請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95639完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李昆達 | zh_TW |
| dc.contributor.advisor | Kung-Ta Lee | en |
| dc.contributor.author | 陳猷博 | zh_TW |
| dc.contributor.author | You-Po Chen | en |
| dc.date.accessioned | 2024-09-15T16:15:15Z | - |
| dc.date.available | 2024-09-16 | - |
| dc.date.copyright | 2024-09-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | 1.Barone GD, Zhou Y, Wang H, Xu S, Ma Z, Cernava T, Chen Y. 2024. Implications of bacteria‒bacteria interactions within the plant microbiota for plant health and productivity. J Zhejiang Univ Sci B doi:10.1631/jzus.B2300914:1-16.
2.Rangel LI, Bolton MD. 2022. The unsung roles of microbial secondary metabolite effectors in the plant disease cacophony. Curr Opin Plant Biol 68:102233. 3.Finkel OM, Castrillo G, Herrera Paredes S, Salas Gonzalez I, Dangl JL. 2017. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155-163. 4.Montero-Montoya R, Lopez-Vargas R, Arellano-Aguilar O. 2018. Volatile organic compounds in air: sources, distribution, exposure and associated illnesses in children. Ann Glob Health 84:225-238. 5.Kanchiswamy CN, Malnoy M, Maffei ME. 2015. Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci 20:206-11. 6.Cheng J, Wu J, Liu Z, Zhang X, Lu X, Yin L, Lu G, Pang L. 2023. Identifying early-stage changes in volatile organic compounds of Ceratocystis fimbriata ellis & halsted-infected sweet potatoes (Ipomoea batatas L. Lam) using headspace gas chromatography-ion mobility spectrometry. Foods 12. 11:22-24 7.Thorn RM, Greenman J. 2012. Microbial volatile compounds in health and disease conditions. J Breath Res 6:024001. 8.Timmery, S., Hu, X., & Mahillon, J. 2011. Characterization of Bacillis isolated from the confined environments of the antarctic concordia station and the international space station.. Astrobiology 11 4:323-34 . 9.Nicholson WL, Fajardo-Cavazos P, Rebeil R, et al. Bacterial endospores and their significance in stress resistance. Antonie Van Leeuwenhoek. 2002;81(1-4):27-32. 10.Diomandé, S., Nguyen-the, C., Guinebretiere, M., Broussolle, V., & Brillard, J. 2015. Role offatty acids in Bacillus environmental adaptation. Frontiers in Microbiology 6:813 11.Khan AR, Mustafa A, Hyder S, et al. 2022. Bacillus spp. as bioagents: uses and application for sustainable agriculture. Biology (Basel). 11(12):1763. 12.Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H. 2017. Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol. 8:1490. 13.Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules. 21(5):573. 14.Soltani, M., Ghosh, K., Hoseinifar, S., Kumar, V., Lymbery, A., Roy, S., & Ringø, E. 2019. Genus bacillus, promising probiotics in aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science & Aquaculture 27: 331 - 379. 15.Yilmaz B, Bangar SP, Echegaray N, Suri S, Tomasevic I, Manuel Lorenzo J, Melekoglu E, Rocha JM, Ozogul F. 2022. The impacts of Lactiplantibacillus plantarum on the functional properties of fermented foods: a review of current knowledge. Microorganisms. 10(4):826. 16.Yu, A., Goldman, E., Brooks, J., Golomb, B., Yim, I., Gotcheva, V., Angelov, A., Kim, E., & Marco, M. 2021. Strain diversity of plant‐associated Lactiplantibacillus plantarum. Microbial Biotechnology 14(5):1990-2008 17.Huang, S., Jiang, S., Huo, D., Allaband, C., Estaki, M., Cantú, V., Belda-Ferre, P., Vázquez-Baeza, Y., Zhu, Q., Ma, C., Li, C., Zarrinpar, A., Liu, Y., Knight, R., & Zhang, J. 2021. Candidate probiotic Lactiplantibacillus plantarum HNU082 rapidly and convergently evolves within human, mice, and zebrafish gut but differentially influences the resident microbiome. Microbiome 9(1):151 18.Tenea, G., & Ortega, C. 2021. Genome characterization of Lactiplantibacillus plantarum strain UTNGt2 originated from Theobroma grandiflorum (White Cacao) of Ecuadorian Amazon: antimicrobial peptides from safety to potential applications. Antibiotics 10(4):383. 19.Zhou, X., Hong, T., Yu, Q. et al. 2017. Exopolysaccharides from Lactobacillus plantarum NCU116 induce c-Jun dependent Fas/Fasl-mediated apoptosis via TLR2 in mouse intestinal epithelial cancer cells. Sci Rep 7 (1):14247. 20.Zhang F, Li Y, Wang X, Wang S, Bi D. 2019. The impact of Lactobacillus plantarum on the gut microbiota of mice with dss-induced colitis. Biomed Res Int. 20;2019:3921315. 21.Singhal, N., Singh, N., Mohanty, S., Kumar, M., & Virdi, J. 2021. Rhizospheric Lactobacillus plantarum (Lactiplantibacillus plantarum) strains exhibit bile salt hydrolysis, hypocholestrolemic and probiotic capabilities in vitro. Scientific Reports 11. (1):15288. 22.Ou, D., Ling, N., Wang, X., Zou, Y., Dong, J., Zhang, D., Shen, Y., & Ye, Y. 2022. Safety assessment of one Lactiplantibacillus plantarum isolated from the traditional chinese fermented vegetables—Jiangshui. Foods 11. (15):2177. 23.Barbosa, J., Albano, H., Silva, B., Almeida, M., Nogueira, T., & Teixeira, P. 2021. Characterization of a Lactiplantibacillus plantarum R23 isolated from arugula by whole-genome sequencing and its bacteriocin production ability. International Journal of Environmental Research and Public Health 18(11):5515. 24.Aziz, T., Naveed, M., Sarwar, A., Makhdoom, S., Mughal, M., Ali, U., Yang, Z., Shahzad, M., Sameeh, M., Alruways, M., Dablool, A., Almalki, A., Alamri, A., & Alhomrani, M. 2022. Functional annotation of Lactiplantibacillus plantarum 13-3 as a potential starter probiotic involved in the food safety of fermented products. Molecules 27(17):5399. 25. Hayat K, Iqbal H, Malik U, Bilal U, Mushtaq S. Tea and its consumption: benefits and risks. Crit Rev Food Sci Nutr. 2015;55(7):939-954. 26. Khan N, Mukhtar H. Tea Polyphenols in Promotion of Human Health. Nutrients. 2018;11(1):39. 27.Shi, J., Liu, J., Kang, D., Huang, Y., Kong, W., Xiang, Y., Zhu, X., Duan, Y., & Huang, Y. 2019. Isolation and characterization of benzaldehyde derivatives with anti-inflammatory activities from Eurotium cristatum, the dominant fungi species in Fuzhuan brick tea. ACS Omega.4(4):6630-6636 28.Lu, X., Jing, Y., Zhang, N., & Cao, Y. 2022. Eurotium cristatum, a probiotic fungus from Fuzhuan brick tea, and its polysaccharides ameliorated dss-induced ulcerative colitis in mice by modulating the gut microbiota.. Journal of agricultural and food chemistry 70 (9), 2957-2967 29.Kang, D., Su, M., Duan, Y., & Huang, Y. 2019. Eurotium cristatum, a potential probiotic fungus from Fuzhuan brick tea, alleviated obesity in mice by modulating gut microbiota.. Food & function 2019,10, 5032-5045 30.Zhang, H., Hui, J., Yang, J., Deng, J., & Fan, D. 2020. Eurocristatine, a plant alkaloid from Eurotium cristatum, alleviates insulin resistance in db/db diabetic mice via activation of PI3K/AKT signaling pathway.. European journal of pharmacology 173557 . 31.Zhao, Q., Qiu, Y., Wang, X., Gu, Y., Zhao, Y., Wang, Y., Yue, T., & Yuan, Y. 2020. Inhibitory effects of Eurotium cristatum on growth and aflatoxin B1 biosynthesis in Aspergillus flavus. Frontiers in Microbiology 11:921. 32. Deng J, Li Y, Yuan Y, et al. Secondary Metabolites from the Genus Eurotium and Their Biological Activities. Foods. 2023;12(24):4452. 33.Gao, H., Li, P., Xu, X., Zeng, Q., & Guan, W. 2018. Research on Volatile Organic Compounds From Bacillus subtilis CF-3: biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation. Frontiers in Microbiology 9:456 34.Xie, S., Zang, H., Wu, H., Rajer, F., & Gao, X. 2018. Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. oryzae.. Frontiers in Microbiology 19 1:49-58 . 35.Rajer, F., Wu, H., Xie, Y., Xie, S., Raza, W., Tahir, H., & Gao, X. 2017. Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato.. Microbiology 163 4:523-530 . 45 36.Garrido, A., Atencio, L., Bethancourt, R., Bethancourt, A., Guzman, H., Gutiérrez, M., & Durant-Archibold, A. 2020. Antibacterial activity of volatile organic compounds produced by the octocoral-associated bacteria Bacillus sp. BO53 and Pseudoalteromonas sp. GA327. (5) Antibiotics 9(12):923. 37.Gao, Z., Zhang, B., Liu, H., Jucai, H., & Zhang, Y. 2017. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological Control 105:27-39. 38.Choub, V., Won, S., Ajuna, H., Moon, J., Choi, S., Lim, H., & Ahn, Y. 2022. Antifungal Activity of volatile organic compounds from Bacillus velezensis CE 100 against Colletotrichum gloeosporioides. Horticulturae. 8(557) 39.Xinxin, L., Wang, X., Shi, X., Baoping, W., Li, M., Wang, Q., & Zhang, S. 2020. Antifungal effect of volatile organic compounds from Bacillus velezensis CT32 against Verticillium dahliae and Fusarium oxysporum. Processes. 8(12), 1674 40.Yuan, J., Raza, W., Shen, Q., & Huang, Q. 2012. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Applied and Environmental Microbiology 78:5942 - 5944. 41.Gotor-Vila, A., Teixidó, N., Francesco, A., Usall, J., Ugolini, L., Torres, R., & Mari, M. 2017. Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry.. Food microbiology 64:219-225 . 42.Raza, W., Ling, N., Yang, L., Huang, Q., & Shen, Q. 2016. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Scientific Reports 6.24856 43.Munjal, V., Nadakkakath, A., Sheoran, N., Kundu, A., Venugopal, V., Subaharan, K., Rajamma, S., Eapen, S., & Kumar, A. 2016. Genotyping and identification of broad spectrum antimicrobial volatiles in black pepper root endophytic biocontrol agent, Bacillus megaterium BP17. Biological Control 92:66-76. 44.Tahir, H., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., Colman, M., & Gao, X. 2017. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontiers in Microbiology 8:171 45.Ji C, Zhang M, Kong Z, et al. 2021. Genomic analysis reveals potential mechanisms underlying promotion of tomato plant growth and antagonism of soilborne pathogens by Bacillus amyloliquefaciens Ba13. Microbiol Spectr. 9(3):e0161521. 46.Song GC, Jeon JS, Sim HJ, et al. 2022. Dual functionality of natural mixtures of bacterial volatile compounds on plant growth. J Exp Bot. 73(2):571-583. 47.Zou, C., Li, Z., & Yu, D. 2010. Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. The Journal of Microbiology 48:460-466. 48.Wu W, Zeng Y, Yan X, et al. 2023. Volatile organic compounds of Bacillus velezensis GJ-7 against Meloidogyne hapla through multiple prevention and control modes. Molecules. 28(7):3182. 49.Ali Q, Yu C, Wang Y, et al. 2023. High killing rate of nematode and promotion of rice growth by synthetic volatiles from Bacillus strains due to enhanced oxidative stress response. Physiol Plant. 175(1):e13868. 50.Huang, Y., Xu, C., Ma, L., Zhang, K., Duan, C., & Mo, M. 2010. Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. European Journal of Plant Pathology 126:417-422. 51.Salmerón, I., Fuciños, P., Charalampopoulos, D., & Pandiella, S. 2009. Volatile compounds produced by the probiotic strain Lactobacillus plantarum NCIMB 8826 in cereal-based substrates. Food Chemistry 117:265-271. 52.Xiao, Y., Zhong, K., Bai, J., Wu, Y., Zhang, J., & Gao, H. 2020. The biochemical characteristics of a novel fermented loose tea by Eurotium cristatum (MF800948) and its hypolipidemic activity in a zebrafish model. Lwt - Food Science and Technology 117:108629. 53.Shen, S., Zhang, J., Sun, H., Zu, Z., Fu, J., Fan, R., Chen, Q., Wang, Y., Yue, P., Ning, J., Zhang, L., & Gao, X. 2023. Sensomics-assisted characterization of fungal-flowery aroma components in fermented tea using Eurotium cristatum.. Journal of agricultural and food chemistry. 71(48) 54.Achimón, F., Brito, V., Pizzolitto, R., & Zygadlo, J. 2022. Effect of carbon sources on the production of volatile organic compounds by Fusarium verticillioides. Journal of Fungi 8(2):158. 55.Cheng, N., Jing, D., Zhang, C., Chen, Z., Li, W., Li, S., & Wang, Q. 2020. Process-based VOCs source profiles and contributions to ozone formation and carcinogenic risk in a typical chemical synthesis pharmaceutical industry in China.. The Science of the total environment 752.141899 . 56.Chen, Y.-J., Cheah, B. H., Lin, C.-Y., Ku, Y.-T., Kuo, C.-H., Zhang, Y.-Y., Chen, B.-R., Nean, O., Hsieh, C.-H., & Yeh, P.-M. 2023. Inducible chemical defenses in wild mungbean confer resistance to Spodoptera litura and possibly at the expense of drought tolerance. Environmental and Experimental Botany. 205:105100. 57.Silva Dias, B.H.; Jung, S.-H.; Castro Oliveira, J.V.d.; Ryu, C.-M. 2021. C4 Bacterial volatiles improve plant health. Pathogens 10:682. 58. Fincheira P, Quiroz A. Microbial volatiles as plant growth inducers. 2018. Microbiol Res. 208:63-75. 59.Ji C, Zhang M, Kong Z, et al. 2021.Genomic Analysis reveals potential mechanisms underlying promotion of tomato plant growth and antagonism of soilborne pathogens by Bacillus amyloliquefaciens Ba13. Microbiol Spectr. 9(3):e016 1521. 60.Furlong, O., Miller, B., Li, Z., Walker, J., Burkholder, L., & Tysoe, W. 2010. The surface chemistry of dimethyl disulfide on copper.. Langmuir : the ACS journal of surfaces and colloids 26 21:16375-80 61.Tyagi, S., Lee, K., Shukla, P., & Chae, J. 2020. Dimethyl disulfide exerts antifungal activity against Sclerotinia minor by damaging its membrane and induces systemic resistance in host plants. Scientific Reports 10. (6547) 62.Iden, P., Middleton, B., Robinson, B., Sherwood, W., Gibson, K., Sweetman, L., & Søvik, O. 1990. 3-oxothiolase activities and [14C]-2-methylbutanoic acid incorporation in cultured fibroblasts from 13 cases of suspected 3-oxothiolase deficiency. Pediatric Research 28:518-522. 63.Iwasa, K., Setoyama, D., Shimizu, H., Seta, H., Fujimura, Y., Miura, D., Wariishi, H., Nagai, C., & Nakahara, K. 2015. Identification of 3-methylbutanoyl glycosides in green Coffea arabica beans as causative determinants for the quality of coffee flavors.. Journal of agricultural and food chemistry 63 14:3742-51 . 64.Kwon, D., Hong, Y., & Yoon, S. 2000. Enantiomeric synthesis of (S)-2-methylbutanoic acid methyl ester, apple flavor, using lipases in organic solvent.. Journal of agricultural and food chemistry 48 2:524-30 . 65.Pascal, Mülner., Elisa, Schwarz., Kristin, Dietel., Helmut, Junge., Stefanie, Herfort., Max, Weydmann., Peter, Lasch., Tomislav, Cernava., Gabriele, Berg., Joachim, Vater. 2020. Profiling for bioactive peptides and volatiles of plant growth promoting strains of the Bacillus subtilis Complex of Industrial Relevance.. Frontiers in Microbiology 11:1432. 66.Hoppe, F., Burke, U., Thewes, M., Heufer, A., Kremer, F., & Pischinger, S. 2016. Tailor-made fuels from biomass: potentials of 2-butanone and 2-methylfuran in direct injection spark ignition engines. Fuel 167:106-117. 67.Hemken, C., Burke, U., Lam, K., Davidson, D., Hanson, R., Heufer, K., & Kohse-Höinghaus, K. 2017. Toward a better understanding of 2-butanone oxidation: detailed species measurements and kinetic modeling. Combustion and Flame 184:195-207. 68.Casazza, J., Felver, M., , R., & , V. 1984. The metabolism of acetone in rat.. The Journal of biological chemistry 259 1:231-6 . 69.Righettoni, M., Tricoli, A., & Pratsinis, S. 2010. Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis.. Analytical chemistry 82 9:3581-7 . 70.Stefan, M., Hoy, A., & Bolton, J. 1996. Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the uv photolysis of hydrogen peroxide. Environmental Science & Technology 30:2382-2390. 71.Modi, M., Reddy, J., Rao, B., & Prasad, R. 2007. Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor.. Bioresource technology 98 6:1260-4 . 72.Hashim, L., & Chaveron, H. 1995. Use of methylpyrazine ratios to monitor the coffee roasting. Food Research International 28:619-623. 73.Hashim, L., & Chaveron, H. 1994. Extraction and determination of methylpyrazines in cocoa beans using coupled steam distillation-microdistillator. Food Research International 27:537-544. 74.Mencis, I., & Sweet, T. 1963. Determination of iron with diethylacetic acid by isotope dilution analysis.. Analytical Chemistry 35:1904-1907. 75.Silva, V., & Rodrigues, A. 2005. Novel process for diethylacetal synthesis. Aiche Journal 51: 2752-2768. 76.Wu W, Zeng Y, Yan X, et al. 2023 Volatile organic compounds of Bacillus velezensis GJ-7 against Meloidogyne hapla through multiple prevention and control modes. Molecules. 28(7):3182. 77.Ayaz M, Ali Q, Farzand A, Khan AR, Ling H, Gao X. 2021 Nematicidal volatiles from Bacillus atrophaeus GBSC56 promote growth and stimulate induced systemic resistance in tomato against Meloidogyne incognita. Int J Mol Sci. 22(9):5049. 78.Yamada, K., Shimizu, A., & Ohta, A. 1993. Effects of dimethylpyrazine isomers on reproductive and accessory reproductive organs in male rats.. Biological & pharmaceutical bulletin 16 2: 203-6 . 79.Chen, H., Li, G., Zhan, P., Li, H., Wang, S., & Liu, X. 2014. Design, synthesis and biological evaluation of novel trimethylpyrazine-2-carbonyloxy-cinnamic acids as potent cardiovascular agents. MedChemComm 5:711 -718. 80.Api, A., Belsito, D., et al. 2020. RIFM fragrance ingredient safety assessment, 2-acetylthiazole, CAS registry number 24295-03-2.. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association 111468 . 81.Avcı, D., Dede, B., Bahçelī, S., & Varkal, a. 2019. A heterocyclic compound 5-acetyl-2,4-dimethylthiazole, spectroscopic, natural bond orbital, nonlinear optical and molecular docking studies. Revista Mexicana de Física. 65(2):106 82.Krečmerová, M., & Otmar, M. 2012. 5-azacytosine compounds in medicinal chemistry: current stage and future perspectives.. Future medicinal chemistry 4 8:991-1005 . 83.Surbone, A., Ford, H., Kelley, J., Ben-Baruch, N., Thomas, R., Fine, R., & Cowan, K. 1990. Phase I and pharmacokinetic study of arabinofuranosyl-5-azacytosine (fazarabine, NSC 281272).. Cancer research 50 4:1220-5 . 84.Gürel, E., Pişkin, M., Altun, S., Odabaş, Z., & Durmuş, M. 2015. Synthesis, characterization and investigation of the photophysical and photochemical properties of highly soluble novel metal-free, zinc(II), and indium(III) phthalocyanines substituted with 2,3,6-trimethylphenoxy moieties.. Dalton transactions 44 13:6202-11 . 85.Kiss, L., Bocsik, A., Walter, F., Ross, J., Brown, D., Mendenhall, B., Crews, S., Lowry, J., Coronado, V., Thompson, D., Sipos, P., Szabó-Révész, P., Deli, M., & Petrikovics, I. 2017. From the cover: in vitro and in vivo blood-brain barrier penetration studies with the novel cyanide antidote candidate dimethyl trisulfide in mice. Toxicological Sciences 160:398–407. 86.Bhadra, S., Zhang, Z., Zhou, W., Ochieng, F., Rockwood, G., Lippner, D., & Logue, B. 2019. Analysis of potential cyanide antidote, dimethyl trisulfide, in whole blood by dynamic headspace gas chromatography-mass spectroscopy.. Journal of chromatographyA 1591:71-78 . 87.Gijs, L., Perpète, P., Timmermans, A., & Collin, S. 2000. 3-methylthiopropionaldehyde as precursor of dimethyl trisulfide in aged beers.. Journal of agricultural and food chemistry 48 12: 51 6196 -9 . 88.Ruwe, L., Moshammer, K., Hansen, N., & Kohse-Höinghaus, K. 2017. Consumption and hydrocarbon growth processes in a 2-methyl-2-butene flame. Combustion and Flame 175:34-46. 89.Kaur, M., Kumari, A., & Singh, R. 2021. The indigenous volatile inhibitor 2-methyl-2-butene impacts biofilm formation and interspecies interaction of the pathogenic mucorale Rhizopus arrhizus. Microbial Ecology 83:506 - 512. 90.Park, S., Mannaa, O., Khaled, F., Bougacha, R., Mansour, M., Farooq, A., Chung, S., & Sarathy, S. 2015. A comprehensive experimental and modeling study of 2-methylbutanol combustion. Combustion and Flame 162:2166-2176. 91.Serinyel, Z., Togbé, C., Dayma, G., & Dagaut, P. 2014. An experimental and modeling study of 2-methyl-1-butanol oxidation in a jet-stirred reactor. Combustion and Flame161:3003-3013. 92.Zhang, X., Yang, B., Yuan, W., Cheng, Z., Zhang, L., Li, Y., & Qi, F. 2015. Pyrolysis of 2-methyl-1-butanol at low and atmospheric pressures: mass spectrometry and modeling studies. Proceedings of the Combustion Institute 35:409-417. 93.Younis, N., Elsewedy, H., Soliman, W., Shehata, T., & Mohamed, M. 2021. Geraniol isolated from lemon grass to mitigate doxorubicin-induced cardiotoxicity through Nrf2 and NF-κB signaling.. Chemico-biological interactions 109599 . 94.Younis, N., Abduldaium, M., & Mohamed, M. 2020. Protective effect of geraniol on oxidative, inflammatory and apoptotic alterations in isoproterenol-induced cardiotoxicity: role of the Keap1/Nrf2/HO-1 and PI3K/Akt/mTOR pathways. Antioxidants 9(10):977. 95.Alasmari, A., Ali, N., et al. 2022. Geraniol ameliorates doxorubicin-mediated kidney injury through alteration of antioxidant status, inflammation, and apoptosis: potential roles of NF-κB and Nrf2/Ho-1. Nutrients 14(8):1620. 96.Farokhcheh, M., Hejazian, L., Akbarnejad, Z., Pourabdolhossein, F., Hosseini, S., Mehraei, T., & Soltanpour, N. 2021. Geraniol improved memory impairment and neurotoxicity induced by zinc oxide nanoparticles in male wistar rats through its antioxidant effect.. Life sciences 119823 . 97.Lira, M., Júnior, F., Moraes, G., Macena, G., Pereira, F., & Lima, I. 2020. Antimicrobial activity of geraniol: an integrative review. Journal of Essential Oil Research 32:187 - 197. 98.Mączka, W., Wińska, K., & Grabarczyk, M. 2020. One hundred faces of geraniol. Molecules 25(14):3303 99.Ragoussis, V., Giannikopoulos, A., Skoka, E., & Grivas, P. 2007. Efficient synthesis of (+/-)-4-methyloctanoic acid, aggregation pheromone of rhinoceros beetles of the genus Oryctes (Coleoptera: Dynastidae, Scarabaeidae).. Journal of agricultural and food chemistry 55 13: 5050-2 . 100.Chen, H., Wang, Y., Jiang, H., & Zhao, G. 2012. A novel method for determination and quantification of 4-methyloctanoic and 4-methylnonanoic acids in mutton by hollow fiber supported liquid membrane extraction coupled with gas chromatography.. Meat science 92 4: 715-20 . 101.Landolt, P., Tóth, M., Meagher, R., & Szarukán, I. 2013. Interaction of acetic acid and phenylacetaldehyde as attractants for trapping pest species of moths (Lepidoptera: Noctuidae).. Pest management science 69 2:245-9 . 102.Creighton, C., Mcfadden, T., & Cuthbert, E. 1973. Supplementary data on phenylacetaldehyde: an attractant for Lepidoptera. Journal of Economic Entomology 66:114-115. 103.Ferrandon, S., Kong, C., et al. 2022. Abstract 1830: Phenylacetaldehyde induces apoptosis through endoplasmic reticulum and potentiates the effect of 5-FU treatment in colorectal cancer cells. Cancer Research. 82(23) 104.Pettersson, J., Karlsson, P., Göransson, U., Rafter, J., & Bohlin, L. 2008. The flavouring phytochemical 2-pentanone reduces prostaglandin production and COX-2 expression in colon cancer cells.. Biological & pharmaceutical bulletin 31 3:534-7 . 105.Yavari, F., Thriel, C., Nitsche, M., & Kuo, M. 2018. Effect of acute exposure to toluene on cortical excitability, neuroplasticity, and motor learning in healthy humans. Archives of Toxicology, 92:3149 - 3162. 106.Kobald, S., Wascher, E., Blaszkewicz, M., Golka, K., & Thriel, C. 2015. Neurobehavioral and neurophysiological effects after acute exposure to a single peak of 200 ppm toluene in healthy volunteers.. Neurotoxicology 48:50-9 . 107.Fisher, C., Myers, C., Hassan, R., Stevens, C., Hack, C., Gearhart, J., & Gunzelmann, G. 2017. A cognitive-pharmacokinetic computational model of the effect of toluene on performance. Cognitive Science. 39:355-360 108.Hong, J., Yu, S., Kim, S., Ahn, J., Kim, Y., Kim, G., Son, S., Park, J., & Hwang, S. 2016. Association analysis of toluene exposure time with high-throughput mRNA expressions and methylation patterns using in vivo samples.. Environmental research 146:59-64 . 109.Jabir, M., Taha, A., Sahib, U., Taqi, Z., Al-Shammari, A., & Salman, A. 2019. Novel of nano delivery system for linalool loaded on gold nanoparticles conjugated with CALNN peptide for application in drug uptake and induction of cell death on breast cancer cell line.. Materials science & engineering. C, Materials for biological applications 94:949-964 . 110.Rodenak-Kladniew, B., Castro, A., Stärkel, P., Saeger, C., Bravo, M., & Crespo, R. 2018. Linalool induces cell cycle arrest and apoptosis in HepG2 cells through oxidative stress generation and modulation of Ras/MAPK and Akt/mTOR pathways. Life Sciences 199:48–59. 111.Camargo, S., Simões, et al. 2018. Antihypertensive potential of linalool and linalool complexed with &bgr;‐cyclodextrin: effects of subchronic treatment on blood pressure and vascular reactivity. Biochemical Pharmacology 151:38–46. 112.Sabogal-Guaqueta, A., Hobbie, F., Keerthi, A., Oun, A., Kortholt, A., Boddeke, E., & Dolga, A. 2019. Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity.. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 118:109295 . 113.Kim, M., Kim, S., Min, J., Kwon, O., Park, M., Park, J., Ahn, H., Hwang, J., Oh, S., Lee, J., & Ahn, K. 2019. Anti-inflammatory effects of linalool on ovalbumin-induced pulmonary inflammation.. International immunopharmacology 74:105706 . 114.Cho, S., Jun, H., Lee, J., Jia, Y., Kim, K., & Lee, S. 2011. Linalool reduces the expression of 3‐hydroxy‐3‐methylglutaryl coA reductase via sterol regulatory element binding protein‐2‐ and ubiquitin‐dependent mechanisms. FEBS Letters 585. 115.Nyman, B. 1966. The effect of nonanal on Dipodascus aggregatus. Physiologia Plantarum 22: 809-818. 116.Pieper, J., Hemken, C., Büttgen, R., Graf, I., Hansen, N., Heufer, K., & Kohse-Höinghaus, K. 2019. A high-temperature study of 2-pentanone oxidation: experiment and kinetic modeling. Proceedings of the Combustion Institute. 2:1683-1690 117.Liu, N., Luo, X., Tian, Y., Lai, D., Zhang, L., Lin, F., & Xu, H. 2019. The stereoisomeric Bacillus subtilis HN09 metabolite 3,4-dihydroxy-3-methyl-2-pentanone induces disease resistance in Arabidopsis via different signalling pathways. BMC Plant Biology 19(1):384. 118.Fuente, E., Valencia-Barrera, R., Martínez-Castro, I., & Sanz, J. 2007. Occurrence of 2-hydroxy-5-methyl-3-hexanone and 3-hydroxy-5-methyl-2-hexanone as indicators of botanic origin in eucalyptus honeys. Food Chemistry 103:1176-1180. 119.Borries, F., Kudla, A., Kim, S., Allston, T., Eddingsaas, N., Shey, J., Orts, W., Klamczynski, A., Glenn, G., & Miri, M. 2019. Ketalization of 2-heptanone to prolong its activity as mite repellant for the protection of honey bees.. Journal of the science of food and agriculture. 99(14):6267-6277. 120.Zhang, D., Qiang, R., Zhao, J., Zhang, J., Cheng, J., Zhao, D., Fan, Y., Yang, Z., & Zhu, J. 2022. Mechanism of a volatile organic compound (6-methyl-2-heptanone) emitted from Bacillus subtilis ZD01 against Alternaria solani in potato. Frontiers in Microbiology 12:808337. 121.Bilbao‐Sainz, C., Chiou, B., Glenn, G., Gregorsky, K., Williams, T., Wood, D., Klamczynski, A., & Orts, W. 2013. Solid lipid particles in lipid films to control the diffusive release of 2-heptanone.. Pest management science 69 8:975-82 . 122.Cardenia, V., Olivero, G., & Rodríguez-Estrada, M. 2015. Thermal oxidation of cholesterol: preliminary evaluation of 2-methyl-6-heptanone and 3-methylbutanal as volatile oxidation markers. Steroids 99:161-171. 123.Zhang, D., Qiang, R., Zhao, J., Zhang, J., Cheng, J., Zhao, D., Fan, Y., Yang, Z., & Zhu, J. 2022. Mechanism of a volatile organic compound (6-Methyl-2-Heptanone) emitted from Bacillus subtilis ZD01 against Alternaria solani in potato. Frontiers in Microbiology 12:808337. 124.Gautam, J., Banskota, S., et al. 2018. Antitumor activity of BJ-1207, a 6-amino-2,4,5-trimethylpyridin-3-ol derivative, in human lung cancer.. Chemico-biological interactions 294: 1-8 . 125.Kim, D., Kang, Y., Lee, H., Lee, E., Nam, T., Kim, J., & Jeong, B. 2014. 6-Amino-2,4,5-trimethylpyridin-3-ols: a new general synthetic route and antiangiogenic activity.. European journal of medicinal chemistry 78:126-39 . 126.Banskota, S., Kang, H., Kim, D., Park, S., Jang, H., Karmacharya, U., Jeong, B., Kim, J., & Nam, T. 2016. In vitro and in vivo inhibitory activity of 6-amino-2,4,5-trimethylpyridin-3-ols against inflammatory bowel disease.. Bioorganic & medicinal chemistry letters 26 19:4587-4591 . 127.Zhenhe, T. 2007. Synthesis of 3,5-Dicyano-2,4,6-trimethylpyridine by photoinduced aromatization of 1,4-Dihydro-3,5 dicyano-2,4,6-trimethylpyridine. Imaging Science and Photochemistry 3: 161-164. 128.Ramesh, G., P., R., Pillegowda, M., Periyasamy, G., Suchetan, P., Butcher, R., Foro, S., & Nagaraju, G. 2020. Synthesis, crystal structures, photophysical, electrochemical studies, DFT and TD-DFT calculations and hirshfeld analysis of new 2,2′:6′,2′′-terpyridine ligands with pendant 4′-(trimethoxyphenyl) groups and their homoleptic ruthenium complexes. New Journal of Chemistry 44:11471-11489. 129.Peresypkina, A., Pazhinsky, et al. 2020. Retinoprotective effect of 2-ethyl-3-hydroxy-6-methylpyridine nicotinate. Biology 9(3):45 130.Díaz, J., Cuberes, R., Berrocal, J., Contijoch, M., Christmann, U., Fernández, A., Port, A., et al. 2012. Synthesis and biological evaluation of the 1-arylpyrazole class of σ(1) receptor antagonists: identification of 4-{2-[5-methyl-1-(naphthalen-2-yl)-1H-pyrazol-3-yloxy]ethyl}::::morpholine (S1RA, E-52862).. Journal of medicinal chemistry, 55 19:8211-24 . 131.Takadera, T., & Ohyashiki, T. 2008. Benzyl alcohol inhibits N-methyl-D: -aspartate receptor-mediated neurotoxicity and calcium accumulation in cultured rat cortical neurons.. Journal of biomedical science 15 6:767-70 . 132.Prieto, M., Marhuenda, D., Roel, J., & Cardona, A. 2003. Free and total 2,5-hexanedione in biological monitoring of workers exposed to n-hexane in the shoe industry.. Toxicology letters 145 3:249-60 . 133.Gao, J., Zhang, X., Lin, Q., Chen, Y., Zhang, Z., & Lin, L. 2019. [Effects of n-hexane on learning and memory and the expressions of nerve growth factor mRNA and nerve growth factor receptor mRNA of brain tissue in mice exposed to N-hexane].. Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases 37 3:217-220 . 134.Amala, K., Karthi, S., et al. 2021. Bioefficacy of Epaltes divaricata (L.) n-Hexane extracts and their major metabolites against the Lepidopteran pests Spodoptera litura (fab.) and Dengue mosquito Aedes aegypti (Linn.). Molecules 26(12):3695. 135.Tan, K., Lee, K., & Mohamed, A. 2010. A glycerol-free process to produce biodiesel by supercritical methyl acetate technology: an optimization study via Response Surface Methodology.. Bioresource technology 101 3:965-9 . 136.Tsardaka, E., Zacharis, C., Tzanavaras, P., & Zotou, A. 2013. Determination of glutathione in baker's yeast by capillary electrophoresis using methyl propiolate as derivatizing reagent.. Journal of chromatography. A 1300:204-8 . 137.Xue, Z., & Yang, B. 2016. Phenylethanoid glycosides: research advances in their phytochemistry, pharmacological activity and pharmacokinetics. Molecules 21(8):991 138.Han, T., Tumanov, S., Cannon, R., & Villas-Bôas, S. 2013. Metabolic response of Candida albicans to phenylethyl alcohol under hyphae-inducing conditions. PLoS ONE 8(8) 139.Mo, E., & Sung, C. 2006. The effect of phenylethyl alcohol on PAL mRNA and enzyme activity in strawberries. Postharvest Biology and Technology 42:290-292. 140.Rycke, E., Trynda, A., Jaworowicz, M., Dubruel, P., Saeger, S., & Beloglazova, N. 2020. Capacitive sensing of an amphetamine drug precursor in aqueous samples: application of novel molecularly imprinted polymers for benzyl methyl ketone detection.. Biosensors & bioelectronics 172:112773 . 141.Hajizadeh, M., Maleki, H., Barani, M., Fahmidehkar, M., Mahmoodi, M., & Torkzadeh-Mahani, M. 2019. In vitro cytotoxicity assay of D-limonene niosomes: an efficient nano-carrier for enhancing solubility of plant-extracted agents. Research in Pharmaceutical Sciences 14:448 - 458. 142.Berliocchi, L., Chiappini, C., Adornetto, A., Gentile, D., Cerri, S., Russo, R., Bagetta, G., & Corasaniti, M. 2018. Early LC3 lipidation induced by d-limonene does not rely on mTOR inhibition, ERK activation and ROS production and it is associated with reduced clonogenic capacity of SH-SY5Y neuroblastoma cells.. Phytomedicine: international journal of phytotherapy and phytopharmacology 40:98-105 . 143.Yu, L., Yan, J., & Sun, Z. 2017. D-limonene exhibits anti-inflammatory and antioxidant properties in an ulcerative colitis rat model via regulation of iNOS, COX-2, PGE2 and ERK signaling pathways.. Molecular medicine reports 15 4:2339-2346 . 144.Zahi, M., Liang, H., & Yuan, Q. 2015. Improving the antimicrobial activity of d-limonene using a novel organogel-based nanoemulsion. Food Control 50:554-559. 145.Beadle, K., Helbling, A., Love, S., April, M., & Hunter, C. 2016. Isopropyl alcohol nasal inhalation for nausea in the emergency department: a randomized controlled trial.. Annals of emergency medicine 68 1:1-9.e1 . 146.Poonlaphdecha, J., Gantet, P., Maraval, I., Sauvage, F., Menut, C., Morère, A., Boulanger, R., Wüst, M., & Gunata, Z. 2016. Biosynthesis of 2-acetyl-1-pyrroline in rice calli cultures: demonstration of 1-pyrroline as a limiting substrate.. Food chemistry 197 Pt A:965-71 . 147.Miyake, K., Suzuki, et al. 2016. Acetophenone monomers from Acronychia trifoliolata.. Journal of natural products 79 11:2883-2889 . 148.Tocco, G., Eloh, K., Onnis, V., Sasanelli, N., & Caboni, P. 2017. Haloacetophenones as newly potent nematicides against Meloidogyne incognita. Industrial Crops and Products 110:94-102 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95639 | - |
| dc.description.abstract | 芽孢桿菌屬 (Bacillus sp.) 的細菌經常被認為是植物根際促生菌 (plant growth promoting rhizobacteria, PGPR),又由於其具有內孢子形成能力,該屬細菌可以製成長期穩定且能抵抗不利環境條件的粉末或是液態產品,此類微生物產品被認為是化學肥料與農藥的最佳替代品。現今研究指出芽孢桿菌屬細菌具有多種揮發性有機化合物 (volatile organic compounds, VOCs) 且已被證實分別可以抗菌、促進植物生長和控制植物病蟲害。胚芽乳酸菌 (Lactiplantibacillus plantarum) 是一類常見於天然發酵蔬果、土壤或是動物腸道中的乳酸菌,具有其作為益生菌去優化食品品質與風味的潛力,現今已有團隊針對胚芽乳酸菌之 VOCs 進行發酵食品成分分析的相關研究。冠突散囊菌 (Eurotium cristatum) 是從茯磚茶 (Fuzhuan Brick Tea, FBT) 分離出來的金黃色真菌,現今已有針對冠突散囊菌之發酵茶中 VOCs 成分分析的相關研究,冠突散囊菌可以有效提升茶的風味和品質。本研究針對前述包括 5 種不同芽孢桿菌、胚芽乳酸菌及冠突散囊菌共 7 種微生物,在有、無含糖培養基的生長環境,針對不同培養時間後所生產之 VOCs 進行分析與比較,從中得知在不同培養基和生長時間下其 VOCs 產物及菌株之間 VOCs 組成成分之差異。結果顯示,在 YPSG 培養基中,Bacillus velezensis、Bacillus subtilis K1 和 Bacillus amyloliquefaciens 都會大量生產 acetoin;Bacillus megaterium能夠大量生產 3-methyl-1-butanol;Bacillus coagulans 具有大量生產 acetic acid、3-methyl-butanoic acid 和 2-methylbutanoic acid 的能力。在 MRS 培養基中,L.plantarum 產生較多 2,3,4-trimethyloxetane、3-methyl-1-butanol 和 acetic acid。在 YPD 培養基中,E.cristatum 以 2-butanone、trans-1,2-dimethylcyclopropane 和 2,3-butanediol 為主要產物。在 LB 培養基 (不含糖) 中,B.velezensis、B.subtilis K1 和 B.amyloliquefaciens 主要 VOCs 產物為 2,5- dimethylpyrazine;而 B.megaterium 和 B.coagulans 主要 VOCs 產物為 dimethyl disulfide、2,5-dimethylpyrazine 和 dimethyl trisulfide。因此,VOCs 的種類與產量會因為有無含糖而影響其豐富度。此外,從主成分分析 (Principal Component Analysis , PCA) 中發現在含糖培養基條件下,菌株被分成 4 個群落,B.velezensis、B. subtilis K1 和 B.amyloliquefaciens 一群,B.megaterium 和 L.plantarum 一群,B.coagulans 一群,E.cristatum 一群;在 LB 培養基中,芽孢桿菌屬菌株被分成 3 個群落,B.velezensis、B.subtilis K1 和 B.amyloliquefaciens 一群,B.megaterium 一群,B.coagulans 一群。在 PCA 分析中,被分類為同一群代表其 VOCs 組成成分相似度較高。 | zh_TW |
| dc.description.abstract | Bacillus sp. contain common plant growth promoting rhizobacteria (PGPR). As a result of its ability to form endospores, powder or liquid products that are long-term stable and resistant to adverse environmental conditions can be made of this genus of bacteria. This kind of microbial products are considered to be the best alternatives to chemical fertilizers and pesticide. It has been widely reported that Bacillus sp. strains have strong production capabilities of volatile organic compounds (VOCs). Furthermore, numerous VOCs from Bacillus sp. strains have also been used to promote plant growth as well as control plant diseases and pests. Lactiplantibacillus plantarum is a type of lactic acid bacteria commonly found in spontaneously fermented fruits, vegetables, soil, and animal intestines. It has the potential to be used as a probiotic to optimize food quality and flavor. Nowadays, there are a lot of research focus on the analysis of VOCs from L.plantarum in fermented foods. Eurotium cristatum is a golden-colored fungus isolated from Fuzhuan Brick Tea (FBT). More recently, there have been several analysis of VOCs in fermented tea. This fungus can effectively enhance the flavor and quality of the tea. In this study, we analyzed and compared the VOCs produced by 5 different Bacillus species, Lactiplantibacillus plantarum and Eurotium cristatum which cultured in media with and without sugar at different culture times. The results show that Bacillus velezensis, Bacillus subtilis K1, and Bacillus amyloliquefaciens all produce large amounts of acetoin in the YPSG medium; Bacillus megaterium is capable of producing plenty of 3-methyl-1-butanol; Bacillus coagulans has the ability to produce a large quantity of acetic acid, 3-methylbutanoic acid, and 2-methylbutanoic acid. In the MRS medium, L.plantarum produces higher amounts of 2,3,4-trimethyloxetane, 3-methyl-1-butanol, and acetic acid. In the YPD medium, E.cristatum mainly produces 2-butanone, trans- 1,2-dimethylcyclopropane, and 2,3-butanediol. In the LB medium (without sugar), the major VOCs produced by B.velezensis, B.subtilis K1, and B.amyloliquefaciens are 2,5-dimethylpyrazine, while the main VOCs produced by B.megaterium and B.coagulans are dimethyl disulfide, 2,5-dimethylpyrazine, and dimethyl trisulfide. Therefore, whether the presence of sugar affects the types and yield of VOCs. Moreover, principal component analysis (PCA) revealed that the strains could be separated into four clusters in sugar-containing medium. B.velezensis, B.subtilis K1, and B.amyloliquefaciens were classified as a separate cluster, B.megaterium and L.plantarum were one cluster, B.coagulans was another cluster, and E.cristatum was the other one. In the LB medium, Bacillus species were separated into three clusters. B.velezensis, B.subtilis K1, and B.amyloliquefaciens were classified as a separate cluster, B.megaterium was one cluster, and B.coagulans was the other one. In PCA analysis, we consider groups of VOCs having similar composition in the same cluster. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:15:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-15T16:15:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書
............................................................................................................................. II 謝誌 .................................................................................................................................................... III 中文摘要 ............................................................................................................................................ IV 縮寫表 .............................................................................................................................................. VII 目次 ................................................................................................................................................. VIII 一、前言 .............................................................................................................................................. 1 1.1 微生物與植物之交互作用 ................................................................................................. 1 1.2 微生物VOCs 及其應用 .................................................................................................... 1 1.3 芽孢桿菌屬 ......................................................................................................................... 1 1.4 胚芽乳酸菌 ......................................................................................................................... 2 1.5 冠突散囊菌 ......................................................................................................................... 2 1.6 芽孢桿菌屬、胚芽乳酸菌及冠突散囊菌與 mVOCs ...................................................... 3 1.7 研究目的 ............................................................................................................................. 5 二、材料與方法 .................................................................................................................................. 6 2.1 菌株來源 ............................................................................................................................. 6 2.2 芽孢桿菌屬產生 mVOCs 之培養策略 ............................................................................ 6 2.3 胚芽乳酸菌 mVOCs 之生產培養策略 ............................................................................ 7 2.4 冠突散囊菌產生 mVOCs 之培養策略 ............................................................................ 7 2.5 芽孢桿菌屬、胚芽乳酸菌與冠突散囊菌之 mVOCs 產物分析 .................................... 7 2.6 芽孢桿菌屬、胚芽乳酸菌與冠突散囊菌之 mVOCs主成分分析 (PCA) ..................... 8 三、結果 .............................................................................................................................................. 9 3.1 芽孢桿菌屬之 mVOCs 產物分析結果 ............................................................................ 9 3.2 胚芽乳酸菌之 mVOCs 產物分析結果 .......................................................................... 10 3.3 冠突散囊菌之 mVOCs 產物分析結果 .......................................................................... 11 3.4 芽孢桿菌屬、胚芽乳酸菌與冠突散囊菌之 mVOCs主成分分析 (PCA, Principal Component Analysis) ............................................................................................................... 11 四、討論 ............................................................................................................................................ 12 圖 ........................................................................................................................................................ 17 表 ........................................................................................................................................................ 38 參考文獻 ............................................................................................................................................ 41 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 芽孢桿菌屬、胚芽乳酸菌與冠突散囊菌生合成之有機揮發性物質分析 | zh_TW |
| dc.title | Study of volatile organic compounds from Bacillus sp., Lactiplantibacillus plantarum and Eurotium cristatum | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉啓德;吳定峰;王正利;林俊材 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Te Liu;Ting-Feng Wu;Cheng-Li Wang;Jiun-Tsai Lin | en |
| dc.subject.keyword | 芽孢桿菌,胚芽乳酸菌,冠突散囊菌,揮發性有機化合物,氣相層析質譜儀, | zh_TW |
| dc.subject.keyword | Bacillus,Lactiplantibacillus plantarum,Eurotium cristatum,VOCs,GC-MS, | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU202402730 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
