Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95627
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor袁孝維zh_TW
dc.contributor.advisorHsiao-Wei Yuanen
dc.contributor.author周安zh_TW
dc.contributor.authorAn Chouen
dc.date.accessioned2024-09-15T16:11:15Z-
dc.date.available2024-09-16-
dc.date.copyright2024-09-14-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation丁宗蘇、吳森雄、吳建龍、阮錦松、林瑞興、楊玉祥、蔡乙榮。(2023)。2023年 臺灣鳥類名錄。中華民國野鳥學會。臺北,臺灣。
沈振中。(2010)。北方三島鳥類生態調查。內政部營建署海洋國家公園。
林瑞興、呂亞融、楊正雄、曾子榮、柯智仁、陳宛均。(2016)。2016臺灣鳥類紅皮書名錄。行政院農業委員會特有生物研究保育中心、行政院農業委員會林務局。南投縣。
陳明芫。(2023)。以人工智慧物種辨識工具探索大安森林公園的鳥類聲景。(碩士)。國立臺灣大學,台北市。
黃彥婷。(2022)。111年度棉花嶼、花瓶嶼野生動物保護區巡護暨生態調查委託案。基隆市動物保護防疫所。
黃彥婷。(2023)。112年度棉花嶼、花瓶嶼野生動物保護區巡護暨生態調查委託案。基隆市動物保護防疫所。
蕭木吉、李政霖。(2015)。台灣野鳥手繪圖鑑。台北市野鳥學會。
Alquezar, R. D., & Machado, R. B. (2015). Comparisons between autonomous acoustic recordings and avian point counts in open woodland savanna. The Wilson Journal of Ornithology, 127(4), 712-723.
Arima, H., Oka, N., Baba, Y., Sugawa, H., & Ota, T. (2014). Gender identification by calls and body size of the Streaked Shearwater examined by CHD genes. Ornithological Science, 13(1), 9-17.
Arneill, G. E., Critchley, E. J., Wischnewski, S., Jessopp, M. J., & Quinn, J. L. (2020). Acoustic activity across a seabird colony reflects patterns of within‐colony flight rather than nest density. Ibis, 162(2), 416-428.
BirdLife International (2021). IUCN Red List for birds. http://www.birdlife.org.
BirdLife International (2024). Species factsheet: Calonectris leucomelas. Downloaded from https://datazone.birdlife.org/species/factsheet/streaked-shearwater-calonectris-leucomelas on 14/05/2024.
Bolton, M., Smith, A. L., GÓMEZ‐DÍAZ, E. L. E. N. A., Friesen, V. L., Medeiros, R., Bried, J., ... & Furness, R. W. (2008). Monteiro's Storm‐petrel Oceanodroma monteiroi: a new species from the Azores. Ibis, 150(4), 717-727.
Borker, A. L., Buxton, R. T., Jones, I. L., Major, H. L., Williams, J. C., Tershy, B. R., & Croll, D. A. (2020). Do soundscape indices predict landscape‐scale restoration outcomes? A comparative study of restored seabird island soundscapes. Restoration Ecology, 28(1), 252-260.
Borker, A. L., McKown, M. W., Ackerman, J. T., EAGLES‐SMITH, C. A., Tershy, B. R., & Croll, D. A. (2014). Vocal activity as a low cost and scalable index of seabird colony size. Conservation biology, 28(4), 1100-1108.
Bretagnolle, V. (1996). Acoustic communication in a group of nonpasserine birds, the petrels. Ecology and evolution of acoustic communication in birds, 160, 177.
Brooke, M. (2013). The manx shearwater. A&C Black.
Brownlie, K. C., Monash, R., Geeson, J. J., Fort, J., Bustamante, P., & Arnould, J. P. (2020). Developing a passive acoustic monitoring technique for Australia’s most numerous seabird, the Short-tailed Shearwater (Ardenna tenuirostris). Emu-Austral Ornithology, 120(2), 123-134.
Buxton, R. T., & Jones, I. L. (2012). Measuring nocturnal seabird activity and status using acoustic recording devices: applications for island restoration. Journal of Field Ornithology, 83(1), 47-60.
Buxton, R. T., Major, H. L., Jones, I. L., & Williams, J. C. (2013). Examining patterns in nocturnal seabird activity and recovery across the Western Aleutian Islands, Alaska, using automated acoustic recording. The Auk, 130(2), 331-341.
Carey, M. J. (2011). Investigator disturbance reduces reproductive success in Short‐tailed Shearwaters Puffinus tenuirostris. Ibis, 153(2), 363-372.
Clements, J. F., Rasmussen, P. C., Schulenberg, T. S., Iliff, M. J., Fredericks, T. A., Gerbracht, J. A., Lepage, D., Spencer, A., Billerman, S. M., Sullivan, B. L., & Wood, C. L. (2023). The eBird/Clements checklist of Birds of the World: v2023. Downloaded from https://www.birds.cornell.edu/clementschecklist/download/
Cody, M. L., & Brown, J. H. (1969). Song asynchrony in neighbouring bird species. Nature, 222(5195), 778-780.
Cragg, J. L., Burger, A. E., & Piatt, J. F. (2015). Testing the effectiveness of automated acoustic sensors for monitoring vocal activity of marbled murrelets Brachyramphus marmoratus. Marine Ornithology, 43, 151-160.
Croxall, J. P., Butchart, S. H., Lascelles, B. E. N., Stattersfield, A. J., Sullivan, B. E. N., Symes, A., & Taylor, P. H. I. L. (2012). Seabird conservation status, threats and priority actions: a global assessment. Bird Conservation International, 22(1), 1-34.
Darras, K., Batáry, P., Furnas, B., Celis‐Murillo, A., Van Wilgenburg, S. L., Mulyani, Y. A., & Tscharntke, T. (2018). Comparing the sampling performance of sound recorders versus point counts in bird surveys: A meta‐analysis. Journal of applied ecology, 55(6), 2575-2586.
Dias, M. P., Martin, R., Pearmain, E. J., Burfield, I. J., Small, C., Phillips, R. A., ... & Croxall, J. P. (2019). Threats to seabirds: a global assessment. Biological Conservation, 237, 525-537.
Digby, A., Towsey, M., Bell, B. D., & Teal, P. D. (2013). A practical comparison of manual and autonomous methods for acoustic monitoring. Methods in Ecology and Evolution, 4(7), 675-683.
Duarte, A., Weldy, M. J., Lesmeister, D. B., Ruff, Z. J., Jenkins, J. M., Valente, J. J., & Betts, M. G. (2024). Passive acoustic monitoring and convolutional neural networks facilitate high-resolution and broadscale monitoring of a threatened species. Ecological Indicators, 162, 112016.
Edney, A. J., & Wood, M. J. (2021). Applications of digital imaging and analysis in seabird monitoring and research. Ibis, 163(2), 317-337.
Farina, A., Pieretti, N., & Piccioli, L. (2011). The soundscape methodology for long-term bird monitoring: A Mediterranean Europe case-study. Ecological Informatics, 6(6), 354-363.
Goutte, C., & Gaussier, E. (2005, March). A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In European conference on information retrieval (pp. 345-359). Berlin, Heidelberg: Springer Berlin Heidelberg.
Grau, J., Grosse, I., & Keilwagen, J. (2015). PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics, 31(15), 2595-2597.
Hart, K. A., Oppel, S., Humphries, G. R., Blackburn, A., & Nam, K. B. (2021). Estimating Streaked Shearwater Calonectris leucomelas abundance in the Republic of Korea using automated acoustic recorders. Marine Ornithology, 49, 109-117.
Hutto, R. L., & Stutzman, R. J. (2009). Humans versus autonomous recording units: A comparison of point‐count results. Journal of Field Ornithology, 80(4), 387-398.
Imber, M. J. (1975). Behaviour of Petrels in Relation to The Moon and Artificial Lights. Journal of the Ornithological Society of New Zealand, 302.
IUCN. 2018. The IUCN Red List of Threatened Species. Version 2018-2. Available at: www.iucnredlist.org.
Jones, H. P., & Kress, S. W. (2012). A review of the world's active seabird restoration projects. The Journal of wildlife management, 76(1), 2-9.
Kahl, S., Wood, C. M., Eibl, M., & Klinck, H. (2021). BirdNET: A deep learning solution for avian diversity monitoring. Ecological Informatics, 61, 101236.
Keitt, B. S. (2005). Status of Xantus's Murrelet and its nesting habitat in Baja California, Mexico. Marine Ornithology, 33, 105-114.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Klomp, N. I., & Furness, R. W. (1992). Patterns of chick feeding in Cory's shearwaters and the associations with ambient light. Colonial Waterbirds, 95-102.
Kułaga, K., & Budka, M. (2019). Bird species detection by an observer and an autonomous sound recorder in two different environments: Forest and farmland. PLoS One, 14(2), e0211970.
Lavner, Y., Melamed, R., Bashan, M., & Vortman, Y. (2024). The bioacoustic soundscape of a pandemic: Continuous annual monitoring using a deep learning system in Agmon Hula Lake Park. Ecological Informatics, 102528.
Libois, E., Gimenez, O., Oro, D., Mínguez, E., Pradel, R., & Sanz-Aguilar, A. (2012). Nest boxes: A successful management tool for the conservation of an endangered seabird. Biological Conservation, 155, 39-43.
Lin, T. H., & Sun, Y. J. (2022). meil-brcas-org/soundscape_IR: Release v1.1 (v1.1). Zenodo.
Linares, C. G., Phillips, R. A., & Buxton, R. T. (2022). Monitoring vocal activity and temporal patterns in attendance of White-chinned Petrels using bioacoustics. Emu-Austral Ornithology, 122(1), 27-38.
McKown, M., Fleishman, A. B., & Earl, A. D. (2016). Acoustic surveys for Black-capped Petrel on Hispaniola and Dominica–2016.
Mellinger, D. K., Stafford, K. M., Moore, S. E., Dziak, R. P., & Matsumoto, H. (2007). An overview of fixed passive acoustic observation methods for cetaceans. Oceanography, 20(4), 36-45.
Mougeot, F., & Bretagnolle, V. (2000). Predation risk and moonlight avoidance in nocturnal seabirds. Journal of Avian Biology, 31(3), 376-386.
Oka, N. (2004). The distribution of Streaked Shearwater colonies, with special attention to population size, area of sea where located and surface water temperature. Journal of the Yamashina Institute for Ornithology, 35(2), 164-188.
Oppel, S., Hervías-Parejo, S., Oliveira, N., Pipa, T., Silva, C., Geraldes, P., ... & McKown, M. (2014). Estimating population size of a nocturnal burrow-nesting seabird using acoustic monitoring and habitat mapping. Nature Conservation 7: 1-13.
Orben, R. A., Fleishman, A. B., Borker, A. L., Bridgeland, W., Gladics, A. J., Porquez, J., ... & Suryan, R. M. (2019). Comparing imaging, acoustics, and radar to monitor Leach’s storm-petrel colonies. PeerJ, 7, e6721.
Pérez-Granados, C., Bustillo-De La Rosa, D., Gómez-Catasús, J., Barrero, A., Abril-Colón, I., & Traba, J. (2018). Autonomous recording units as effective tool for monitoring of the rare and patchily distributed Dupont's Lark Chersophilus duponti. Ardea, 106(2), 139-146.
Pérez-Granados, C., Gómez-Catasús, J., Bustillo-de la Rosa, D., Barrero, A., Reverter, M., & Traba, J. (2019). Effort needed to accurately estimate Vocal Activity Rate index using acoustic monitoring: A case study with a dawn-time singing passerine. Ecological Indicators, 107, 105608.
Phillips, R. A., Gales, R., Baker, G. B., Double, M. C., Favero, M., Quintana, F., ... & Wolfaardt, A. (2016). The conservation status and priorities for albatrosses and large petrels. Biological Conservation, 201, 169-183.
Pieretti, N., Farina, A., & Morri, D. (2011). A new methodology to infer the singing activity of an avian community: The Acoustic Complexity Index (ACI). Ecological indicators, 11(3), 868-873.
Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L., Napoletano, B. M., ... & Pieretti, N. (2011). Soundscape ecology: the science of sound in the landscape. BioScience, 61(3), 203-216.
Pirotta, E., Thompson, P. M., Miller, P. I., Brookes, K. L., Cheney, B., Barton, T. R., ... & Lusseau, D. (2014). Scale‐dependent foraging ecology of a marine top predator modelled using passive acoustic data. Functional ecology, 28(1), 206-217.
R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Rayner, M. J., Hauber, M. E., Imber, M. J., Stamp, R. K., & Clout, M. N. (2007). Spatial heterogeneity of mesopredator release within an oceanic island system. Proceedings of the National Academy of Sciences, 104(52), 20862-20865.
Riou, S., & Hamer, K. C. (2008). Predation risk and reproductive effort: impacts of moonlight on food provisioning and chick growth in Manx shearwaters. Animal Behaviour, 76(5), 1743-1748.
Rodriguez, A., Arcos, J. M., Bretagnolle, V., Dias, M. P., Holmes, N. D., Louzao, M., ... & Chiaradia, A. (2019). Future directions in conservation research on petrels and shearwaters. Frontiers in Marine Science, 6, 94.
Ross, S. R. J., Friedman, N. R., Yoshimura, M., Yoshida, T., Donohue, I., & Economo, E. P. (2021). Utility of acoustic indices for ecological monitoring in complex sonic environments. Ecological Indicators, 121, 107114.
Rubolini, D., Maggini, I., Ambrosini, R., Imperio, S., Paiva, V. H., Gaibani, G., ... & Cecere, J. G. (2014). The effect of moonlight on Scopoli's shearwater Calonectris diomedea colony attendance patterns and nocturnal foraging: A test of the foraging efficiency hypothesis. Ethology, 121(3), 284-299.
Shirai, M., Niizuma, Y., Tsuchiya, K., Yamamoto, M., & Oka, N. (2013). Sexual size dimorphism in Streaked Shearwaters Calonectris leucomelas. Ornithological Science, 12(1), 57-62.
Shonfield, J., & Bayne, E. M. (2017). Autonomous recording units in avian ecological research: current use and future applications. Avian Conservation & Ecology, 12(1).
Sugawa, H., Karino, K., Ohshiro, A., & Hirai, M. (2014). Long-term trends in breeding site fidelity of streaked shearwater Calonectris Leucomelas. Marine Ornithology, 42, 11-15.
Sun, Y. J., Yen, S. C., & Lin, T. H. (2022). soundscape_IR: A source separation toolbox for exploring acoustic diversity in soundscapes. Methods in Ecology and Evolution, 13(11), 2347-2355.
Van Parijs, S. M., Clark, C. W., Sousa-Lima, R. S., Parks, S. E., Rankin, S., Risch, D., & Van Opzeeland, I. C. (2009). Management and research applications of real-time and archival passive acoustic sensors over varying temporal and spatial scales. Marine Ecology Progress Series, 395, 21-36.
Van Tatenhove, A., Fayet, A., Watanuki, Y., Yoda, K. E. N., & Shoji, A. (2018). Streaked Shearwater Calonectris leucomelas moonlight avoidance in response to low aerial predation pressure, and effects of wind speed and direction on colony attendance. Marine Ornithology, 46, 177-185.
Venier, L. A., Holmes, S. B., Holborn, G. W., Mcilwrick, K. A., & Brown, G. (2012). Evaluation of an automated recording device for monitoring forest birds. Wildlife Society Bulletin, 36(1), 30-39.
Wu, S. H., Chang, H. W., Lin, R. S., & Tuanmu, M. N. (2022). SILIC: A cross database framework for automatically extracting robust biodiversity information from soundscape recordings based on object detection and a tiny training dataset. Ecological Informatics, 68, 101534.
Yamamoto, T., Takahashi, A., Yoda, K., Katsumata, N., Watanabe, S., Sato, K., & Trathan, P. N. (2008). The lunar cycle affects at-sea behaviour in a pelagic seabird, the streaked shearwater, Calonectris leucomelas. Animal Behaviour, 76(5), 1647-1652.
Yoshida, N. (1962). Breeding ecology of the Streaked Shearwater at Kamurijima I. Japanese Journal of Ornithology, 17(79-80), 83-108.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95627-
dc.description.abstract管鼻目鳥類面臨多種威脅面臨族群下降,但其繁殖地位於偏遠島嶼且多在夜間活動並選擇洞穴為巢,因此研究者及管理單位缺乏其資訊與監測。為解決此困境,本研究嘗試以被動式聲學監測中的自動錄音裝置作為工具,並結合以深度學習為基礎的人工智慧辨識模型探討大水薙鳥(Calonectris leucomelas)於棉花嶼的發聲情形。本研究架設 6 台自動錄音裝置自2023 年 2 月至 11 月間收錄日落到日出的連續錄音資料,並採用以卷積循環式神經網路為基礎的自動辨識工具 Go Go Owl Ranger 進行模型訓練。在閾值分數為 0.2362 時精確度、召回率與 F1 分數皆為 0.9058,儘管有誤判成其他物種但仍顯示出極佳的辨識表現。偵測結果顯示島的東北側發聲頻率最高,同時大水薙鳥平均鳴叫與錄音機周圍有無巢穴沒有明顯差異,推測可能有潛在的繁殖巢穴。另外,本研究發現大水薙鳥有兩個鳴叫高峰時段,判斷這可能是跟其繁殖間的關鍵期與月相週期間的變化有關。本研究旨在借助聲學監測工具和人工智慧辨識,進行。若未來能在島上執行長期聲學監測,並持續優化辨識模型,將有助於推進大水薙鳥聲學研究及其保育應用。zh_TW
dc.description.abstractAlthough birds of the Procellariiformes face various threats and population declines, researchers and management organizations lack information and monitoring on their breeding status on remote islands where they are nocturnal and burrow-nesting. This study attempted to investigate the vocalizations of Streaked Shearwater (Calonectris leucomelas) on Mienhua Islet using an automated recording device as an optimal solution and an artificial intelligence recognition model based on deep learning. This study collected continuous audio recordings from sunset to sunrise over eight months, and the Go Go Owl Ranger, a software based on a convolutional loop neural network, was used to train the automatic sound recognition model. The accuracy, recall, and F1 score were all 0.9058 at a threshold score of 0.2362, which showed excellent recognition performance despite the misidentification of other species. Results showed that the highest frequency of vocalizations was on the northeastern side of the island and that there was no significant difference between the average call of the streaked shearwater and the presence or absence of nests in the vicinity of the recorder, suggesting that there may be potential breeding burrows. In addition, two peak calling periods were observed in this study, and it was concluded that this may be related to the critical period between breeding and also may affected by the lunar cycle. This study aims to create a comprehensive seabird survey framework in Taiwan with the help of acoustic monitoring tool and artificial intelligence. Suppose long-term acoustic monitoring can be carried out on the island and the identification model can be continuously optimized. In that case, advancing the acoustic study of the nagaimo and its conservation application will be helpful.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-15T16:11:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-15T16:11:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 I
摘要 II
Abstract III
前言 1
一、全球海鳥的威脅 1
二、調查技術的演進 1
三、自動錄音裝置的優勢與限制 2
四、聲學資料分析:從人工辨識到深度學習 3
五、自動錄音裝置於海鳥研究之應用 5
研究方法 7
一、研究物種 7
二、研究地點 7
三、錄音資料 8
四、自動辨識聲音模型 8
五、統計分析 10
結果 12
一、自動聲音辨識模型表現 12
二、大水薙鳥夜間鳴叫活動 12
討論 14
一、自動錄音裝置與辨識模型表現 14
二、大水薙鳥夜間鳴叫分布差異 16
結論 21
參考文獻 22
圖 31
表 44
-
dc.language.isozh_TW-
dc.subject大水薙鳥zh_TW
dc.subject被動式聲學監測zh_TW
dc.subject繁殖行為zh_TW
dc.subject自動辨識模型zh_TW
dc.subject自動錄音裝置zh_TW
dc.subject Passive acoustic monitoringen
dc.subjectAutonomous detection modelen
dc.subjectAutonomous recording unitsen
dc.subjectStreaked shearwateren
dc.subjectPassive acoustic monitoringen
dc.subjectBreeding behavioren
dc.title以自動錄音裝置與人工智慧辨識探討棉花嶼大水薙鳥發聲活動zh_TW
dc.titleAutonomous Recording Units and Artificial Intelligence Recognition for Dicussing the Vocal Activity of Streaked Shearwater (Calonectris leucomelas) in Mienhua Isleten
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林瑞興;蔡若詩;謝寶森zh_TW
dc.contributor.oralexamcommitteeRuey-Shing Lin;Jo-Szu Tsai;Bao-Sen Shiehen
dc.subject.keyword大水薙鳥,自動錄音裝置,自動辨識模型,繁殖行為,被動式聲學監測,zh_TW
dc.subject.keywordStreaked shearwater,Autonomous recording units,Autonomous detection model,Breeding behavior, Passive acoustic monitoring,Passive acoustic monitoring,en
dc.relation.page45-
dc.identifier.doi10.6342/NTU202404217-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf1.43 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved