授技術設計與研究zh_TW
dc.titleResearch of Low-Noise Amplifier with Transformer Feedback Techniqueen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃天偉;林坤佑;王雲杉;章朝盛zh_TW
dc.contributor.oralexamcommitteeTian-Wei Huang;Kun-You Lin;Yun-Shan Wang;Chau-Ching Chiongen
dc.subject.keyword砷化鎵,互補式金屬氧化物半導體,低雜訊放大器,變壓器,雙頻段,zh_TW
dc.subject.keywordGaAs,CMOS,low noise amplifier,Transformer,dual band,en
dc.relation.page95-
dc.identifier.doi10.6342/NTU202403988-
dc.rights.note未授權-
dc.date.accepted2024-08-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
6.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved