Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95602
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏宏宇zh_TW
dc.contributor.advisorHung-Yu Weien
dc.contributor.author葉晨星zh_TW
dc.contributor.authorCHEN-CHING YEHen
dc.date.accessioned2024-09-12T16:16:39Z-
dc.date.available2024-09-13-
dc.date.copyright2024-09-12-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citation[1] D. Striccoli, G. Piro, and G. Boggia, “Multicast and broadcast services over mobile networks: A survey on standardized approaches and scientific outcomes,” IEEE Communications Surveys and Tutorials, vol. 21, no. 2,pp. 1020–1063, 2019.
[2] H.-H. Liu and H.-Y. Wei, “Towards nr mbms: A flexible partitioning method for sfn areas,” IEEE Transactions on Broadcasting, vol. 66, no. 2, pp. 416–427, 2020.
[3] J. Chen, M. Chiang, J. Erman, G. Li, K. Ramakrishnan, and R. K. Sinha, “Fair and optimal resource allocation for lte multicast (embms): Group partitioning and dynamics,” in 2015 IEEE Conference on Computer Communications (INFOCOM), 2015, pp. 1266–1274.
[4] G. Araniti, M. Condoluci, A. Iera, A. Molinaro, J. Cosmas, and M. Behjati, “A low-complexity resource allocation algorithm for multicast service delivery in ofdma networks,” IEEE Transactions on Broadcasting, vol. 60, no. 2, pp. 358–369, 2014.
[5] X. Ou, Y. Xu, H. Hong, D. He, Y. Wu, Y. Huang, and W. Zhang, “A drl-based joint scheduling and resource allocation scheme for mixed unicast–broadcast transmission in 5g,” IEEE Transactions on Broadcasting, vol. 69, no. 3, pp. 661–674, 2023.
[6] P.-Y. Su, K.-H. Lin, Y.-Y. Li, and H.-Y. Wei, “Priority-aware resource allocation for 5g mmwave multicast broadcast services,” IEEE Transactions on Broadcasting, vol. 69, no. 1, pp. 246–263, 2023.
[7] S. J. Lee and Y. S. Choi, “Gmps(group based multi-level packet scheduling) method in multi-beam based mobile communication system,” in 2015 International Conference on Information and Communication Technology Convergence (ICTC), 2015, pp. 1050–1053.
[8] N. Chukhno, O. Chukhno, S. Pizzi, A. Molinaro, A. Iera, and G. Araniti, “Efficient management of multicast traffic in directional mmwave networks,” IEEE Transactions on Broadcasting, vol. 67, no. 3, pp. 593–605,2021.
[9] N. Chukhno, O. Chukhno, D. Moltchanov, A. Molinaro, Y. Gaidamaka, K. Samouylov, Y. Koucheryavy, and G. Araniti, “Optimal multicasting in millimeter wave 5g nr with multi-beam directional antennas,” IEEE Transactions on Mobile Computing, vol. 22, no. 6, pp. 3572–3588, 2023.
[10] Y. Hu, R. Liu, A. Kaushik, and J. Thompson, “Performance analysis of noma multicast systems based on rateless codes with delay constraints,” IEEE Transactions on Wireless Communications, vol. 20, no. 8, pp. 5003–5017, 2021.
[11] Y. Yang and N. B. Shroff, “Throughput of rateless codes over broadcast erasure channels,” IEEE/ACM Transactions on Networking, vol. 23, no. 1, pp. 126–137, 2015.
[12] U. C. Kozat, “On the throughput capacity of opportunistic multicasting with erasure codes,” in IEEE INFOCOM 2008 - The 27th Conference on Computer Communications, 2008, pp. 520–528.
[13] Y. Sun, C. E. Koksal, K.-H. Kim, and N. B. Shroff, “Scheduling of multicast and unicast services under limited feedback by using rateless codes,” in IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, 2014, pp. 1671–1679.
[14] T.-T. Le, T.-H. Nguyen, and H.-T. Nguyen, “User grouping for massive mimo terrestrial broadcasting networks,” in 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE), 2021, pp. 467–471.
[15] M. Gerasimenko, D. Moltchanov, M. Gapeyenko, S. Andreev, and Y. Koucheryavy, “Capacity of multiconnectivity mmwave systems with dynamic blockage and directional antennas,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 3534–3549, 2019.
[16] Y. Huo, F. Lu, F. Wu, and X. Dong, “Multi-beam multi-stream communications for 5g and beyond mobile user equipment and uav proof of concept designs,” in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), 2019, pp. 1–5.
[17] Y. Wang, G. Qiu, Z. Lu, B. Gao, H. Xu, and W. Yan, “Uplink multi-panel transmission enhancements on multi-beam operation,” in 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), 2019, pp. 134–137.
[18] V. K. Shrivastava, S. Baek, and Y. Baek, “5g evolution for multicast and broadcast services in 3gpp release 17,” IEEE Communications Standards Magazine, vol. 6, no. 3, pp. 70–76, 2022.
[19] A. Rico-Alvariño, I. Bouazizi, M. Griot, P. Kadiri, L. Liu, and T. Stockhammer, “3gpp rel-17 extensions for 5g media delivery,” IEEE Transactions on Broadcasting, vol. 68, no. 2, pp. 422–438, 2022.
[20] M. Luby, “Lt codes,” in The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., 2002, pp. 271–280.
[21] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2551–2567, 2006.
[22] CommScope, “White Paper: Beamformer Explained ,” CommScope, Technical Overview, 2020.
[23] C. Ballesteros, L. Montero, G. A. Ramírez, and L. Jofre-Roca, “Multi-antenna 3d pattern design for millimeter-wave vehicular communications,” Vehicular Communications, vol. 35, p. 100473, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214209622000201
[24] W. Ma, L. Zhu, and R. Zhang, “Multi-beam forming with movable-antenna array,” IEEE Communications Letters, vol. 28, no. 3, pp. 697–701, 2024.
[25] 3GPP, “Technical Specification Group Radio Access Network; Study on channel model for frequencies from 0.5 to 100 GHz ,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.214, 7 2020, version 16.2.0.
[26] Ericsson, “Ericsson Antenna System ,” Ericsson, Catalog, 2022.
[27] 3GPP, “Technical Specification Group Radio Access Network; Study on channel model for frequencies from 0.5 to 100 GHz ,” 3rd Generation Partnership Project (3GPP), Technical Reports (TR) 38.901, 3 2022, version 17.0.0.
[28] J. Yuchao, L. Yonghua, L. Jiaru, and L. Yueming, “Optimization for multi-relay selection with rateless code in cooperative communication system,” in 2013 16th International Symposium on Wireless Personal Multimedia Communications (WPMC), 2013, pp. 1–5.
[29] Qualcomm, “RaptorQ™ Technical Overview ,” Qualcomm, Technical Overview, 2010.
[30] O. Chukhno, N. Chukhno, O. Galinina, Y. Gaidamaka, S. Andreev, and K. Samouylov, “Analysis of 3d deafness effects in highly directional mmwave communications,” in 2019 IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1–6.
[31] T. S. Rappaport, F. Gutierrez, E. Ben-Dor, J. N. Murdock, Y. Qiao, and J. I. Tamir, “Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1850–1859, 2013.
[32] 3GPP, “NR; Physical channels and modulation ,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.211, 4 2022, version 17.1.0.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95602-
dc.description.abstract隨著越來越多的電子設備連接到互聯網,物聯網(IoT)的概念逐漸成形。另外,每個連接到互聯網的項目都需要利用頻譜資源,因此需要更重視頻譜的利用。因此,出現了許多高效能頻譜利用的技術。其中,組播和廣播服務(MBS)技術越來越受到關注。 MBS技術已被廣泛研究,可有效利用頻譜資源。為了進一步增強可用頻譜資源,電信服務供應商正在引入毫米波進行傳輸。然而,由於毫米波容易衰減,因此需要MIMO波束賦形來增強定向傳輸。
我們認為目前MBS研究主要集中在波束成形直線傳輸。此概念假設UE只能在波束方向圖前面的固定寬度區域內接收服務。但實際上,訊號從基地台發射出去時,會發生大氣顆粒物的干擾。散射效應可讓UE實際接收非直接範圍內的資料。在非視距傳輸的情況下,我們可以利用波束散射的特性來讓組播分組更加靈活。然而現有研究很少關注這一領域。 MBS 的問題。
此外,我們相信,當一組透過雙鏈路接收來自基地台的訊號時,將比目前使用的單鏈路更有效率並減少資源消耗。因此,我們也引入了一個創新的概念:副梁機構。透過這種機制,用戶設備將能夠接收來自其他群組的傳輸訊息,幫助UE盡快完成解碼。
本文重點研究在分散環境中使用多播廣播服務(MBS)進行波束成形的應用,以優化無線傳輸的資源使用,從而最小化基地台的資源開銷。為了讓研究更貼近真實環境,本文採用3GPP規定的通道模型模擬真實的傳輸場景,檢視非視距(NLOS)場景下的傳輸情況。我們也使用天線製造商常見的天線陣列設計。最後,在傳輸機制方面,採用無速率編碼機制,提高效率。我們相信我們的系統模型是非常現實的。
為了達到UE能夠接收來自基地台的多個波束連接的目的,我們使用無速率碼進行編碼。無速率代碼結合了混合來源資料包和加密傳輸的特性,允許我們將兩個資料流合併為原始來源資料包。
最後,為了了解分散環境下的無線傳輸資源開銷並找到最優的系統配置結果,文章提出了一種啟發式分組演算法來最佳化資源安排。 研究結果表明,與其他對照組相比,我們提出的分組方法使用更少的資源,從而減輕了 gNB 的負擔。而我們提出的方法可以幫助大多數UE在有限的資源下完成解碼。另外,我們提出的輔助波束機制比單一連線傳輸機制更有利於UE儘早完成解碼,有效減少資源浪費。從結果來看,當輔助波束機制出現時,傳輸資源量平均可以減少2-5百分比的傳輸資源量。
zh_TW
dc.description.abstractAs more and more electronic devices are connected to the Internet, the concept of the Internet of Things (IoT) is gradually taking shape. In addition, every project connected to the Internet needs to utilize spectrum resources, so more attention needs to be paid to spectrum utilization. Therefore, many technologies for efficient spectrum utilization have emerged. Among them, multicast and broadcast service (MBS) technology has attracted increasing attention. MBS technology has been widely studied and can effectively utilize spectrum resources. To further enhance available spectrum resources, telecom service providers are introducing millimeter waves for transmission. However, since millimeter waves are prone to attenuation, multi-input multi-output (MIMO) beamforming is needed to enhance directional transmission.

We believe that current MBS research focuses on beamforming straight-line transmission. This concept assumes that the user equpment (UE) can only receive services within a fixed width area in front of the beam pattern. However, in fact, when the signal is transmitted from the base station, interference from atmospheric particles will occur. The scattering effect allows the UE to actually receive data in a non-direct range. In the case of non-line-of-sight (NLoS) transmission, we can use the characteristics of beam scattering to make multicast grouping more flexible. However, existing research rarely pays attention to this area. MBS question on.

In addition, we believe that when a group receives signals from base stations through dual links, it will be more efficient and reduce resource consumption than the single link currently used. Therefore, we also introduced an innovative concept: Secodary beam mechanism. Through this mechanism, user equipment will be able to receive transmission messages from other groups, helping the UE to complete decoding as soon as possible.


This paper focuses on the application of beamforming using MBS in a scattering environment to optimize the resource usage of wireless transmission and thereby minimize the resource overhead of the base station. In order to make the research closer to the real environment, this article uses the channel model specified by 3GPP to simulate real transmission scenarios and examine the transmission conditions in the NLoS scenario. And we also use antenna array designs common to antenna manufacturers. Finally, in terms of transmission mechanism, the rateless coding mechanism is used to improve efficiency. We believe that our system model is very realistic.


To achieve the purpose of UE being able to receive multiple beam connections from the base station, we use rateless code for encoding. Rateless code combines the characteristics of mixing source packets and encrypting transmissions, allowing us to merge two data streams into an original source packet.

Finally, In order to understand the wireless transmission resource overhead in a scattering environment and find the optimal system configuration results, the article proposes a heuristic grouping algorithm to optimize resource arrangement. The study results show that our proposed grouping method uses fewer resources compared to other control groups, thereby reducing the burden on next generation node B (gNB). And the method we proposed can help the most UEs complete decoding under limited resources. In addition, the auxiliary beam mechanism we proposed is more helpful for the UE to complete decoding as early as possible than the single-connection transmission mechanism, effectively reducing resource waste. Judging from the results, when the auxiliary beam mechanism occurs, the amount of transmission resources can be reduced by 0.02-0.05 on average.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-12T16:16:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-12T16:16:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iv
Contents vii
List of Figures ix
List of Tables xi
Chapter 1. Introduction 1
Chapter 2. Relate work 5
Chapter 3. Background 9
3.1 MBS 9
3.2 Rateless code 10
3.3 MIMO beamforming 11
3.4 Multipath transmission 13
Chapter 4. System model 15
4.1 Antenna model and location 15
4.2 Channel Model 17
4.3 Receive power measurement 19
4.4 Code scheme 20
Chapter 5. Problem formulation 22
5.1 Objective function 22
5.2 Theoretical predictions 25
Chapter 6. Proposed solution 29
6.1 Propose grouping method 29
6.2 Secondary beam mechanism 34
Chapter 7. Results and discussion 36
7.1 Methodology 36
7.1.1 Transmission mechanism 36
7.1.2 Comparative method 38
7.1.3 Parameter setting 39
7.2 The difference of LoS vs NLoS grouping 42
7.3 Guaranteed transport mechanism 44
7.4 Resource saving mechanism 56
Chapter 8. Conclusion 68
Bibliography 70
-
dc.language.isoen-
dc.subject組播zh_TW
dc.subject分組zh_TW
dc.subject組播廣播服務zh_TW
dc.subject波形成束zh_TW
dc.subject非視距傳輸zh_TW
dc.subject資源使用zh_TW
dc.subjectnon line of sight(NLOS) transmissionen
dc.subjectMulticast and Broadcast service(MBS)en
dc.subjectmulticasten
dc.subjectgroupingen
dc.subjectresource arrangementen
dc.subjectbeamformingen
dc.title群播廣播服務的波束管理機制zh_TW
dc.titleBeam Management Mechanism on Multicast Broadcast Servicesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee巫芳璟;黃楚翔;周敬淳zh_TW
dc.contributor.oralexamcommitteeFang-Jing Wu;Chu-Hsiang Huang;Ching-Chun Chouen
dc.subject.keyword組播廣播服務,組播,分組,資源使用,波形成束,非視距傳輸,zh_TW
dc.subject.keywordMulticast and Broadcast service(MBS),multicast,grouping,resource arrangement,beamforming,non line of sight(NLOS) transmission,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202401520-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-lift2026-08-01-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
2.34 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved