Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95594
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳復國zh_TW
dc.contributor.advisorFuh-Kuo Chenen
dc.contributor.author蔣欣妤zh_TW
dc.contributor.authorShin-Yu Chiangen
dc.date.accessioned2024-09-12T16:14:11Z-
dc.date.available2024-09-13-
dc.date.copyright2024-09-12-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citationT. Inoue, M. Suzuki, T. Okabe, and Y. Matsui, “Development of Advanced Electric Resistance Welding (ERW) Linepipe “Mighty SeamTM” with High Quality Weld Seam Suitable for Extra-Low Temperature Services,” JFE Technical Report, no. 18, pp. 18-22, 2013.
O’Brien, Welding Handbook 9th edition, vol. 3, American Welding Society, Miami USA, 2007.
M. Tanimoto, I. Kawata, O. Sotokawa, T. Nakaji, T. Magatani, E. Tsuru, H. Mimura, and M. Nakamura, “Outline of New Forming Equipment for Hikari 24” ERW Mill,” Nippon Steel Technical Report, no.90, pp.122-126, Jul. 2004.
F. Heislitz, H. Livatyali, M.A. Ahmetoglu, G.L. Kinzel, and T. Altan, “Simulation of Roll Forming Process with the 3-D FEM Code PAM-STAMP,” Journal of Material Processing Technology, vol. 59, pp. 59-67, May. 1996.
S.J. Jong, “Simulation and Optimization of the Cold Roll‐Forming Process,” AIP Conference Proceedings, vol.712. No. 1, pp. 452-457, Jun. 2004.
Y. Wang, X. Xu, H. Liu, J. Liu, and R. Zhao, “Optimization of the Forming Method on Torsion Defect in Cold-Roll Forming of Z Section Steel,” ACS omega, pp. 4804-4811, Feb. 2022.
W. Kang, Y. Zhao, W. Yu, S. Wang, Y. Ma, and P. Yan, “Numerical Simulation and Parameters Analysis for Roll Forming of Martensitic Steel MS980,” Procedia Engineering, vol. 81, pp. 251-256, Oct. 2014.
邱黃正凱,管材機械性質與液壓成形製程分析, 國立台灣大學機械工程研究所碩士論文,2005。
S. Hong, S. Lee, and N. Kim, “A Parametric Study on Forming Length in Roll Forming,” Journal of Materials Processing Technology, vol.113, pp. 774-778, Jun. 2001.
N. Duggal, M.A. Ahmetoglu, G.L. Kinzel, and T. Altan, “Computer Aided Simulation of Cold Roll Forming — a Computer Program for Simple Section Profiles,” Journal of Materials Processing Technology, vol. 59, pp. 41-48, May. 1996.
Z.W. Han, C. Liu, W.P. Lu, and L.Q. Ren, “Simulation of a Multi-stand Roll Forming Process for Thick Channel Section,” Journal of Materials Processing Technology, vol. 127, pp. 382-387, Oct. 2002.
Z.W. Han, C. Liu, W.P. Lu, L.Q. Ren, and J. Tong, “Spline Finite Strip Analysis of Forming Parameters in Roll Forming a Channel Section,” Journal of Materials Processing Technology, vol.159, pp. 383-388, Feb. 2005.
J. Jiang, D. Li, Y. Peng, and J. Li, “Research on Strip Deformation in the Cage Roll-Forming Process of ERW Round Pipes,” Journal of Materials Processing Technology, vol. 209, pp. 4850–4856, Jun. 2009.
W. Chen, J. Jiang, D. Li, T. Zou, and Y. Peng, “Flower pattern and Roll Positioning Design for the Cage Roll Forming Process of ERW Pipes,” Journal of Materials Processing Technology, vol. 264, pp. 295-312, Feb. 2019.
S. Zhou, C. Luo, X. Wu, and G. Qi, “Analysis of Advantages of FFX Forming Technology,” Steel Pipe, vol. 39, no.1, pp. 53-55. Feb. 2010.
L.D. Ma, S. Chen, and Y.W. Sun, “Simulation and experiment on Pre-Forming Section of Welded Pipe FFX Forming with Explicit Dynamic Algorithm,” Journal of Plasticity Engineering, vol.25, no.2, pp. 207-210, Apr. 2018.
H. Ona, R. Sho, T. Nagamachi, K. Hoshi, “Development of Flexible Cold Roll Forming Machine Controlled by PLC,” Steel research international, vol. 81, no.9, pp. 182-185, 2010.
H. Ona, I. Shou, and K. Hoshi, “On Strain Distributions in the Formation of Flexible Channel Section Development of Flexible Roll Forming Machine,” Advanced Materials Research, vol. 576, pp. 137-140, Oct. 2012.
F. Han and S.P. Wang, “Research of Edge-Wave Mechanism in Flexible Roll Forming,” Journal of Plasticity Engineering, vol. 20, no.5, pp. 117-121, 2013.
J. Cao, X. Wang, K. Ruan, J. Cheng, Z. Wei, and R. Zhao, “Numerical Simulation Research on UDF Flexible Roll Forming of Multi-Specification Thin-Walled Circular Tubes,” The International Journal of Advanced Manufacturing Technology, vol. 127, no.9, pp. 4503-4517, Jun. 2023.
曾俊傑,輥軋成形技術應用於製管製程之研究,國立台灣大學機械工程研究所碩士論文,2015。
陳冠呈,高頻電阻焊接高強度鋼管製程之研究,國立台灣大學機械工程研究所碩士論文,2019。
李馨卉,輥軋成形高頻感應焊管全線製程之研究,國立台灣大學機械工程研究所碩士論文,2021。
蔣郁欣,下料帶寬設計對焊管品質之影響分析,國立台灣大學機械工程研究所碩士論文,2023。
API Specification 5L, Specification for Line Pipe 43rd Edition, American Petroleum Institute, Washington, USA, 2004.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95594-
dc.description.abstract金屬管件於工業中之用途廣泛,包括石油、天然氣輸送管與建築結構用管等。在製管成形中,輥軋成形製程(conventional roll forming process)為最常見之工法。然而,隨著製管業之技術不斷進步,成形機之開發與演化也隨之提升,從傳統輥軋成形機、籠式輥軋成形機,到如今具彈性功能之成形機(Flexible Forming Mill,簡稱FF成形機)已成為主流。
本論文針對傳統輥軋成形與FF成形進行深入比較,研究涵蓋了各成形道次的板帶應力分佈、厚度分佈以及逐站成形的帶寬變化,從而瞭解不同產線之成形特性和受力機制。從兩者之變形機制差異可知,傳統產線主要利用模具之上下輥輪壓縮板材成形,因此傳統產線於生產不同產品尺寸時,皆須更換模具;而FF成形主要利用輥位調整,使板材折彎成形,因此FF成形於生產不同產品尺寸時可共用模具。而FF成形共用尺寸模具之設計理念,也大幅減少了換模時間。
下料帶寬之設計於製管業中亦為相當重要的議題,一個正確的下料帶寬計算公式,可協助業界於實際生產時,減少多次試誤法之時間成本。因此,本論文針對FF成形之下料帶寬計算公式進行了修正與優化。首先透過有限元素模擬軟體進行分析,修正現今製管場常用之計算公式;接著探討輥位調整對帶寬於成形中之影響,並提出一套新的計算公式,該公式中包含本論文所定義之輥位調整參數;最終透過模具修改來改善粗成形段之板帶成形性。
經過上述之分析與探討,本論文透過模擬驗證、輥位調整及模具修改,建立了包含輥位參數之下料帶寬計算公式,利用此公式可以精準設計下料帶寬,減少帶寬設計過長之廢料,並且降低材料成本。本論文提出之優化方法不僅可改善板帶之成形性,亦可提升FF產線之生產品質與效率。
zh_TW
dc.description.abstractMetal pipes have a wide range of applications in industry, including petroleum and gas pipelines and construction structural pipes. In tube forming, the conventional roll forming process is the most common method. However, with the continuous advancement of pipe manufacturing technology, the development and evolution of forming machines have also progressed, from step roll forming mill and cage roll forming mill to the current mainstream flexible forming (FF) mill.
This thesis conducts an in-depth comparison between conventional roll forming and flexible forming, covering the stress distribution, thickness distribution, and width variation of the strip at each forming pass. This analysis helps to understand the forming characteristics and stress mechanisms of different production lines. From deformation mechanisms, it can be seen that conventional production lines mainly use the upper and lower rollers to compress the sheet, necessitating roller changes for different product sizes. In contrast, FF forming primarily uses roller adjustments to bend the sheet metal, allowing for the use of shared roller dies when producing different product sizes. The design concept of shared size roller dies in FF forming significantly reduces die change time.
The design of strip width is a crucial issue in the pipe manufacturing industry. A correct strip width calculation formula can help reduce the time cost of trial-and-error methods in actual production. Therefore, this thesis aims to correct and optimize the strip width calculation formula for FF forming. First, finite element simulation is used to analyze and correct the commonly used formulas in current pipe manufacturing plants. Then, the impact of roll position adjustment on strip width during forming is investigated, and an optimized calculation formula is proposed, including roll position adjustment parameters defined in this thesis. Finally, roller dies modifications are made to improve the forming quality of the strip in the roll forming stage.
Through the above analysis and research, this thesis establishes a strip width calculation formula that includes roll position parameters through simulation verification, roll position adjustment, and roller dies modification. This formula enables precise design of strip width, reducing the waste of excessively long strip widths and lowering material costs. The optimization methods proposed in this thesis not only improve the forming quality of the strip but also enhance the production quality and efficiency of the FF production line.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-12T16:14:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-12T16:14:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iv
目次 vi
圖次 ix
表次 xv
第一章 緒論 1
1.1 研究背景及目的 1
1.2 研究方法與步驟 11
1.3 文獻回顧 12
1.4 論文總覽 16
第二章 製管成形之模型建立與優化 18
2.1 板材材料性質取得 20
2.2 製管製程模型設定 27
2.2.1 實體元素模型設定 27
2.2.2 殼元素模型設定 29
2.2.3 模擬軟體與元素型態分析比較 30
2.2.4 模型之收斂性分析 34
2.3 模擬驗證 39
第三章 傳統產線與FFX產線之差異比較 41
3.1 模型探討 42
3.1.1 傳統產線模型 42
3.1.2 FFX產線模型 45
3.2 下料帶寬計算方式探討 48
3.3 變形機制探討 52
3.3.1 應力分佈趨勢探討 55
3.3.2 厚度分佈趨勢探討 62
3.3.3 帶寬變化趨勢探討 65
3.4 新舊產線之差異比較與歸納 67
第四章 FFX成形之下料帶寬計算公式優化 70
4.1 原始之下料帶寬計算公式 72
4.1.1 各項參數定義 72
4.1.2 實際產線尺寸設定 74
4.2 修正之下料帶寬計算公式 77
4.2.1 下料厚度單因子分析 80
4.2.2 下料帶寬單因子分析 83
4.3 輥位調整與下料帶寬關係式 88
4.3.1 輥位調整與輥位參數定義 89
4.3.2 輥位調整之結果與下料帶寬計算公式更新 92
4.4 U成形段之模具優化 97
4.4.1 U成形段於實際生產問題 97
4.4.2 U成形段之模具設計與改善 99
4.5 輥位調整與下料帶寬計算公式歸納 104
第五章 結論與未來展望 108
5.1 結論 108
5.2 未來展望 110
參考資料 113
-
dc.language.isozh_TW-
dc.subject下料帶寬zh_TW
dc.subject有限元素分析zh_TW
dc.subject製管輥軋成形zh_TW
dc.subject製程優化zh_TW
dc.subject具彈性功能之成形機zh_TW
dc.subjectFlexible Formingen
dc.subjectStrip Widthen
dc.subjectProcess Optimizationen
dc.subjectFinite Element Analysisen
dc.subjectTube Roll Formingen
dc.title製管成形之變形機制探討與下料帶寬尺寸優化zh_TW
dc.titleA Study on the Deformation Mechanism in Tube Roll Forming and the Optimization of Blank Strip Width Dimensionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee徐瑞坤;黃永茂;黃佑民;林恆勝zh_TW
dc.contributor.oralexamcommitteeRay-Quen Hsu;Yeong-Maw Hwang;You-Ming Huang;Heng-Sheng Linen
dc.subject.keyword製管輥軋成形,具彈性功能之成形機,有限元素分析,製程優化,下料帶寬,zh_TW
dc.subject.keywordTube Roll Forming,Flexible Forming,Finite Element Analysis,Process Optimization,Strip Width,en
dc.relation.page116-
dc.identifier.doi10.6342/NTU202403890-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2029-08-07-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-07
5.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved