請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95609完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳國慶 | zh_TW |
| dc.contributor.advisor | Kuo-Ching Chen | en |
| dc.contributor.author | 林泰禾 | zh_TW |
| dc.contributor.author | Tai-He Lin | en |
| dc.date.accessioned | 2024-09-12T16:18:47Z | - |
| dc.date.available | 2024-09-13 | - |
| dc.date.copyright | 2024-09-12 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-10 | - |
| dc.identifier.citation | [1] Mizushima, K., et al. (1980). LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 15(6), 783-789. https://doi.org/https://doi.org/10.1016/0025-5408(80)90012-4
[2] Cheng, K. H., & Stanley Whittingham, M. (1980). Lithium incorporation in tungsten oxides. Solid State Ionics, 1(1), 151-161. https://doi.org/https://doi.org/10.1016/0167-2738(80)90030-2 [3] Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359-367. https://doi.org/10.1038/35104644 [4] Chen, Y., et al. (2021). A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry, 59, 83-99. https://doi.org/https://doi.org/10.1016/j.jechem.2020.10.017 [5] Guo, R., et al. (2016). Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries. Scientific Reports, 6(1), 30248. https://doi.org/10.1038/srep30248 [6] Ren, D., et al. (2021). Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition. Energy Storage Materials, 34, 563-573. https://doi.org/https://doi.org/10.1016/j.ensm.2020.10.020 [7] Guo, G., et al. (2010). Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application. Journal of Power Sources, 195(8), 2393-2398. https://doi.org/https://doi.org/10.1016/j.jpowsour.2009.10.090 [8] Sahraei, E., et al. (2014). Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells. Journal of Power Sources, 247, 503-516. https://doi.org/https://doi.org/10.1016/j.jpowsour.2013.08.056 [9] Zavalis, T. G., et al. (2012). Investigation of Short-Circuit Scenarios in a Lithium-Ion Battery Cell. Journal of The Electrochemical Society, 159(6), A848. https://doi.org/10.1149/2.096206jes [10] Birkl, C. R., et al. (2017). Degradation diagnostics for lithium ion cells. Journal of Power Sources, 341, 373-386. https://doi.org/https://doi.org/10.1016/j.jpowsour.2016.12.011 [11] Barton, J. L., et al. (1997). The electrolytic growth of dendrites from ionic solutions. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 268(1335), 485-505. https://doi.org/10.1098/rspa.1962.0154 [12] Hobold, G. M., et al. (2021). Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nature Energy, 6(10), 951-960. https://doi.org/10.1038/s41560-021-00910-w [13] Arora, P., et al. (1999). Mathematical Modeling of the Lithium Deposition Overcharge Reaction in Lithium‐Ion Batteries Using Carbon‐Based Negative Electrodes. Journal of The Electrochemical Society, 146(10), 3543. https://doi.org/10.1149/1.1392512 [14] Yang, S., et al. (2021). Minimum lithium plating overpotential control based charging strategy for parallel battery module prevents side reactions. Journal of Power Sources, 494, 229772. https://doi.org/https://doi.org/10.1016/j.jpowsour.2021.229772 [15] Cai, W., et al. (2021). The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium-Ion Batteries. Angewandte Chemie International Edition, 60(23), 13007-13012. https://doi.org/https://doi.org/10.1002/anie.202102593 [16] Monroe, C., & Newman, J. (2003). Dendrite Growth in Lithium/Polymer Systems : A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions. Journal of The Electrochemical Society, 150(10), A1377. https://doi.org/10.1149/1.1606686 [17] Gao, T., et al. (2021). Interplay of Lithium Intercalation and Plating on a Single Graphite Particle. Joule, 5(2), 393-414. https://doi.org/https://doi.org/10.1016/j.joule.2020.12.020 [18] Smart, M. C., & Ratnakumar, B. V. (2011). Effects of Electrolyte Composition on Lithium Plating in Lithium-Ion Cells. Journal of The Electrochemical Society, 158(4), A379. https://doi.org/10.1149/1.3544439 [19] Chen, Y., et al. (2021). Operando video microscopy of Li plating and re-intercalation on graphite anodes during fast charging [10.1039/D1TA06023F]. Journal of Materials Chemistry A, 9(41), 23522-23536. https://doi.org/10.1039/D1TA06023F [20] Petzl, M., & Danzer, M. A. (2014). Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries. Journal of Power Sources, 254, 80-87. https://doi.org/https://doi.org/10.1016/j.jpowsour.2013.12.060 [21] Anseán, D., et al. (2017). Operando lithium plating quantification and early detection of a commercial LiFePO4 cell cycled under dynamic driving schedule. Journal of Power Sources, 356, 36-46. https://doi.org/https://doi.org/10.1016/j.jpowsour.2017.04.072 [22] Hatzikraniotis, E., et al. (1999). Graphites for Li-ion cells: Study of the irreversible capacity using differential capacity analysis. Ionics, 5(5), 399-404. https://doi.org/10.1007/BF02376004 [23] Dubarry, M., et al. (2006). Incremental Capacity Analysis and Close-to-Equilibrium OCV Measurements to Quantify Capacity Fade in Commercial Rechargeable Lithium Batteries. Electrochemical and Solid-State Letters, 9(10), A454. https://doi.org/10.1149/1.2221767 [24] Tanim, T. R., et al. (2019). Electrochemical Quantification of Lithium Plating: Challenges and Considerations. Journal of The Electrochemical Society, 166(12), A2689. https://doi.org/10.1149/2.1581912jes [25] Zhu, J., et al. (2020). Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance. Journal of Power Sources, 448, 227575. https://doi.org/https://doi.org/10.1016/j.jpowsour.2019.227575 [26] Ringbeck, F., et al. (2020). Identification of Lithium Plating in Lithium-Ion Batteries by Electrical and Optical Methods. Journal of The Electrochemical Society, 167(9), 090536. https://doi.org/10.1149/1945-7111/ab8f5a [27] Janakiraman, U., et al. (2020). Review—Lithium Plating Detection Methods in Li-Ion Batteries. Journal of The Electrochemical Society, 167(16), 160552. https://doi.org/10.1149/1945-7111/abd3b8 [28] Uhlmann, C., et al. (2015). In situ detection of lithium metal plating on graphite in experimental cells. Journal of Power Sources, 279, 428-438. https://doi.org/https://doi.org/10.1016/j.jpowsour.2015.01.046 [29] Waldmann, T., et al. (2018). Li plating as unwanted side reaction in commercial Li-ion cells – A review. Journal of Power Sources, 384, 107-124. https://doi.org/https://doi.org/10.1016/j.jpowsour.2018.02.063 [30] Seo, G., et al. (2022). Rapid determination of lithium-ion battery degradation: High C-rate LAM and calculated limiting LLI. Journal of Energy Chemistry, 67, 663-671. https://doi.org/https://doi.org/10.1016/j.jechem.2021.11.009 [31] Koleti, U. R., et al. (2020). A new on-line method for lithium plating detection in lithium-ion batteries. Journal of Power Sources, 451, 227798. https://doi.org/https://doi.org/10.1016/j.jpowsour.2020.227798 [32] Schindler, S., & Danzer, M. A. (2017). A novel mechanistic modeling framework for analysis of electrode balancing and degradation modes in commercial lithium-ion cells. Journal of Power Sources, 343, 226-236. https://doi.org/https://doi.org/10.1016/j.jpowsour.2017.01.026 [33] Li, W., et al. (2020). Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries. Applied Energy, 269, 115104. https://doi.org/https://doi.org/10.1016/j.apenergy.2020.115104 [34] Bi, Y., & Choe, S. Y. (2018, 27-30 Aug. 2018). Automatic Estimation of Parameters of a Reduced Order Electrochemical Model for Lithium-Ion Batteries at the Beginning-of-Life. 2018 IEEE Vehicle Power and Propulsion Conference (VPPC), [35] Janse van Rensburg, A., et al. (2019). Stepwise Global Sensitivity Analysis of a Physics-Based Battery Model using the Morris Method and Monte Carlo Experiments. Journal of Energy Storage, 25, 100875. https://doi.org/https://doi.org/10.1016/j.est.2019.100875 [36] Zhang, L., et al. (2014). Parameter Sensitivity Analysis of Cylindrical LiFePO4 Battery Performance Using Multi-Physics Modeling. Journal of The Electrochemical Society, 161(5), A762. https://doi.org/10.1149/2.048405jes [37] Rabissi, C., et al. (2021). A Comprehensive Physical-Based Sensitivity Analysis of the Electrochemical Impedance Response of Lithium-Ion Batteries. Energy Technology, 9(3), 2000986. https://doi.org/https://doi.org/10.1002/ente.202000986 [38] Lin, N., et al. (2018). Efficient Global Sensitivity Analysis of 3D Multiphysics Model for Li-Ion Batteries. Journal of The Electrochemical Society, 165(7), A1169. https://doi.org/10.1149/2.1301805jes [39] Meng, J., et al. (2018). Overview of Lithium-Ion Battery Modeling Methods for State-of-Charge Estimation in Electrical Vehicles. Applied Sciences, 8(5). [40] Tremblay, O., et al. (2007, 9-12 Sept. 2007). A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles. 2007 IEEE Vehicle Power and Propulsion Conference, [41] Fang, H., et al. (2014, 4-6 June 2014). State-of-charge estimation for batteries: A multi-model approach. 2014 American Control Conference, [42] Madani, S. S., et al. (2018). A Review of Different Electric Equivalent Circuit Models and Parameter Identification Methods of Lithium-Ion Batteries. ECS Transactions, 87(1), 23. https://doi.org/10.1149/08701.0023ecst [43] Xia, J., et al. (2020). A perspective on DRT applications for the analysis of solid oxide cell electrodes. Electrochimica Acta, 349, 136328. https://doi.org/https://doi.org/10.1016/j.electacta.2020.136328 [44] Chen, J., et al. (2019). A novel layered perovskite Nd(Ba0.4Sr0.4Ca0.2)Co1.6Fe0.4O5+δ as cathode for proton-conducting solid oxide fuel cells. Journal of Power Sources, 428, 13-19. https://doi.org/https://doi.org/10.1016/j.jpowsour.2019.04.104 [45] Forman, J. C., et al. (2011). Reduction of an Electrochemistry-Based Li-Ion Battery Model via Quasi-Linearization and Padé Approximation. Journal of The Electrochemical Society, 158(2), A93. https://doi.org/10.1149/1.3519059 [46] Watrin, N., et al. (2012). Multiphysical Lithium-Based Battery Model for Use in State-of-Charge Determination. IEEE Transactions on Vehicular Technology, 61(8), 3420-3429. https://doi.org/10.1109/TVT.2012.2205169 [47] He, H., et al. (2011). Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach. Energies, 4(4), 582-598. [48] Wu, B., & Chen, B. (2014, 10-12 Sept. 2014). Study the performance of battery models for hybrid electric vehicles. 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), [49] Raël, S., et al. (2014, 1-4 June 2014). A mathematical lithium-ion battery model implemented in an electrical engineering simulation software. 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), [50] Moura, S. J., et al. (2017). Battery State Estimation for a Single Particle Model With Electrolyte Dynamics. IEEE Transactions on Control Systems Technology, 25(2), 453-468. https://doi.org/10.1109/TCST.2016.2571663 [51] Jokar, A., et al. (2016). Review of simplified Pseudo-two-Dimensional models of lithium-ion batteries. Journal of Power Sources, 327, 44-55. https://doi.org/https://doi.org/10.1016/j.jpowsour.2016.07.036 [52] Charkhgard, M., & Farrokhi, M. (2010). State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF. IEEE Transactions on Industrial Electronics, 57(12), 4178-4187. https://doi.org/10.1109/TIE.2010.2043035 [53] Meng, J., et al. (2016). Lithium Polymer Battery State-of-Charge Estimation Based on Adaptive Unscented Kalman Filter and Support Vector Machine. IEEE Transactions on Power Electronics, 31(3), 2226-2238. https://doi.org/10.1109/TPEL.2015.2439578 [54] Chen, C.-H., et al. (2020). Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society, 167(8), 080534. https://doi.org/10.1149/1945-7111/ab9050 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95609 | - |
| dc.description.abstract | 本論文利用comsol建立P2D模型,並探討鋰鍍層的發生,從模型知曉電池內部化學反應對鋰離子的影響,並探討在鋰鍍層發生前的充電,對電池內部的鋰子濃度變化對電池鍍層的影響,並找出鍍層發生前的電池共同指標,用以提供後續檢測鋰鍍層的發生應用。並整理現今研究中電池研究的模型使用與運用發法,以便後續研究對模型的選定。目前電池檢測鋰鍍層發生的討論,多發生於充電後,本文利用模型了解充電後鋰鍍層可被檢測原因。本文測試電化學參數對電池充電時間與充電容量的影響,使更加了解電池參數對電池的重要性。 | zh_TW |
| dc.description.abstract | This thesis utilizes COMSOL to establish a P2D model and investigate the occurrence of lithium plating. The model provides insights into the chemical reactions within the battery and their impact on lithium ions. The study explores the effects of charging on the internal lithium concentration and its influence on lithium plating, identifying common indicators of plating occurrence. These findings aim to aid future detection applications of lithium plating. The thesis also reviews the current use and application of models in battery research, guiding future research in model selection. The discussion on detecting lithium plating often focuses on post-charging scenarios; this study uses the model to understand the reasons behind detecting lithium plating after charging. The thesis examines the effects of electrochemical parameters on battery charging time and capacity, emphasizing the importance of these parameters for battery performance. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-12T16:18:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-12T16:18:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目次 IV 圖次 VI 表次 IX 第1章 研究背景與動機 1 1-1 研究目的: 2 1-2 論文架構: 2 1-3 文獻回顧: 2 第2章 文獻回顧 4 2-1 鋰金屬研究回顧: 4 2-2 鋰金屬檢測方法: 4 2-3 鋰鍍層檢測種類 5 2-4 模型參數分析 8 2-5 電池常用模型 9 第3章 電池模型 13 3-1 P2D動力方程式 13 3-2 模型參數敏感性探討 20 第4章 擬真結果與鋰鍍層檢測 24 4-1 鋰鍍層發生開始位置與原因: 24 4-2 常溫電池內部電流結果: 32 4-3 放電dV/dQ檢測: 35 4-4 CV充電階段檢測: 40 4-5 休息階段檢測: 41 第5章 結論與未來展望 43 參考文獻 44 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 模型種類 | zh_TW |
| dc.subject | 指標 | zh_TW |
| dc.subject | 檢測方法 | zh_TW |
| dc.subject | 模型參數 | zh_TW |
| dc.subject | 鋰鍍層 | zh_TW |
| dc.subject | indicators | en |
| dc.subject | plating | en |
| dc.subject | model parameters | en |
| dc.subject | detection methods | en |
| dc.subject | model types | en |
| dc.title | 用P2D模型探討鋰鍍層的機制 | zh_TW |
| dc.title | Exploring the Mechanism of Lithium Plating Using the P2D Model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周鼎贏 ;梁世豪;林祺皓;郭志禹 | zh_TW |
| dc.contributor.oralexamcommittee | Dean Chou;Shih-Hao Liang;Chi-Hao Lin;Chih-Yu Kuo | en |
| dc.subject.keyword | 鋰鍍層,模型參數,檢測方法,模型種類,指標, | zh_TW |
| dc.subject.keyword | plating,model parameters,detection methods,model types,indicators, | en |
| dc.relation.page | 49 | - |
| dc.identifier.doi | 10.6342/NTU202402710 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
