請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95575完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅昭銘 | zh_TW |
| dc.contributor.advisor | Chao-Ming Fu | en |
| dc.contributor.author | 林宏益 | zh_TW |
| dc.contributor.author | Hong-Yi Lin | en |
| dc.date.accessioned | 2024-09-11T16:36:12Z | - |
| dc.date.available | 2024-09-12 | - |
| dc.date.copyright | 2024-09-11 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | 參考文獻
[1] H. Fatima, T. Charinpanitkul, and K.-S. Kim, "Fundamentals to apply magnetic nanoparticles for hyperthermia therapy," Nanomaterials, vol. 11, no. 5, p. 1203, 2021. [2] K. Sharma and C. Chauhan, "Role of magnetic nanoparticle (MNPs) in cancer treatment: a review," Materials Today: Proceedings, vol. 81, pp. 919-925, 2023. [3] R. Reda, A. Zanza, A. Mazzoni, A. Cicconetti, L. Testarelli, and D. Di Nardo, "An update of the possible applications of magnetic resonance imaging (MRI) in dentistry: a literature review," Journal of imaging, vol. 7, no. 5, p. 75, 2021. [4] T. Naseem and T. Durrani, "The role of some important metal oxide nanoparticles for wastewater and antibacterial applications: A review," Environmental Chemistry and Ecotoxicology, vol. 3, pp. 59-75, 2021. [5] J. Parkin and B. Cohen, "An overview of the immune system," The Lancet, vol. 357, no. 9270, pp. 1777-1789, 2001. [6] C. Shi and E. G. Pamer, "Monocyte recruitment during infection and inflammation," Nature reviews immunology, vol. 11, no. 11, pp. 762-774, 2011. [7] Y. Wang et al., "Dendritic cell biology and its role in tumor immunotherapy," Journal of hematology & oncology, vol. 13, pp. 1-18, 2020. [8] N. Shimasaki, A. Jain, and D. Campana, "NK cells for cancer immunotherapy," Nature reviews Drug discovery, vol. 19, no. 3, pp. 200-218, 2020. [9] F. A. Bonilla and H. C. Oettgen, "Adaptive immunity," Journal of Allergy and Clinical Immunology, vol. 125, no. 2, pp. S33-S40, 2010. [10] D. C. Palmer and N. P. Restifo, "Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function," Trends in immunology, vol. 30, no. 12, pp. 592-602, 2009. [11] L. Klein, B. Kyewski, P. M. Allen, and K. A. Hogquist, "Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see)," Nature Reviews Immunology, vol. 14, no. 6, pp. 377-391, 2014. [12] R. L. E. Cano and H. D. E. Lopera, "Introduction to T and B lymphocytes," in Autoimmunity: from bench to bedside [Internet]: El Rosario University Press, 2013. [13] M. Rahman and B. Bordoni, "Histology, natural killer cells," in StatPearls [Internet]: StatPearls Publishing, 2023. [14] A. Denman, "Lymphocyte function and disease," British Medical Journal, vol. 2, no. 6143, p. 980, 1978. [15] J. G. Cyster and C. D. Allen, "B cell responses: cell interaction dynamics and decisions," Cell, vol. 177, no. 3, pp. 524-540, 2019. [16] B. V. Kumar, T. J. Connors, and D. L. Farber, "Human T cell development, localization, and function throughout life," Immunity, vol. 48, no. 2, pp. 202-213, 2018. [17] L. Chen et al., "Inflammatory responses and inflammation-associated diseases in organs," Oncotarget, vol. 9, no. 6, p. 7204, 2018. [18] H. Kumar, T. Kawai, and S. Akira, "Pathogen recognition by the innate immune system," International reviews of immunology, vol. 30, no. 1, pp. 16-34, 2011. [19] J. Kwon and S. F. Bakhoum, "The cytosolic DNA-sensing cGAS–STING pathway in cancer," Cancer discovery, vol. 10, no. 1, pp. 26-39, 2020. [20] L. Abdulkhaleq, M. Assi, R. Abdullah, M. Zamri-Saad, Y. Taufiq-Yap, and M. Hezmee, "The crucial roles of inflammatory mediators in inflammation: A review," Veterinary world, vol. 11, no. 5, p. 627, 2018. [21] T. Horiuchi, H. Mitoma, S.-i. Harashima, H. Tsukamoto, and T. Shimoda, "Transmembrane TNF-α: structure, function and interaction with anti-TNF agents," Rheumatology, vol. 49, no. 7, pp. 1215-1228, 2010. [22] Y.-J. Lin, M. Anzaghe, and S. Schülke, "Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis," Cells, vol. 9, no. 4, p. 880, 2020. [23] L. Pan, M.-P. Lu, J.-H. Wang, M. Xu, and S.-R. Yang, "Immunological pathogenesis and treatment of systemic lupus erythematosus," World Journal of Pediatrics, vol. 16, pp. 19-30, 2020. [24] V. Pegoretti, W. Baron, J. D. Laman, and U. L. Eisel, "Selective modulation of TNF–TNFRs signaling: insights for multiple sclerosis treatment," Frontiers in Immunology, vol. 9, p. 346612, 2018. [25] H. F. Peñaloza, R. van der Geest, J. A. Ybe, T. J. Standiford, and J. S. Lee, "Interleukin-36 cytokines in infectious and non-infectious lung diseases," Frontiers in immunology, vol. 12, p. 754702, 2021. [26] L. C. Borish and J. W. Steinke, "2. Cytokines and chemokines," (in eng), J Allergy Clin Immunol, vol. 111, no. 2 Suppl, pp. S460-75, Feb 2003, doi: 10.1067/mai.2003.108. [27] A. Ciesielska, M. Matyjek, and K. Kwiatkowska, "TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling," Cellular and molecular life sciences, vol. 78, pp. 1233-1261, 2021. [28] Y. Wang et al., "Identification of an IL-1 receptor mutation driving autoinflammation directs IL-1-targeted drug design," Immunity, vol. 56, no. 7, pp. 1485-1501. e7, 2023. [29] A. De Maio, "Heat shock proteins: facts, thoughts, and dreams," Shock, vol. 11, no. 1, pp. 1-12, 1999. [30] M. N. Rylander, Y. Feng, J. Bass, and K. R. Diller, "Thermally induced injury and heat‐shock protein expression in cells and tissues," Annals of the New York Academy of Sciences, vol. 1066, no. 1, pp. 222-242, 2006. [31] P. Jacob, H. Hirt, and A. Bendahmane, "The heat-shock protein/chaperone network and multiple stress resistance," (in eng), Plant Biotechnol J, vol. 15, no. 4, pp. 405-414, Apr 2017, doi: 10.1111/pbi.12659. [32] P. Martine and C. Rébé, "Heat shock proteins and inflammasomes," International journal of molecular sciences, vol. 20, no. 18, p. 4508, 2019. [33] Y.-Y. Kuo, G.-B. Lin, W.-T. Chen, Y.-M. Chen, H.-H. Liu, and C.-Y. Chao, "Thermal cycling-hyperthermia down-regulates liposaccharide-induced inflammation in human blood and helps with clearance of herpes simplex virus type 1," bioRxiv, p. 2022.12. 20.521318, 2022. [34] M. Peiravi, H. Eslami, M. Ansari, and H. Zare-Zardini, "Magnetic hyperthermia: Potentials and limitations," Journal of the Indian Chemical Society, vol. 99, no. 1, p. 100269, 2022. [35] M. Karagülle and M. Z. Karagülle, "Effectiveness of balneotherapy and spa therapy for the treatment of chronic low back pain: a review on latest evidence," Clinical rheumatology, vol. 34, pp. 207-214, 2015. [36] G. P. Bálint et al., "The effect of the thermal mineral water of Nagybaracska on patients with knee joint osteoarthritis—a double blind study," Clinical rheumatology, vol. 26, pp. 890-894, 2007. [37] W. Benenson, J. W. Harris, H. Stöcker, and H. Lutz, Handbook of physics. Springer Science & Business Media, 2006. [38] B. D. Cullity and C. D. Graham, Introduction to magnetic materials. John Wiley & Sons, 2011. [39] S. Palagummi and F.-G. Yuan, "Magnetic levitation and its application for low frequency vibration energy harvesting," in Structural Health Monitoring (SHM) in Aerospace Structures: Elsevier, 2016, pp. 213-251. [40] C. Kittel and P. McEuen, Introduction to solid state physics. John Wiley & Sons, 2018. [41] R. Andrievski and A. Glezer, "Size effects in properties of nanomaterials," Scripta materialia, vol. 44, no. 8-9, pp. 1621-1624, 2001. [42] T. Nakamura, T. Tsutaoka, and K. Hatakeyama, "Frequency dispersion of permeability in ferrite composite materials," Journal of magnetism and magnetic materials, vol. 138, no. 3, pp. 319-328, 1994. [43] A. Lucas, R. Lebourgeois, F. Mazaleyrat, and E. Labouré, "Temperature dependence of spin resonance in cobalt substituted NiZnCu ferrites," Applied Physics Letters, vol. 97, no. 18, 2010. [44] A. Jordan, P. Wust, H. Fähling, W. John, A. Hinz, and R. Felix, "Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia," (in eng), Int J Hyperthermia, vol. 9, no. 1, pp. 51-68, Jan-Feb 1993, doi: 10.3109/02656739309061478. [45] 戴道生 and 錢昆明, 凝聚態物理學叢書-鐵磁學(下). 科學出版社, 2000. [46] A. Rajan and N. K. Sahu, "Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy," Journal of Nanoparticle Research, vol. 22, pp. 1-25, 2020. [47] M. T. Luiz, J. A. P. Dutra, J. S. R. Viegas, J. T. C. de Araújo, A. G. Tavares Junior, and M. Chorilli, "Hybrid Magnetic Lipid-Based Nanoparticles for Cancer Therapy," Pharmaceutics, vol. 15, no. 3, p. 751, 2023. [Online]. Available: https://www.mdpi.com/1999-4923/15/3/751. [48] 唐萌, 氧化鐵納米材料生物效應與安全應用. 北京: 科學出版社, 2010. [49] J. Kuchinka, C. Willems, D. V. Telyshev, and T. Groth, "Control of blood coagulation by hemocompatible material surfaces—a review," Bioengineering, vol. 8, no. 12, p. 215, 2021. [50] S. Palta, R. Saroa, and A. Palta, "Overview of the coagulation system," Indian journal of anaesthesia, vol. 58, no. 5, pp. 515-523, 2014. [51] J. Jesty and E. Beltrami, "Positive feedbacks of coagulation: their role in threshold regulation," Arteriosclerosis, thrombosis, and vascular biology, vol. 25, no. 12, pp. 2463-2469, 2005. [52] C. Tarantino. "Coagulation Cascade What Is It, Steps, and More." https://www.osmosis.org/answers/coagulation-cascade (accessed June 18, 2024. [53] A. Lussi and T. Jaeggi, "Chemical Factors," Monographs in oral science, vol. 20, pp. 77-87, 02/01 2006, doi: 10.1159/000093353. [54] M. A. Dobrovolskaia, J. D. Clogston, B. W. Neun, J. B. Hall, A. K. Patri, and S. E. McNeil, "Method for analysis of nanoparticle hemolytic properties in vitro," Nano letters, vol. 8, no. 8, pp. 2180-2187, 2008. [55] E. Van Kampen and W. Zijlstra, "Standardization of hemoglobinometry II. The hemiglobincyanide method," Clinica chimica acta, vol. 6, no. 4, pp. 538-544, 1961. [56] N. J. Crane, Z. D. Schultz, and I. W. Levin, "Contrast enhancement for in vivo visible reflectance imaging of tissue oxygenation," (in eng), Appl Spectrosc, vol. 61, no. 8, pp. 797-803, Aug 2007, doi: 10.1366/000370207781540204. [57] D. Franco, T. Franco, A. M. Schettino, J. M. T. Filho, and F. S. Vendramin, "Protocol for obtaining platelet-rich plasma (PRP), platelet-poor plasma (PPP), and thrombin for autologous use," Aesthetic plastic surgery, vol. 36, pp. 1254-1259, 2012. [58] C. Li, H. Zhang, X. Gong, Q. Li, and X. Zhao, "Synthesis, characterization, and cytotoxicity assessment of N-acetyl-l-cysteine capped ZnO nanoparticles as camptothecin delivery system," Colloids and Surfaces B: Biointerfaces, vol. 174, pp. 476-482, 2019. [59] V. Escamilla-Rivera, M. Uribe-Ramirez, S. Gonzalez-Pozos, O. Lozano, S. Lucas, and A. De Vizcaya-Ruiz, "Protein corona acts as a protective shield against Fe3O4-PEG inflammation and ROS-induced toxicity in human macrophages," Toxicology letters, vol. 240, no. 1, pp. 172-184, 2016. [60] Y. Sun et al., "The emerging role of ferroptosis in inflammation," Biomedicine & Pharmacotherapy, vol. 127, p. 110108, 2020. [61] Y. Wang, X. Wu, X. Bao, and X. Mou, "Progress in the Mechanism of the Effect of Fe3O4 Nanomaterials on Ferroptosis in Tumor Cells," Molecules, vol. 28, no. 11, p. 4562, 2023. [62] L. Ruan et al., "Live macrophages loaded with Fe3O4 and sulfasalazine for ferroptosis and photothermal therapy of rheumatoid arthritis," Materials Today Bio, vol. 24, p. 100925, 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95575 | - |
| dc.description.abstract | 奈米磁顆粒在生物醫學研究領域中具有獨特的特性和應用潛力,其中磁性奈米顆粒已成為各種生物醫學應用的有前途的候選材料,包括靶向藥物傳遞、磁性熱療和磁共振成像(MRI)等方面。
在本研究中,我們專注於探討奈米磁顆粒對於加熱人體血液的抗發炎效應。我們使用了化學共沉法生成Fe3O4磁性奈米顆粒並進行表面修飾,接著使用紅外線熱影像儀觀察它們在高頻交流磁場下隨時間變化的升溫曲線。此外,為了確定其在人體血液中應用的安全性,我們還研究了磁性奈米顆粒與人類紅血球的生物相容性,即透過血漿凝固測試及紅血球溶解測定來檢驗。 在進行奈米磁顆粒血液抗發炎實驗的同時,我們亦透過水浴槽模擬了溫泉加熱的方式來對人體血液進行加熱,觀察其對血液中發炎因子的變化。 本研究的結果顯示,對於TNF-α和IL-6而言,不論HT或是TC-HT,奈米磁顆粒的微觀加熱和水浴槽模擬溫泉加熱的兩種方式皆能有效降低這兩種發炎因子的產生。然而, IL-1β的結果則證實了發炎終止反應會被奈米磁顆粒破壞。且只有HT模式下水浴槽模擬溫泉加熱的效果對於抗發炎仍然有用。 | zh_TW |
| dc.description.abstract | Nanomagnetic particles have unique properties and application potential in the Biomedical science, making them promising candidates for various biomedical applications, including Magnetic drug delivery, magnetic hyperthermia, and magnetic resonance imaging (MRI).
In this study, we focused on exploring the anti-inflammatory effects of nanomagnetic particles when heating human blood. We synthesized Fe3O4 magnetic nanoparticles by using the chemical co-precipitation method and performed surface modifications. Infrared thermal imaging was employed to observe heating curves under alternating electromagnetic field. Additionally, to determine their safety in human blood applications, we investigated the biocompatibility of magnetic nanoparticles with human red blood cells through plasma coagulation tests and hemolysis assays. While conducting the anti-inflammatory experiments on blood with nanomagnetic particles, we also simulated hot spring heating using a water bath to heat human blood, observing changes in inflammatory factors. The results of this study showed that for TNF-α and IL-6, both HT and TC-HT modes of micro-heating by nanomagnetic particles and simulated hot spring heating using a water bath effectively reduced the production of these inflammatory factors. However, the results for IL-1β confirmed that its inflammation termination response was disrupted by nanomagnetic particles. Only the simulated hot spring heating in HT mode remained effective for anti-inflammation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:36:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-11T16:36:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員會審定書 i 致謝 ii 摘要 iv Abstract v 目次 vii 圖次 x 第一章 緒論與文獻回顧 1 1.1 奈米磁性材料的應用 2 1.2 免疫系統與發炎反應 4 1.3 熱療法 10 1.4 研究目的與實驗架構概述 12 第二章 奈米磁顆粒和生物相容性及測量 13 2.1 磁性物質的簡介 13 2.1.1 磁學發展史與基本性質 13 2.1.2 磁性物質種類 16 2.1.3 鐵氧體的磁疇及磁滯曲線 18 2.2 奈米材料的表面效應與尺寸效應 21 2.2.1 表面效應 22 2.2.2 尺寸效應 23 2.3 鐵氧體的電磁動力行為與奈米磁顆粒的物理發熱機制 24 2.3.1 鐵氧體的電磁動力行為 24 2.3.2 奈米磁顆粒的物理發熱機制 32 2.4 測定血漿凝固和紅血球溶血所利用的相關原理 38 2.4.1 血漿凝固機制 39 2.4.2 紅血球溶血反應 43 2.5 發炎因子的測量原理 45 第三章 實驗方法與實驗儀器 48 3.1 實驗儀器 48 3.2 奈米磁顆粒的製備及升溫曲線 51 3.2.1 製備奈米磁顆粒的化學試藥 51 3.2.2 奈米磁顆粒之製備器材 51 3.2.3 奈米磁顆粒之製備 52 3.2.4 奈米磁顆粒的升溫曲線測量 54 3.3 血液相容性測定 55 3.3.1 奈米磁顆粒對於缺血小板血漿的凝固時間測定 55 3.3.2 奈米磁顆粒對於紅血球細胞溶血實驗測定 59 3.4 奈米磁顆粒微觀加熱與模擬溫泉熱療法對於發炎因子的影響 60 3.4.1 傳統熱療組(Hyperthermia treatment,HT) 62 3.4.2 冷熱循環熱療組(Thermal cycling- Hyperthermia treatment,TC-HT) 62 第四章 實驗結果與分析 64 4.1 奈米磁顆粒的升溫曲線與顆粒大小 64 4.2 奈米磁顆粒對於生物相容性的分析 67 4.3 奈米磁顆粒及模擬溫泉療法對於發炎因子的影響分析 68 第五章 結論與未來展望 74 參考文獻 77 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 奈米磁顆粒 | zh_TW |
| dc.subject | 細胞因子 | zh_TW |
| dc.subject | 四氧化三鐵 | zh_TW |
| dc.subject | 熱療法 | zh_TW |
| dc.subject | 生物相容性 | zh_TW |
| dc.subject | biocompatibility | en |
| dc.subject | cytokines | en |
| dc.subject | magnetic nanoparticle | en |
| dc.subject | magnetite | en |
| dc.subject | hyperthermia | en |
| dc.title | 磁性奈米顆粒於交變磁場加熱以及溫水熱療對血液抗發炎效應探討 | zh_TW |
| dc.title | Anti-inflammatory Effects of Magnetic Nanoparticles Heated by Alternating Electromagnetic Field and Hydrothermal on Blood | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳政維;林啟萬 | zh_TW |
| dc.contributor.oralexamcommittee | Jeng-Wei Chen;Chii-Wann Lin | en |
| dc.subject.keyword | 四氧化三鐵,奈米磁顆粒,熱療法,生物相容性,細胞因子, | zh_TW |
| dc.subject.keyword | magnetite,magnetic nanoparticle,hyperthermia,biocompatibility,cytokines, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202403885 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 2.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
