Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95593
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉貴生zh_TW
dc.contributor.advisorGuey-Sheng Liouen
dc.contributor.author侯孟昌zh_TW
dc.contributor.authorMeng-Chang Houen
dc.date.accessioned2024-09-12T16:13:50Z-
dc.date.available2025-09-01-
dc.date.copyright2024-09-12-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citation(1) Jaafar, N. B.; Damalerio, R. Challenges of wirebonding with polyimide flexible printed circuit board (FPCB). In 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC), 2017; IEEE: pp 1-5.
(2) Yousef, H.; Hjort, K.; Lindeberg, M. Vertical thermopiles embedded in a polyimide-based flexible printed circuit board. Journal of Microelectromechanical Systems 2007, 16 (6), 1341-1348.
(3) Kakimoto, M. A.; Imai, Y. Precursor method for polymeric LB films. In Macromolecular symposia, 1995; Wiley Online Library: Vol. 98, pp 1123-1128.
(4) Arjavalingam, G.; Hougham, G.; Lafemina, J. P. Emission Mechanism in Polyimide. Polymer 1990, 31 (5), 840-844.
(5) Jeong, S. W.; Lim, H. S. A study on the preparation of aromatic polyimide Langmuir-Blodgett films. Synthetic Metals 2001, 123 (1), 183-187.
(6) Li, Y. H.; Sun, G. H.; Zhou, Y.; Liu, G. M.; Wang, J.; Han, S. H. Progress in low dielectric polyimide film - A review. Progress in Organic Coatings 2022, 172, 107103.
(7) Itoh, T. Fluorescence and phosphorescence from higher excited states of organic molecules. Chem Rev 2012, 112 (8), 4541-4568.
(8) Hasegawa, M.; Mita, I.; Kochi, M.; Yokota, R. Charge-Transfer Emission-Spectra of Aromatic Polyimides. J Polym Sci Pol Lett 1989, 27 (8), 263-269.
(9) Hasegawa, M.; Kochi, M.; Mita, I.; Yokota, R. Molecular Aggregation and Fluorescence-Spectra of Aromatic Polyimides. European Polymer Journal 1989, 25 (4), 349-354.
(10) Wakita, J.; Sekino, H.; Sakai, K.; Urano, Y.; Ando, S. Molecular design, synthesis, and properties of highly fluorescent polyimides. J Phys Chem B 2009, 113 (46), 15212-15224.
(11) Yen, H. J.; Wu, J. H.; Wang, W. C.; Liou, G. S. High‐Efficiency Photoluminescence Wholly Aromatic Triarylamine‐based Polyimide Nanofiber with Aggregation‐Induced Emission Enhancement. Advanced Optical Materials 2013, 1 (9), 668-676.
(12) Zhou, Z. X.; Zhang, Y.; Liu, S. W.; Chi, Z. G.; Chen, X. D.; Xu, J. R. Flexible and highly fluorescent aromatic polyimide: design, synthesis, properties, and mechanism. Journal of Materials Chemistry C 2016, 4 (44), 10509-10517.
(13) Kanosue, K.; Shimosaka, T.; Wakita, J.; Ando, S. Polyimide and Imide Compound Exhibiting Bright Red Fluorescence with Very Large Stokes Shifts via Excited-State Intramolecular Proton Transfer. Macromolecules 2015, 48 (6), 1777-1785.
(14) Kanosue, K.; Augulis, R.; Peckus, D.; Karpicz, R.; Tamulevicius, T.; Tamulevicius, S.; Gulbinas, V.; Ando, S. Polyimide and Imide Compound Exhibiting Bright Red Fluorescence with Very Large Stokes Shifts via Excited-State Intramolecular Proton Transfer II. Ultrafast Proton Transfer Dynamics in the Excited State. Macromolecules 2016, 49 (5), 1848-1857.
(15) Liang, N.; Kuwata, S.; Ishige, R.; Ando, S. Large-Stokes-shifted yellow photoluminescence emission from an imide and polyimides forming multiple intramolecular hydrogen bonds. Materials Chemistry Frontiers 2022, 6 (1), 24-32.
(16) Wu, J. H.; Chen, W. C.; Liou, G. S. Triphenylamine-based luminogens and fluorescent polyimides: effects of functional groups and substituents on photophysical behaviors. Polymer Chemistry 2016, 7 (8), 1569-1576.
(17) Zhou, Z.; Long, Y.; Chen, X.; Yang, T.; Zhao, J.; Meng, Y.; Chi, Z.; Liu, S.; Chen, X.; Aldred, M. P.; et al. Preserving High-Efficiency Luminescence Characteristics of an Aggregation-Induced Emission-Active Fluorophore in Thermostable Amorphous Polymers. ACS Appl Mater Interfaces 2020, 12 (30), 34198-34207.
(18) Shao, Y. J.; Liou, G. S. Triarylamine‐Based Wholly Aromatic Polyimide with Simultaneously Unprecedented Photoluminescence Efficiency and High Glass‐Transition Temperature. Advanced Optical Materials 2022, 10 (3), 2101949.
(19) Liu, Y. W.; Zhou, Z. X.; Qu, L. J.; Zou, B.; Chen, Z. Q.; Zhang, Y.; Liu, S. W.; Chi, Z. G.; Chen, X. D.; Xu, J. R. Exceptionally thermostable and soluble aromatic polyimides with special characteristics: intrinsic ultralow dielectric constant, static random access memory behaviors, transparency and fluorescence. Materials Chemistry Frontiers 2017, 1 (2), 326-337.
(20) Wu, Y. C.; Chen, Z. G.; Ji, J. Q.; Zhou, Y. B.; Huang, H. H.; Liu, S. M.; Zhao, J. Q. Multifunctional polyimides by direct silyl ether reaction of pendant hydroxy groups: Toward low dielectric constant, high optical transparency and fluorescence. European Polymer Journal 2020, 132, 109742.
(21) Su, K. X.; Sun, N. W.; Tian, X. Z.; Guo, S.; Yan, Z. H.; Wang, D. M.; Zhou, H. W.; Zhao, X. G.; Chen, C. H. Highly soluble polyimide bearing bulky pendant diphenylamine-pyrene for fast-response electrochromic and electrofluorochromic applications. Dyes and Pigments 2019, 171, 107668.
(22) Guo, X.; Yuan, P.; Fan, J.; Qiao, X.; Yang, D.; Dai, Y.; Sun, Q.; Qin, A.; Tang, B. Z.; Ma, D. Unraveling the Important Role of High-Lying Triplet-Lowest Excited Singlet Transitions in Achieving Highly Efficient Deep-Blue AIE-Based OLEDs. Adv Mater 2021, 33 (11), e2006953.
(23) Huang, J.; Tang, R.; Zhang, T.; Li, Q.; Yu, G.; Xie, S.; Liu, Y.; Ye, S.; Qin, J.; Li, Z. A new approach to prepare efficient blue AIE emitters for undoped OLEDs. Chemistry 2014, 20 (18), 5317-5326.
(24) Guo, X. M.; Yuan, P. S.; Qiao, X. F.; Yang, D. Z.; Dai, Y. F.; Sun, Q.; Qin, A. J.; Tang, B.; Ma, D. G. Mechanistic Study on High Efficiency Deep Blue AIE-Based Organic Light-Emitting Diodes by Magneto-Electroluminescence. Advanced Functional Materials 2020, 30 (9).
(25) Huang, J.; Jiang, Y. B.; Yang, J.; Tang, R. L.; Xie, N.; Li, Q. Q.; Kwok, H. S.; Tang, B. Z.; Li, Z. Construction of efficient blue AIE emitters with triphenylamine and TPE moieties for non-doped OLEDs. Journal of Materials Chemistry C 2014, 2 (11), 2028-2036.
(26) Jagadhane, K. S.; Bhosale, S. R.; Gunjal, D. B.; Nille, O. S.; Kolekar, G. B.; Kolekar, S. S.; Dongale, T. D.; Anbhule, P. V. Tetraphenylethene-Based Fluorescent Chemosensor with Mechanochromic and Aggregation-Induced Emission (AIE) Properties for the Selective and Sensitive Detection of Hg(2+) and Ag(+) Ions in Aqueous Media: Application to Environmental Analysis. ACS Omega 2022, 7 (39), 34888-34900.
(27) Nadimetla, D. N.; Zalmi, G. A.; Bhosale, S. V. An AIE‐Active Tetraphenylethylene‐Based Cyclic Urea as a Selective and Efficient Optical and Colorimetric Chemosensor for Fluoride Ions. ChemistrySelect 2020, 5 (28), 8566-8571.
(28) De, J.; M, M. A.; Yadav, R. A. K.; Gupta, S. P.; Bala, I.; Chawla, P.; Kesavan, K. K.; Jou, J. H.; Pal, S. K. AIE-active mechanoluminescent discotic liquid crystals for applications in OLEDs and bio-imaging. Chem Commun (Camb) 2020, 56 (91), 14279-14282.
(29) Sharath Kumar, K. S.; Girish, Y. R.; Ashrafizadeh, M.; Mirzaei, S.; Rakesh, K. P.; Hossein Gholami, M.; Zabolian, A.; Hushmandi, K.; Orive, G.; Kadumudi, F. B.; et al. AIE-featured tetraphenylethylene nanoarchitectures in biomedical application: Bioimaging, drug delivery and disease treatment. Coordination Chemistry Reviews 2021, 447.
(30) Sharma, V. S.; Patel, U.; Thakar, S.; Rathod, S. L.; Sharma, A. S.; Shrivastav, P. S.; Athar, M. Fluorescein-appended calixarene-functionalized supramolecular AIE-active liquid crystalline materials for self-assembly and bio-imaging applications. New Journal of Chemistry 2023, 47 (3), 1444-1459.
(31) Förster, T.; Kasper, K. Ein konzentrationsumschlag der fluoreszenz des pyrens. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 1955, 59 (10), 976-980.
(32) Zhao, Z.; Zhang, H.; Lam, J. W.; Tang, B. Z. Aggregation‐induced emission: new vistas at the aggregate level. Angewandte Chemie International Edition 2020, 59 (25), 9888-9907.
(33) Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation-induced emission. Chemical Society Reviews 2011, 40 (11), 5361-5388.
(34) Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev 2015, 115 (21), 11718-11940.
(35) Groenhof, G. Introduction to QM/MM simulations. Methods Mol Biol 2013, 924, 43-66.
(36) Lin, H.; Truhlar, D. G. QM/MM: what have we learned, where are we, and where do we go from here? Theoretical Chemistry Accounts 2006, 117 (2).
(37) Leung, N. L.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J. W.; Tang, B. Z. Restriction of intramolecular motions: the general mechanism behind aggregation-induced emission. Chemistry 2014, 20 (47), 15349-15353.
(38) Nishiuchi, T.; Tanaka, K.; Kuwatani, Y.; Sung, J.; Nishinaga, T.; Kim, D.; Iyoda, M. Solvent-induced crystalline-state emission and multichromism of a bent pi-surface system composed of dibenzocyclooctatetraene units. Chemistry 2013, 19 (13), 4110-4116.
(39) Liu, J.; Meng, Q.; Zhang, X.; Lu, X.; He, P.; Jiang, L.; Dong, H.; Hu, W. Aggregation-induced emission enhancement based on 11,11,12,12,-tetracyano-9,10-anthraquinodimethane. Chem Commun (Camb) 2013, 49 (12), 1199-1201.
(40) Sasaki, S.; Drummen, G. P. C.; Konishi, G. Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. Journal of Materials Chemistry C 2016, 4 (14), 2731-2743.
(41) Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 2003, 103 (10), 3899-4032.
(42) Hu, R. R.; Lager, E.; Aguilar-Aguilar, A.; Liu, J. Z.; Lam, J. W. Y.; Sung, H. H. Y.; Williams, I. D.; Zhong, Y. C.; Wong, K. S.; Peña-Cabrera, E.; et al. Twisted Intramolecular Charge Transfer and Aggregation-Induced Emission of BODIPY Derivatives. Journal of Physical Chemistry C 2009, 113 (36), 15845-15853.
(43) Sedgwick, A. C.; Wu, L.; Han, H. H.; Bull, S. D.; He, X. P.; James, T. D.; Sessler, J. L.; Tang, B. Z.; Tian, H.; Yoon, J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem Soc Rev 2018, 47 (23), 8842-8880.
(44) Wang, X.; Li, W.; Li, W.; Gu, C.; Zheng, H.; Wang, Y.; Zhang, Y. M.; Li, M.; Xiao-An Zhang, S. An RGB color-tunable turn-on electrofluorochromic device and its potential for information encryption. Chem Commun (Camb) 2017, 53 (81), 11209-11212.
(45) Zeng, Z. Q.; Wu, J. C.; Chen, Q. J.; Shi, Y. C.; Zheng, J. M.; Xu, C. Y. A multifunctional triphenylamine schiff-base compound with novel self-assembly morphology transitions. Dyes and Pigments 2019, 170, 107649.
(46) Li, K.; Feng, Q.; Niu, G.; Zhang, W.; Li, Y.; Kang, M.; Xu, K.; He, J.; Hou, H.; Tang, B. Z. Benzothiazole-Based AIEgen with Tunable Excited-State Intramolecular Proton Transfer and Restricted Intramolecular Rotation Processes for Highly Sensitive Physiological pH Sensing. ACS Sens 2018, 3 (5), 920-928.
(47) Wang, L. L.; Li, Y. Y.; You, X. J.; Xu, K.; Feng, Q.; Wang, J. M.; Liu, Y. Y.; Li, K.; Hou, H. W. An erasable photo-patterning material based on a specially designed 4-(1,2,2-triphenylvinyl) aniline salicylaldehyde hydrazone aggregation-induced emission (AIE) molecule. Journal of Materials Chemistry C 2017, 5 (1), 65-72.
(48) Sun, H.; Li, J. Y.; Han, F. F.; Zhang, R.; Zhao, Y.; Miao, B. X.; Ni, Z. H. Reversible photochromic tetraphenylethene-based Schiff base: Design, synthesis, crystal structure and applications as visible light driven rewritable paper and UV sensor. Dyes and Pigments 2019, 167, 143-150.
(49) Park, J. M.; Nam, S. H.; Hong, K. I.; Jeun, Y. E.; Ahn, H. S.; Jang, W. D. Stimuli-responsive fluorescent dyes for electrochemically tunable multi-color-emitting devices. Sensors and Actuators B-Chemical 2021, 332, 129534.
(50) Yang, C. Y.; Cai, W. A.; Zhang, X.; Gao, L. X.; Lu, Q. Y.; Chen, Y.; Zhang, Z. P.; Zhao, P.; Niu, H. J.; Wang, W. Multifunctional conjugated oligomers containing novel triarylamine and fluorene units with electrochromic, electrofluorochromic, photoelectron conversion, explosive detection and memory properties. Dyes and Pigments 2019, 160, 99-108.
(51) Kim, J.; You, J.; Kim, E. Flexible Conductive Polymer Patterns from Vapor Polymerizable and Photo-Cross-Linkable EDOT. Macromolecules 2010, 43 (5), 2322-2327.
(52) Kim, Y.; Kim, Y.; Kim, S.; Kim, E. Electrochromic diffraction from nanopatterned poly(3-hexylthiophene). ACS Nano 2010, 4 (9), 5277-5284.
(53) Bechinger, C.; Ferrer, S.; Zaban, A.; Sprague, J.; Gregg, B. A. Photoelectrochromic windows and displays. Nature 1996, 383 (6601), 608-610.
(54) Koyuncu, S.; Usluer, O.; Can, M.; Demic, S.; Icli, S.; Sariciftci, N. S. Electrochromic and electroluminescent devices based on a novel branched quasi-dendric fluorene-carbazole-2,5-bis(2-thienyl)-
-pyrrole system. Journal of Materials Chemistry 2011, 21 (8), 2684-2693.
(55) Toal, S. J.; Jones, K. A.; Magde, D.; Trogler, W. C. Luminescent silole nanoparticles as chemoselective sensors for Cr(VI). Journal of the American Chemical Society 2005, 127 (33), 11661-11665.
(56) You, J.; Kim, J.; Park, T.; Kim, B.; Kim, E. Highly Fluorescent Conjugated Polyelectrolyte Nanostructures: Synthesis, Self‐Assembly, and Al3+ Ion Sensing. Advanced Functional Materials 2012, 22 (7), 1417-1424.
(57) Martinez-Manez, R.; Sancenon, F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 2003, 103 (11), 4419-4476.
(58) Browne, W. R.; Pollard, M. M.; de Lange, B.; Meetsma, A.; Feringa, B. L. Reversible three-state switching of luminescence: a new twist to electro- and photochromic behavior. J Am Chem Soc 2006, 128 (38), 12412-12413.
(59) Piotrowiak, P. Photoinduced electron transfer in molecular systems: recent developments. Chemical Society Reviews 1999, 28 (2), 143-150.
(60) Gilbert, M.; Albinsson, B. Photoinduced charge and energy transfer in molecular wires. Chem Soc Rev 2015, 44 (4), 845-862.
(61) Ward, M. D. Photo-induced electron and energy transfer in non-covalently bonded supramolecular assemblies. Chemical Society Reviews 1997, 26 (5), 365-375.
(62) Seddiki, I.; N'Diaye, B. I.; Skene, W. G. Survey of Recent Advances in Molecular Fluorophores, Unconjugated Polymers, and Emerging Functional Materials Designed for Electrofluorochromic Use. Molecules 2023, 28 (7), 3225.
(63) Capodilupo, A. L.; Manni, F.; Corrente, G. A.; Accorsi, G.; Fabiano, E.; Cardone, A.; Giannuzzi, R.; Beneduci, A.; Gigli, G. Arylamino-fluorene derivatives: Optically induced electron transfer investigation, redox-controlled modulation of absorption and fluorescence. Dyes and Pigments 2020, 177, 108325.
(64) Yang, J. F.; Li, M.; Kang, L. H.; Zhu, W. H. A luminescence molecular switch via modulation of PET and ICT processes in DCM system. Science China-Chemistry 2017, 60 (5), 607-613.
(65) Kim, S.; You, Y. Highly Reversible Electrofluorochromism from Electrochemically Decoupled but Electronically Coupled Molecular Dyads. Advanced Optical Materials 2019, 7 (15), 1900201.
(66) Lin, H. T.; Huang, C. L.; Liou, G. S. Design, Synthesis, and Electrofluorochromism of New Triphenylamine Derivatives with AIE-Active Pendent Groups. ACS Appl Mater Interfaces 2019, 11 (12), 11684-11690.
(67) Lin, H. T.; Wu, J. T.; Chen, M. H.; Liou, G. S. Novel electrochemical devices with high contrast ratios and simultaneous electrochromic and electrofluorochromic response capability behaviours. Journal of Materials Chemistry C 2020, 8 (36), 12656-12661.
(68) Lu, Q. Y.; Yang, C. Y.; Qiao, X.; Zhang, X.; Cai, W. N.; Chen, Y.; Wang, Y.; Zhang, W.; Lin, X. X.; Niu, H. J.; et al. Multifunctional AIE-active polymers containing TPA-TPE moiety for electrochromic, electrofluorochromic and photodetector. Dyes and Pigments 2019, 166, 340-349.
(69) Han, Y. T.; Lin, Y. J.; Sun, D. Y.; Xing, Z.; Jiang, Z. H.; Chen, Z. Poly(aryl amino ketone)-based materials with excellent electrochromic and electrofluorochromic behaviors. Dyes and Pigments 2019, 163, 40-47.
(70) Wu, J. H.; Liou, G. S. High‐performance electrofluorochromic devices based on electrochromism and photoluminescence‐active novel poly (4‐cyanotriphenylamine). Advanced Functional Materials 2014, 24 (41), 6422-6429.
(71) Yen, H. J.; Liou, G. S. Flexible electrofluorochromic devices with the highest contrast ratio based on aggregation-enhanced emission (AEE)-active cyanotriphenylamine-based polymers. Chem Commun (Camb) 2013, 49 (84), 9797-9799.
(72) Cheng, S. W.; Han, T.; Huang, T. Y.; Tang, B. Z.; Liou, G. S. High-performance electrofluorochromic devices based on aromatic polyamides with AIE-active tetraphenylethene and electro-active triphenylamine moieties. Polymer Chemistry 2018, 9 (33), 4364-4373.
(73) Chang, C. W.; Liou, G. S. Novel anodic electrochromic aromatic polyamides with multi-stage oxidative coloring based on tetraphenyl-phenylenediamine derivatives. Journal of Materials Chemistry 2008, 18 (46), 5638-5646.
(74) Han, F. F.; Zhang, R.; Zhang, Z. M.; Su, J. G.; Ni, Z. H. A new TICT and AIE-active tetraphenylethene-based Schiff base with reversible piezofluorochromism. Rsc Advances 2016, 6 (72), 68178-68184.
(75) Liou, G.-S.; Lin, H.-Y. Synthesis and Electrochemical Properties of Novel Aromatic Poly(amine−amide)s with Anodically Highly Stable Yellow and Blue Electrochromic Behaviors. Macromolecules 2008, 42 (1), 125-134.
(76) Jana, D.; Ghorai, B. K. Synthesis and aggregation-induced emission properties of tetraphenylethylene-based oligomers containing triphenylethylene moiety. Tetrahedron Letters 2012, 53 (50), 6838-6842.
(77) Sun, N. W.; Su, K. X.; Zhou, Z. W.; Tian, X. Z.; Zhao, J. H.; Chao, D. M.; Wang, D. M.; Lissel, F.; Zhao, X. G.; Chen, C. H. High-Performance Emission/Color Dual-Switchable Polymer-Bearing Pendant Tetraphenylethylene (TPE) and Triphenylamine (TPA) Moieties. Macromolecules 2019, 52 (14), 5131-5139.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95593-
dc.description.abstract時至今日,設計一款具有高螢光效率且螢光光色紅移的全芳香族聚醯亞胺仍是一件非常具有挑戰的事情,其主要原因可以歸於電荷轉移配位物 (CTC) ,根據我們團隊過去的發表研究能夠知道,在聚醯亞胺的骨架中加入扭曲的結構可以很有效的保護螢光基團避免受到電荷轉移配位物的影響而淬滅,因此我們設計了一系列含有不同推拉電子效應或是或是包含聚集誘導發光性質取代基團的二醯亞胺及其衍生二酸酐,為了能闡明及調整這一系列二醯亞胺及其衍伸全芳香螢光聚醯亞胺的發光行為,在這篇論文中將透過螢光光譜及量子化學計算來解釋取代基團對聚醯亞胺發光性質的影響,這一系列的聚醯亞胺是透過將二醯亞胺合成的二酸酐配合二胺以一步聚合合成,其中TPE-4Me 展現出最高的光致螢光效率,高達42.7%而TPPA-4Me含有TPPA的結構展現出最紅移的螢光波長,紅移至 605 nm 但同時也展現出較低的螢光效率,而結合了TPPA及TPE結構的TPPA-TPE-4Me 展現出595 nm 的橘紅色螢光,儘管紅移效應不如 TPPA-4Me 中那麼明顯,但 TPE 的加入在固態下提供了更顯著的螢光行為。zh_TW
dc.description.abstractDesigning wholly aromatic polyimides (Ar-PIs) with high fluorescence quantum efficiency and red-shifted emission is still challenging due to the charge-transfer complex (CTC) effect. According to the previous study reported by our group, incorporating the twisted units into the polyimide backbone could effectively preserve the quantum efficiency of the luminophore. Therefore, in this thesis, we designed and synthesized a series of arylamine-based diimides and dianhydrides with various electron-donating or withdrawing pendant groups, including aggregation-induced emission luminogens (AIEgens), to tune and elucidate the emissive behaviors of the diimide compounds and their related Ar-PIs, respectively. In this thesis, the effect of various pendant groups on the luminescence of polyimides will be analyzed through fluorescence spectra and quantum chemical calculations. The fluorescence behavior is observed in polyimides synthesized through one-step polymerization of this series of dianhydrides with various diamines. In particular, TPE-4Me exhibits the highest quantum efficiency of 42.7%, while TPPA-4Me, which incorporates TPPA moieties, shows the most red-shifted emission at 605 nm but has a lower quantum efficiency. The combination of TPE and TPPA in TPPA-TPE-4Me results in orange-red fluorescence at 595 nm. Although the red-shift effect is not as pronounced as in TPPA-4Me, the addition of TPE provides more significant fluorescence behavior in the solid state.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-12T16:13:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-12T16:13:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
ABSTRACT II
中文摘要 III
Table of Contents IV
List of Figures VII
List of Schemes XIII
List of Tables XIV
CHAPTER 1 1
1.1 Fluorescent Polyimide 2
1.1.1 Molecular Design 2
1.1.2 Emission Shifting 7
1.1.3 Different Substituents on Polyimide 9
1.1.4 Semi or Wholly Aromatic Polyimides 11
1.1.5 Twisted and Bulky Group Polyimides 14
1.2 Aggregation-Induced Emission 16
1.2.1 Aggregation-Induced Emission (AIE) Fundamental 16
1.2.2 Restriction of Intramolecular Rotations (RIR) 18
1.2.3 Restrictions of Intramolecular Vibration (RIV) 21
1.2.4 Restriction of Intramolecular Motions (RIM) 24
1.2.5 Twisted Intramolecular Charge Transfer (TICT) 25
1.2.6 Excited State Intramolecular Proton Transfer (ESIPT) 27
1.3 Electrofluorochromic (EFC) 30
1.3.1 The General Mechanism 30
1.3.2 Covalently Coupled Electroactive Fluorophores 32
1.3.3 Consolidated Redox-Active Fluorophores 33
1.3.4 TPA-Base Polymers 36
1.4 Research Motivation 39
CHAPTER 2 41
2.1 Materials 42
2.2 Measurements 43
2.2.1 Instruments 43
2.2.2 Quantum Chemical Calculation 44
2.3 Synthesis of Monomers 45
2.4 Synthesis of Polymers 53
CHAPTER 3 55
Results and Discussion 55
3.1 Characterization of Monomers and Polyimides 56
3.1.1 Characterization of Monomer and Model Compound 56
3.1.2 Characterization of Polyimides. 69
3.2 Basic Properties of Polyimide 72
3.2.1 Viscosity and solubility of Polyimides. 72
3.2.2 Thermal Properties of Polyimides. 73
3.3 Photoluminescence Study of Diimide 75
3.3.1 Basic Optical Properties of Dimide Model Compound 75
3.3.2 Solvent Effect and Solvatofluorochromic of Dimide Model Compound 77
3.3.3 Simulation of Dimide Model Compound 86
3.4 Photoluminescence Study of polymers 88
3.4.1 Basic Optical Properties of Polymers 88
3.4.2 AIE Behavior and Panchromatic Spectrum Emission of Polymers 92
CHAPTER 4 95
References 97
-
dc.language.isoen-
dc.subject全芳香聚醯亞胺zh_TW
dc.subject光致發光zh_TW
dc.subject螢光聚醯亞胺zh_TW
dc.subject紅移zh_TW
dc.subject高量子效率zh_TW
dc.subjecthigh quantum efficiencyen
dc.subjectphotoluminescenceen
dc.subjectred-shifteden
dc.subjectwholly aromatic polyimideen
dc.subjectfluorescent polyimideen
dc.title具高螢光效率及紅移放光之三苯胺型聚醯亞胺分子設計與合成zh_TW
dc.titleMolecular Design and Synthesis of Triphenylamine-Base Polyimides with High Photoluminescence Efficiency and Red-shifted Emissionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張嘉文;蕭勝輝;陳燿騰zh_TW
dc.contributor.oralexamcommitteeCha-Wen Chang;Sheng-Huei Hsiao;Yaw-Terng Chernen
dc.subject.keyword螢光聚醯亞胺,高量子效率,全芳香聚醯亞胺,紅移,光致發光,zh_TW
dc.subject.keywordfluorescent polyimide,high quantum efficiency,wholly aromatic polyimide,red-shifted,photoluminescence,en
dc.relation.page107-
dc.identifier.doi10.6342/NTU202403314-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
dc.date.embargo-lift2025-09-01-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
50.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved