Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95600
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳世芳zh_TW
dc.contributor.advisorShih-Fang Chenen
dc.contributor.author黃廷睿zh_TW
dc.contributor.authorTing-Jui Huangen
dc.date.accessioned2024-09-12T16:15:59Z-
dc.date.available2024-09-13-
dc.date.copyright2024-09-12-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citation李世鈺 (2022)。應用於設施蘆筍生長監測之自動導航監測載具車開發。國立臺灣大學。
熊顯鋒 (2021)。遮罩區域卷積神經網路應用於蘆筍嫩莖識別系統之開發。國立臺灣大學。
謝明憲、陳水心、楊藹華 (2017)。設施蘆筍結合留母莖與不留母莖管理之周年生產效益研究。臺南區農業改良場研究彙報(69),14-29。
Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., Al-Ammar, M. A., & Al-Khalifa, H. S. (2016). Ultra wideband indoor positioning technologies: Analysis and recent advances. Sensors, 16(5), 707.
Campello, R. J., Moulavi, D., & Sander, J. (2013). Density-based clustering based on hierarchical density estimates. Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 160-172).
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-to-end object detection with transformers. European Conference on Computer Vision (pp. 213-229).
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., & Gelly, S. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
Essa, E., Abdullah, B. A., & Wahba, A. (2019). Improve performance of indoor positioning system using ble. 2019 14th International Conference on Computer Engineering and Systems (ICCES) (pp. 234-237).
Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Knowledge Discovery and Data Mining (KDD) (pp. 226-231).
Farahsari, P. S., Farahzadi, A., Rezazadeh, J., & Bagheri, A. (2022). A survey on indoor positioning systems for IoT-based applications. IEEE Internet of Things Journal, 9(10), 7680-7699.
Girshick, R. (2015). Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision (pp. 1440-1448).
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 580-587).
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision (pp. 2961-2969).
Li, F., Zhang, H., Liu, S., Guo, J., Ni, L. M., & Zhang, L. (2022). DN-DETR: Accelerate detr training by introducing query denoising. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 13619-13627).
Li, F., Zhang, H., Xu, H., Liu, S., Zhang, L., Ni, L. M., & Shum, H.-Y. (2023). Mask DINO: Towards a unified transformer-based framework for object detection and segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3041-3050).
Lin, L., Fan, H., Zhang, Z., Wang, Y., Xu, Y., & Ling, H. (2024). Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance. arXiv preprint arXiv:2403.05231.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 10012-10022).
Matsuura, Y., Heming, Z., Nakao, K., Qiong, C., Firmansyah, I., Kawai, S., Yamaguchi, Y., Maruyama, T., Hayashi, H., & Nobuhara, H. (2023). High-precision plant height measurement by drone with RTK-GNSS and single camera for real-time processing. Scientific Reports, 13(1), 6329.
Moeller, R., Deemyad, T., & Sebastian, A. (2020). Autonomous navigation of an agricultural robot using RTK GPS and Pixhawk. 2020 Intermountain Engineering, Technology and Computing (IETC) (pp. 1-6).
Own, C.-M., Hou, J., & Tao, W. (2019). Signal fuse learning method with dual bands WiFi signal measurements in indoor positioning. IEEE Access, 7, 131805-131817.
Paszke, A., Chaurasia, A., Kim, S., & Culurciello, E. (2016). ENet: A deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147.
Pini, M., Marucco, G., Falco, G., Nicola, M., & De Wilde, W. (2020). Experimental testbed and methodology for the assessment of RTK GNSS receivers used in precision agriculture. IEEE Access, 8, 14690-14703.
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems 28.
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems 30.
Wada, K. (2018). labelme: Image Polygonal Annotation with Python. GitHub. https://github.com/wkentaro/labelme
Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., & Girshick, R. (2019). Detectron2. https://github.com/facebookresearch/detectron2
Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1492-1500).
Yao, L., Hu, D., Zhao, C., Yang, Z., & Zhang, Z. (2021). Wireless positioning and path tracking for a mobile platform in greenhouse. International Journal of Agricultural and Biological Engineering, 14(1), 216-223.
Zhang, H., Li, F., Liu, S., Zhang, L., Su, H., Zhu, J., Ni, L. M., & Shum, H.-Y. (2022). DINO: DETR with improved denoising anchor boxes for end-to-end object detection. arXiv preprint arXiv:2203.03605.
Zhong, Z., Tang, Z., He, T., Fang, H., & Yuan, C. (2024). Convolution Meets LoRA: Parameter Efficient Finetuning for Segment Anything Model. arXiv preprint arXiv:2401.17868.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95600-
dc.description.abstract蘆筍為一高經濟價值的溫帶作物。過往研究發現,採用留母莖栽培法(mother stalk method)於溫室種植能使蘆筍適應臺灣的濕熱氣候。此方法透過保留一定數量母莖進行養分供給,以提高嫩莖生長效率並增加產量。然,此方法需大量人力管理溫室內的母嫩莖數量,增加田間管理成本。本研究旨在整合並優化前期研究之自主導航巡檢載具及影像辨識模型,以自動化技術建立更高效溫室蘆筍生長管理系統。
在自主導航巡檢載具方面,本研究藉由分層密度聚類算法(Hierarchical-DBSCAN)改進現有的DBSCAN LiDAR居中導航策略。透過計算局部距離建立層次化的密度樹狀結構,根據設定最小群集資料點數量自動挑選分群結果,藉此機制使演算法更適應於田間複雜多變點雲分佈情境。本研究亦開發一套車輛軌跡自動評估演算法以衡量居中導控成效。實驗結果證實,無論於靜態或動態試驗中,HDBSCAN均可實現更準確的分群表現與居中穩定性。在超寬頻(Ultra-Wideband, UWB)定位部分,本研究通過理論分析和實驗調整系統錨點(anchor)架設方式,以減少信號傳輸中因擬葉遮擋造成的Non-Line-of-Sight現象。動態UWB實驗在生長高密度階段之40公尺x 10公尺田區內,實現將均方根誤差(root-mean-square error, RMSE)誤差從34.1公分降至22.6公分,顯著提升此定點監測系統之可用性。在生長辨識模型優化方面,本研究採用基於Transformer架構的Mask DINO模型配合Swin-Large特徵提取骨幹,在交集聯集比(intersection over union, IoU)設定為0.5閾值下,以平均準確度(average precision, AP50)為評估指標,Box AP與Mask AP分別達到94.6%與94.1%的水準,相較先前採用的Mask R-CNN模型,無論在預測植株遮罩、數量,和區域密度等方面,均提供更精確的目標識別與生長資訊。
最後,透過整合前期開發的監測網頁介面,將UWB定位資訊與影像辨識模型結合,可提供管理者易於檢視的田間實際密度分布資訊,生長監測成果亦與硬體開發業界合作,將其應用於藥肥自動噴藥車之開發。透過UWB資訊與密度查詢API設計,提供更精確的藥肥變量施灑作業。藉由本研究提出的蘆筍生長管理系統,結合機電整合技術及深度學習演算法,可望為農民提供更高效的田間監測與管理工具,實現減輕田間作業的人力需求與負擔。
zh_TW
dc.description.abstractAsparagus is a high-value temperate crop. Previous research has shown that using the mother stalk production in greenhouse helps asparagus adapt to Taiwan's humid and hot climate. This method improves growth efficiency and increases yield by retaining a certain number of stalks to supply nutrients. However, this method requires significant manual labor to manage the number of stalks and spears in the greenhouse, thereby increasing field management costs. This study aims to integrate previous research findings and optimize a self-guided patrol robot and an image identification model to reduce labor demand through automation, establishing a more efficient greenhouse asparagus growth management system.
In terms of the self-guided patrol robot, this study improves the existing LiDAR-centered navigation strategy using the Hierarchical Density-Based Spatial Clustering of Applications with Noise (Hierarchical-DBSCAN) algorithm. By calculating local distances to establish a hierarchical density tree structure and selecting clustering results based on the minimum number of cluster data points set, the algorithm adapts better to complex and variable point cloud distribution scenarios in the greenhouse. This study also develops an automatic robot trajectory evaluation algorithm to measure centering control effectiveness. Experimental results demonstrate that HDBSCAN achieves more accurate clustering performance and centering stability than DBSCAN in both static and dynamic tests.
For the Ultra-Wideband (UWB) positioning system, theoretical analysis and experiments were conducted to adjust the system anchor setup, reducing Non-Line-of-Sight (NLOS) phenomena caused by pseudo-leaf obstructions during signal transmission. Dynamic UWB experiments in a 40 m x10 m field during the high-density growth stage reduced root-mean-square error (RMSE) from 34.1 cm to 22.6 cm, significantly enhancing the usability of this point monitoring system.
In optimizing the growth identification model, this study adopts the Mask DINO model based on the Transformer architecture with the Swin-Large backbone. Using an intersection over union (IoU) threshold of 0.5 and evaluating with average precision (AP50), the model achieved Box AP and Mask AP of 94.6% and 94.1%, respectively. Compared to the previously used Mask R-CNN model, it provides more accurate target identification and growth information in terms of plant masking, count, and area density.
Finally, by integrating the previously developed monitoring web interface with UWB positioning information and the asparagus identification model, the system provides easy-to-view field density distribution information for managers. The growth monitoring results have also been applied in collaboration with the hardware development industry to develop an automatic variable pesticide spraying robot. Using UWB information and a density query API design, it enables more precise variable pesticide and fertilizer application. The asparagus growth management system proposed in this study combines mechatronics integration technology and deep learning algorithms, offering farmers more efficient field monitoring and management tools, thereby reducing labor demand and burden in field operations.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-12T16:15:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-12T16:15:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
ABSTRACT iii
TABLE OF CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xi
ABBREVIATIONS xii
CHAPTER 1. INTRODUCTION 1
1.1 Research Background 1
1.2 Research Objectives 2
CHAPTER 2. LITERATURE REVIEW 4
2.1 Field Positioning Methods 4
2.1.1 Outdoor Environment 4
2.1.2 Indoor Environment 5
2.2 Traditional Object Detection Models 7
2.3 Transformer Model 9
2.4 Application of Transformer in Computer Vision 11
2.4.1 Vision Transformer (ViT) 11
2.4.2 Object Detection with Transformers 11
2.4.3 Recent Advances in Transformer-based Object Detection 12
CHAPTER 3. MATERIALS AND METHODS 14
3.1 Self-Guided Robot 14
3.1.1 Robot Apparatus 14
3.1.2 Self-Guided Strategy 16
3.1.3 Robot Motor Control Strategy 18
3.1.4 Optimization of LiDAR Guidance Strategy 19
3.1.4.1 Clustering Performance Analysis of Static Point Clouds 24
3.1.4.2 Evaluation of Dynamic Self-Guided Strategies 25
3.2 Indoor Positioning System 28
3.2.1 Principles of Ultra-Wideband 28
3.2.2 UWB Positioning Experiment 29
3.3 Image Collection and Dataset Annotation 31
3.4 Asparagus Identification Model 33
3.4.1 Mask Region-based Convolutional Neural Network (Mask R-CNN) 33
3.4.2 Mask DETR with Improved Denoising Anchor Boxes (Mask DINO) 34
3.4.3 Growth Density Determination 36
3.5 Identification Model Evaluation Metrics 38
CHAPTER 4. RESULTS AND DISCUSSION 41
4.1 Self-Guided Strategy Optimization 41
4.1.1 Static Clustering Performance Analysis 41
4.1.2 Dynamic Self-Guided Experiment Evaluation 42
4.1.2.1 Evaluation of Robot Centering on Cladodes Trimmed Lane 42
4.1.2.2 Evaluation of Robot Centering on Cladodes Untrimmed Lane 44
4.2 UWB Positioning 50
4.2.1 Comparison of Density Variation Positioning Experiments 54
4.2.2 Improvement of UWB Positioning Performance 55
4.3 Asparagus Identification Model 57
4.3.1 Evaluation of Asparagus Growth Density Prediction 60
4.4 Asparagus Field Management System 65
4.4.1 Web Interface Features 66
4.4.2 Collaborative Integration with Autonomous Spraying Robot 69
CHAPTER 5. CONCLUSION AND FUTURE WORK 72
5.1 Conclusion 72
5.2 Future Work 74
REFERENCES 75
-
dc.language.isoen-
dc.subject田間自主導航載具zh_TW
dc.subjectHDBSCAN分群演算法zh_TW
dc.subject蘆筍zh_TW
dc.subjectMask DINO模型zh_TW
dc.subject溫室生長管理系統zh_TW
dc.subject超寬頻定位系統zh_TW
dc.subjectGreenhouse growth management systemen
dc.subjectAsparagusen
dc.subjectGreenhouse self-guided patrol roboten
dc.subjectHDBSCAN clustering algorithmen
dc.subjectUltra-Wideband positioning systemen
dc.subjectMask DINO modelen
dc.title結合深度學習演算法及自主巡檢載具於智慧蘆筍生長管理系統之優化zh_TW
dc.titleOptimization of Smart Asparagus Growth Management System Integrating Deep Learning Algorithms and Autonomous Patrolling Vehiclesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭彥甫;程安邦;謝明憲zh_TW
dc.contributor.oralexamcommitteeYan-Fu Kuo;An-Pan Cherng;Ming-Hsien Hsiehen
dc.subject.keyword蘆筍,田間自主導航載具,HDBSCAN分群演算法,超寬頻定位系統,Mask DINO模型,溫室生長管理系統,zh_TW
dc.subject.keywordAsparagus,Greenhouse self-guided patrol robot,HDBSCAN clustering algorithm,Ultra-Wideband positioning system,Mask DINO model,Greenhouse growth management system,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202404133-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2029-08-09-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
90.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved