請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95571完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳立涵 | zh_TW |
| dc.contributor.advisor | Li-Han Chen | en |
| dc.contributor.author | 李晏菱 | zh_TW |
| dc.contributor.author | Yen-Ling Lee | en |
| dc.date.accessioned | 2024-09-11T16:34:48Z | - |
| dc.date.available | 2024-10-04 | - |
| dc.date.copyright | 2024-09-11 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-14 | - |
| dc.identifier.citation | 馬玟釧,2007。幾丁質分解酶生產菌之篩選及酶之純化與特性分析。私立大葉大學生物產業科技學系 碩士論文。
臺灣地區畜禽產品價格調查,2021。財團法人中央畜產會。 Adámková Anna, et al. (2017). “Welfare of the mealworm (Tenebrio molitor) breeding with regard to nutrition value and food safety.” Potravinarstvo 11(1) : 460-465. Andrea Muras, et al. (2021). “Biotechnological applications of Bacillus licheniformis.” Critical Reviews in Biotechnology 41(4) : 609-627. A. Razdan, D. Pettersson. (1994). “Effect of chitin and chitosan on nutrient digestibility and plasma lipid concentrations in broiler chickens.” British Journal of Nutrition 72(2) : 277-288. A. Sansawat, M. Thirabunyanon. (2009). “Anti-Aeromonas hydrophila activity and characterisation of novel probiotic strains of Bacillus subtilis isolated from the gastrointestinal tract of giant freshwater prawns.” International Journal of Science and Technology 3(1) : 77-87. Ai-Qing Yu, et al. (2013). “Two novel Toll genes (EsToll1 and EsToll2) from Eriocheir sinensis are differentially induced by lipopolysaccharide, peptidoglycan and zymosan.” Fish & Shellfish Immunology 35(4) : 1282-1292. A. Irianto, B. Austin. (2002). “Probiotics in aquaculture.” Journal of Fish Diseases 25(11) : 633-642. Akio Kihara, Yasuyuki Igarashi. (2004). “Cross talk between sphingolipids and glycerophospholipids in the establishment of plasma membrane asymmetry.” Molecular Biology of the Cell 15(11) : 4949-4959. Amit Savaya, et al. (2020). “The IAG gene in the invasive crayfish Procambarus clarkii-towards sex manipulations for biocontrol and aquaculture.” Management of Biological Invasions 11(2) : 237-258. Anchalee Tassanakajon, et al. (2013). “Discovery of immune molecules and their crucial functions in shrimp immunity.” Fish & Shellfish Immunology 34(4) : 954-967. Amin Heydari Espoui, et al. (2022). “Optimization of protease production process using bran waste using Bacillus licheniformis.” Biotechnology 39 : 674-683. André Dumas, et al. (2018). “The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss).” Aquaculture 492 : 24-34. Andrew Richardson, et al. (2021). “Effect of a black soldier Fly ingredient on the growth performance and disease resistance of juvenile Pacific white shrimp (Litopenaeus vannamei).” Animals 11(5) : 1450. Anne. M. Escaffre, et al. (1997). “Nutritional value of soy protein concentrate for larvae of common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities.” Aquaculture 153 : 63-80. Ariadne Hernández-Pérez, Irene Söderhäll. (2023). “Intestinal microbiome in crayfish: Its role upon growth and disease presentation.” Developmental & Comparative Immunology 145 : 104703. Badiaa Essghaier, et al. (2021). “Potentialities and characterization of an antifungal chitinase produced by a halotolerant Bacillus licheniformis.” Current Microbiology 78 : 513-521. Bao-Rui Zhao, et al. (2023). “Complement-related proteins in crustacean immunity.” Developmental & Comparative Immunology 139 : 104577. Bernard Testa, Joachim. M. Mayer. (2003). Hydrolysis in drug and prodrug metabolism : 12-23. Chun-Nuan Zhang, et al. (2013). “Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on innate immunity, antioxidant capability and disease resistance of triangular bream (Megalobrama terminalis).” Fish & Shellfish Immunology 35(5) : 1380-1386. Cheng Chen, et al. (2022). “Isoferulic acid affords the antiviral potential and restrains white spot syndrome virus proliferation in crayfish (Procambarus clarkii). Aquaculture and Fisheries 7(4) : 581-589. Cheng Chen, et al. (2023). “Antiviral, antioxidant, and anti-inflammatory activities of rhein against white spot syndrome virus infection in red swamp crayfish (Procambarus clarkii).” Microbiology Spectrum 11(6) : 1-17. Daniela Melissa Abarca-Merlin, et al. (2024). “From immunity to neurogenesis: Toll-like receptors as versatile regulators in the nervous system.” International Journal of Molecular Sciences 25(11) : 5711. Dennis. G. A. B. Oonincx, et al. (2015). “Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. “ PLoS ONE 10(12) : 144601. Einar Ringø. (2020). “Probiotics in shellfish aquaculture.” Aquaculture and Fisheries 5(1) : 1-27. Fábio Rangel, et al. (2024). “Novel chitinolytic Bacillus spp. increase feed efficiency, feed digestibility, and survivability to Vibrio anguillarum in European seabass fed with diets containing Hermetia illucens larvae meal.” Aquaculture 579 : 740258. Fei Liu, et al. (2020). “Effects of hesperidin on the growth performance, antioxidant capacity, immune responses and disease resistance of red swamp crayfish (Procambarus clarkii).” Fish & Shellfish Immunology 99 : 154-166. Fakhra Liaqat, Rengin Eltem. (2018). “Chitooligosaccharides and their biological activities: A comprehensive review.” Carbohydrate Polymers 184 : 243-259. Fei Liu, et al. (2021). “Enhanced growth performance, immune responses, immune-related gene expression and disease resistance of red swamp crayfish (Procambarus clarkii) fed dietary glycyrrhizic acid.” Aquaculture 533 : 736202. Fuller. R. (1989). “Probiotics in man and animals.” The Journal of Applied Bacteriology 66(5) : 365-378. Fan Liu, Andrew. G. Myers. (2016). “Development of a platform for the discovery and practical synthesis of new tetracycline antibiotics.” Current Opinion in Chemical Biology 32 : 48-57. Günter Vogt. (2021). “Synthesis of digestive enzymes, food processing, and nutrient absorption in decapod crustaceans: a comparison to the mammalian model of digestion.” Zoology 147 : 125945. Golara Kor, et al. (2023). “Granules of immune cells are the source of organelles in the regenerated nerves of crayfish antennae.” Fish & Shellfish Immunology 137 : 108787. Gopinathan Lakshmi, et al. (2011). “Established and novel Cdk/Cyclin complexes regulating the cell cycle and development.” Results and Problems in Cell Differentiation 53 : 365-389. Hao Tan, et al. (2022). “Metabolomics reveals the mechanism of tetracycline biodegradation by a Sphingobacterium mizutaii S121.” Environmental Pollution 305 : 119299. Hannah Shibo Xu, et al. (2023). “Chronic exposure to nanocellulose altered depression-related behaviors in mice on a western diet: The role of immune modulation and the gut microbiome.” Life Sciences 335 : 122259. Helena Čičková, et al. (2015). “The use of fly larvae for organic waste treatment.” Waste Management 35 : 68-80. Hien Van Doan, et al. (2020). “Host-associated probiotics: A key factor in sustainable aquaculture.” Reviews in Fisheries Science & Aquaculture 28(1) : 16-42. Hong Ji, et al. (2013). “Effect of replacement of dietary fish meal with silkworm pupae meal on growth performance, body composition, intestinal protease activity and health status in juvenile Jian carp (Cyprinus carpio var. Jian).” Aquaculture Research 12 : 1209-1221. Hongzhen Cao, et al. (2022). “Effects of Bacillus subtilis on growth performance and intestinal flora of Penaeus vannamei.” Aquaculture Reports 23 : 101070. Hua-Jun Zhang, et al. (2023). “Effects of dietary replacement of fishmeal by cottonseed meal on the growth performance, immune and antioxidant responses, and muscle quality of juvenile crayfish Procambarus clarkii.” Aquaculture Reports 31 : 101639. Hucheng Jiang, et al. (2015). “ Identification and characterization of reference genes for normalizing expression data from red swamp crawfish Procambarus clarkii.” International Journal of Molecular Sciences 16(9) : 21591-21605. Hui Zhang, et al. (2020) b. “Sphingomonas suaedae sp. nov., a chitin-degrading strain isolated from rhizosphere soil of Suaeda salsa.” International journal of systematic and evolutionary microbiology 70(6) : 3816-3823. Huali Feng, et al. (2023). “Involvement of insulin-like growth factor binding proteins (IGFBPs) and activation of insulin/IGF-like signaling (IIS)-target of rapamycin (TOR) signaling cascade in pacific white shrimp, Litopenaeus vannamei exposed to acute low-salinity.” Aquaculture Reports 30 : 101627. Ikram Belghit, et al. (2019). “Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar).” Aquaculture 503 : 609-619. Imtiaz Ahmed, Ishtiyaq Ahmad. (2021). “Dietary lysine modulates growth performance, haemato-biochemical indices, non-specific immune response, intestinal enzymatic activities and antioxidant properties of rainbow trout, Oncorhynchus mykiss fingerlings.” Aquaculture Nutritions 27(1) : 124-139. Inês Guerreiro, et al. (2020). “Digestive enzyme activity and nutrient digestibility in meagre (Argyrosomus regius) fed increasing levels of black soldier fly meal (Hermetia illucens).” Aquaculture Nutritions 27 (1): 142-152. J. Lamontagne, et al. (2023). “Effects of direct-fed Bacillus subtilis and Bacillus licheniformis on production performance and milk fatty acid profile in dairy cows.” Journal of Dairy Science 106(3) : 1815-1825. Jiang-Feng Lan, et al. (2016). “PcToll3 was involved in anti-Vibrio response by regulating the expression of antimicrobial peptides in red swamp crayfish, Procambarus clarkii.” Fish & Shellfish Immunology 57 : 17-24. Jin Yan, et al. (2021). “Effects of two exogenous proteins on the insulin-like androgenic gland hormone gene expression in Procambarus clarkii.” Aquaculture Research 52(12) : 6602-6611. João Leandro, Sander M. Houten. (2019). “Saccharopine, a lysine degradation intermediate, is a mitochondrial toxin.” Journal of Cell biology 218(2) : 391-392. Junming Deng, et al. (2006). “Effects of replacing fish meal with soy protein concentrate on feed intake and growth of juvenile Japanese flounder, Paralichthys olivaceus.” Aquaculture 258 : 503-513. Jinlong Song, et al. (2021). “Biodegradation and metabolic pathway of sulfamethoxazole by Sphingobacterium mizutaii.” Scientific reports 11(1) : 23130. Kai-Min Niu, et al. (2019). “Autochthonous Bacillus licheniformis: probiotic potential and survival ability in low-fishmeal extruded pellet aquafeed.” Microbiology Open 8(6). Lin Kuei-Hung, Yu Yu-Hsiang. (2020). “Evaluation of Bacillus licheniformis-fermented feed additive as an antibiotic substitute: effect on the growth performance, diarrhea Incidence, and cecal microbiota in weaning piglets.” Animals 10(9) : 1649. Lei Zhu, et al. (2023). “Induction and potential molecular mechanism of the enhanced immune response in Procambarus clarkii after secondary encountered with Aeromonas veronii.” Developmental & Comparative Immunology 140 : 104599. Lei Zhu, et al. (2023). “Effects of two fish-derived probiotics on growth performance, innate immune response, intestinal health, and disease resistance of Procambarus clarkii.” Aquaculture 562 : 738765. Le H. Duc, et al. (2004). “Characterization of Bacillus probiotics available for human use.” Applied and Environmental Microbiology 70(4) : 2161-2171. Liang Zhou, et al. (2019). “Molecular and antimicrobial characterization of a group G anti-lipopolysaccharide factor (ALF) from Penaeus monodon.” Fish & Shellfish Immunology 94 : 149-156. Lili Xu, et al. (2021). “Screening of intestinal probiotics and the effects of feeding probiotics on the digestive enzyme activity, immune, intestinal flora and WSSV resistance of Procambarus clarkii.” Aquaculture 540. Linlin Shi, et al. (2019). “Molecular characterization and functional study of insulin-like androgenic gland hormone gene in the red swamp crayfish, Procambarus clarkii.” Genes 10(9) : 645. Lise Soetemans, et al. (2020). “Characteristics of chitin extracted from black soldier fly in different life stages.” International Journal of Biological Macromolecules 165 : 3206-3214. Long Zhang, et al. (2021). “The SNP polymorphisms associated with WSSV-resistance of prophenoloxidase in red swamp crayfish (Procambarus clarkii) and its immune response against white spot syndrome virus (WSSV).” Aquaculture 530 : 735787. Luisa. M. Vera, et al. (2020). “Higher dietary micronutrients are required to maintain optimal performance of Atlantic salmon (Salmo salar) fed a high plant material diet during the full production cycle.” Aquaculture 528 : 735551. Michael. T. Medigan, John. M. Martinko. (2006). “Brock biology of microorganisms.” International Mycrobiology 8 : 149-152. M. M. Bradford. (1976). “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.” Analytical Biochemistry 72(1-2) : 248-254. Michael. W. Rey, et al. (2004). “Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species.” Genome Biology 5 : R77. Martin Alexander. (1977). “Introduction to soil microbiology.” Soil Science 125(5) : 331. Mahmoud A.O. Dawood, et al. (2018). “Probiotic application for sustainable aquaculture.” Reviews in Aquaculture 11 : 907-924. Maja Hanić, et al. (2019). “Inflammatory bowel disease - glycomics perspective.” Biochimica et Biophysica Acta (BBA)-General Subjects 1863(10) : 1595-1601. Manish Kumar, et al. (2020). “Chemoenzymatic production and engineering of chitooligosaccharides and N-acetyl glucosamine for refining biological activities.” Frontiers in Chemistry 8 : 469. Maria Swiontek Brzezinska, et al. (2020). “Exploring the properties of chitinolytic Bacillus isolates for the pathogens biological control.” Microbial Pathogenesis 148. Md Javed Foysal, et al. (2020). “Bacillus mycoides supplemented diet modulates the health status, gut microbiota and innate immune response of freshwater crayfish marron (Cherax cainii).” Animal Feed Science and Technology 262 : 114408. Md Javed Foysal, et al. (2021). “Lactobacillus plantarum in black soldier fly (Hermetica illucens) meal modulates gut health and immunity of freshwater crayfish (Cherax cainii).” Fish & Shellfish Immunology 108 : 42-52. Meng Zhou, et al. (2023). “Biochemical compositions and transcriptome analysis reveal dynamic changes of embryonic development and nutrition metabolism in Chinese sturgeon (Acipenser sinensis).” Aquaculture 577 : 740003 Mengxi Yang, et al. (2022). “Effect of dietary replacement of fish meal by poultry by-product meal on the growth performance, immunity, and intestinal health of juvenile red swamp crayfish, Procambarus clarkii.” Fish & Shellfish Immunology 131 : 381-390. Ming Li, et al. (2019). “ A new crustin is involved in the innate immune response of shrimp Litopenaeus vannamei.” Fish & Shellfish Immunology 94 : 398-406. Minglang Cai, et al. (2024). “Effects of replacing fishmeal with soybean meal on the immune and antioxidant capacity, and intestinal metabolic functions of red swamp crayfish Procambarus clarkii.” Fish & Shellfish Immunology 149 : 109600. Ming Xu, et al. (2024). “Microbiome analysis reveals the intestinal microbiota characteristics and potential impact of Procambarus clarkii.” Applied Microbiology and Biotechnology 108 : 77-90. Mohammed Abdullah Al-Dohail, et al. (2009). “Effects of the probiotic, Lactobacillus acidophilus, on the growth performance, haematology parameters and immunoglobulin concentration in African Catfish (Clarias gariepinus, Burchell 1822) fingerling.” Aquaculture Research 40 : 1642-1652. Nicolas Coant, et al. (2017). “Ceramidases, roles in sphingolipid metabolism and in health and disease.” Advances in Biological Regulation 63 : 122-131. Nanshan Qi, et al. (2023). “Isolation and characterization of a novel hydrolase-producing probiotic Bacillus licheniformis and its application in the fermentation of soybean meal.” Nutrition and Food Science Technology 10. Pacharaporn Angthong, et al. (2023). “Shrimp microbiome and immune development in the early life stages.” Developmental & Comparative Immunology 147 : 104765. Pan Zhang, et al. (2022). “Expression of the cyclin-dependent kinase 2 gene (cdk2) influences ovarian development in the ridgetail white prawn, Exopalaemon carinicauda.” Aquaculture Reports 25 : 101265. Piti Amparyup, et al. (2013). “Prophenoloxidase system and its role in shrimp immune responses against major pathogens.” Fish & Shellfish Immunology 34(4) : 990-1001. Qin Zhang, et al. (2011). “Dietary administration of Bacillus (B. licheniformis and B. subtilis) and isomaltooligosaccharide influences the intestinal microflora, immunological parameters and resistance against Vibrio alginolyticus in shrimp, Penaeus japonicus (Decapoda: Penaeidae).” Aquaculture research 42(7) : 943-952. Qianfu Liu, et al. (2022). “Proportions of Pacific white shrimp, Litopenaeus vannamei, gut microbiota from ambient microbiota increased with aquaculture process.” Journal of the World Aquaculture Society 54(4) : 779-1087. R. W. Hardy, A. G. J. Tacon. (2002). “Fish meal: historical uses, production trends and future outlook for sustainable supplies.” Responsible Marine Aquaculture : 311-325. Rebecca Buxton. (2005). “Blood agar plates and hemolysis protocols.” American Society for Microbiology. Rivka Manor, et al. (2007). “Insulin and gender: An insulin-like gene expressed exclusively in the androgenic gland of the male crayfish.” General and Comparative Endocrinology 150(2) : 326-336. R.T. Gahukar. (2011). “Entomophagy and human food security.” International Journal of Tropical Insect Science 31(3) : 129-144. Samad Rahimnejad, et al. (2018). “Chitooligosaccharide supplementation in low-fish meal diets for Pacific white shrimp (Litopenaeus vannamei): Effects on growth, innate immunity, gut histology, and immune-related genes expression.” Fish & Shellfish Immunology 80 : 405-415. Samad Rahimnejad, et al. (2019). “Replacement of fish meal with defatted silkworm (Bombyx mori L.) pupae meal in diets for Pacific white shrimp (Litopenaeus vannamei).” Aquaculture 510 : 150-159. Samtiya Mrinal, et al. (2020). “Plant food anti-nutritional factors and their reduction strategies: an overview.” Food Production 2(6) : 1-14. Satoshi Mikami. (2005). “Moulting behaviour responses of Bay lobster, Thenus orientalis, to environmental manipulation.” New Zealand Journal of Marine and Freshwater Research 39(2) : 287-292. Saisai Zhang, et al. (2024). “Stochastic assembly increases the complexity and stability of shrimp gut microbiota during aquaculture progression.” Marine Biotechnology 26 : 92-102. Sven Wuertz, et al. (2021). “Probiotics in fish nutrition—long-standing household remedy or native nutraceuticals.” Water 13(10) : 1348. Shengkai Ma, et al. (2022). “Relationship between immune performance and the dominant intestinal microflora of turbot fed with different Bacillus species.” Aquaculture 549 : 737625. Shuyan Miao, et al. (2020). “Effects of dietary protein level on the growth performance, feed utilization and immunity of red swamp crayfish Procambarus clarkii.” Aquaculture Reports 18 : 100540. Siok Hwee Tan, et al. (2000). “The Penaeus monodon chitinase1 gene is differentially expressed in the hepatopancreas during the molt cycle.” Marine Biotechnology 2 : 126-135. Stephania Marono, et al. (2015). “ In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits.” Italian journal of animal science 14(3) : 3889. Sukanta K. Nayak. (2020). “Multifaceted applications of probiotic Bacillus species in aquaculture with special reference to Bacillus subtilis.” Reviews in Aquaculture 13(2) : 862-906. Suwat Saengkerdsub. (2012). “Recombinant protein production in Bacillus species, isolation and methionine production in methionine-producing microorganisms.” University of Arkansas Graduate Theses and Dissertations. Shi Peng-yuan, et al. (2024). “Exploring the underlying mechanisms of enteritis impact on golden pompano (Trachinotus ovatus) through multi-omics analysis.” Fish & Shellfish Immunology 150 : 109616. Sumit Mukherjee, et al. (2017). “Comparative genomics and phylogenomic analyses of lysine riboswitch distributions in bacteria.” PLoS ONE 12(9) : 184314. Tanja Kuehbacher, et al. (2008). “Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease.” Journal of Medical Microbiology 57(12) : 1569-1576. Tetsuo Niwa, et al. (2022). “ Hyperactivation of cyclin A-CDK induces centrosome overduplication and chromosome tetraploidization in mouse cells.” Biochemical and Biophysical Research Communications 549 : 91-97. Thierry Douki, et al. (2005). “Photosensitization of DNA by dipicolinic acid, a major component of spores of Bacillus species.” Photochemical & Photobiological Sciences 4 : 591-597. Tiffany A. Reese, et al. (2007). “Chitin induces accumulation in tissue of innate immune cells associated with allergy.” Nature 44 : 92-96. Tingting Zhao, et al. (2021). “Integrated metabolome and transcriptome analyses revealing the effects of thermal stress on lipid metabolism in juvenile turbot Scophthalmus maximus.” Journal of Thermal Biology 99 : 102937. Tom Levy, et al. (2017). “The gene encoding the insulin-like androgenic gland hormone in an all-female parthenogenetic crayfish.” PLoS ONE 12(12) : 189982. Viswanath. Kiron, et al. (2020). “Intestinal transcriptome analysis reveals soy derivative-linked changes in Atlantic Salmon.” Frontiers in immunology 11 : 596514. Vaun. C. Cummins Jr, et al. (2017). “Evaluation of black soldier fly (Hermetia illucens) larvae meal as partial or total replacement of marine fish meal in practical diets for Pacific white shrimp (Litopenaeus vannamei).” Aquaculture 473 : 337-344. Wahyu Afrilasari, et al. (2016). “Effect of probiotic Bacillus megaterium PTB 1.4 on the population of intestinal microflora, digestive enzyme activity and the growth of catfish (Clarias sp.).” HAYATI Journal of Biosciences 23(4) : 168-172. Wei Zhang, et al. (2019). ” Transcriptome, enzyme activity and histopathology analysis reveal the effects of dietary carbohydrate on glycometabolism in juvenile largemouth bass, Micropterus salmoides.” Aquaculture 504 : 39-51. Wangyang Jin, et al. (2024). “Effects of Lactobacillus plantarum and Bacillus subtilis on growth, immunity and intestinal flora of largemouth bass(Micropterus salmoides).” Aquaculture 583 : 740581. Xiaolu Liu, et al. (2012). “Growth performance and meat quality of Broiler chickens supplemented with Bacillus licheniformis in drinking water.” Asian-Australas Journal of Animal Sciences 25(5) : 682-689. Xiaoxiao Zhang, et al. (2020). “Growth performance, non-specific immunity and Vibrio parahaemolyticus resistance of Pacific white shrimp, Litopenaeus vannamei, in response to various microbial-derived additives.” Aquaculture nutrition 27(3) : 666-678. Xin Liu, et al. (2024). “Transcriptomic analyses provide new insights into immune response of the Procambarus clarkii intestines to Aeromonas hydrophila challenge.” Aquaculture Reports 36 : 102103. Xing Lu, et al. (2020). “Effects of dietary protein levels on growth, muscle composition, digestive enzymes activities, hemolymph biochemical indices and ovary development of pre-adult red swamp crayfish (Procambarus clarkii).” Aquaculture reports 18 : 100542. Xian-Wei Wang, et al. (2011). “Characterization of a C-type lectin (PcLec2) as an upstream detector in the prophenoloxidase activating system of red swamp crayfish.” Fish & Shellfish Immunology 30(1) : 241-247. Yaru Yang, et al. (2023). “Saccharomyces cerevisiae additions normalized hemocyte differential genes expression and regulated crayfish (Procambarus clarkii) oxidative damage under cadmium stress.” Scientific Reports 13(1) : 20939. Yasser Akeed, et al. (2020). “Partial purification and characterization of chitinase produced by Bacillus licheniformis B307.” Heliyon 6(5) : 3858. Ying Yang, et al. (2023). “Effects of dietary melatonin on growth performance, antioxidant capacity, and nonspecific immunity in crayfish, Cherax destructor.” Fish & Shellfish Immunology 138 : 108846. Yinglei Xu, et al. (2021). “Effects of Bacillus subtilis and Bacillus licheniformis on growth performance, immunity, short chain fatty acid production, antioxidant capacity, and cecal microflora in broilers.” Poultry Science 100(9) : 101358. Yuan Tian, et al. (2024). “Non-targeted metabolomics provides insights into the distinct amino acid and lipid metabolism in liver tissues of rainbow trout (Oncorhynchus mykiss) cultured in seawater at different temperatures.” Aquaculture 579 : 740188. Yuhang He, et al. (2022). “Replacement of commercial feed with fresh black soldier fly (Hermetia illucens) larvae in Pacific white shrimp (Litopenaeus vannamei).” Aquaculture nutrition 2022(1) : 1-8. Yu-Shiang Wang, Matan Shelomi. (2017). “Review of black soldier fly (Hermetia illucens) as animal feed and human Food.” Foods 6(10) : 91-113. Zhenting Zhang, et al. (2020) a. “Developmental, dietary, and geographical impacts on gut microbiota of red swamp crayfish (Procambarus clarkii).” Microorganisms 8(9) : 1376-1391. Zhiyong Wu, et al. (2022). “Transcriptome analysis of Bacillus licheniformis for improving bacitracin production.” ACS Synthetic Biology 11(3) : 1325-1335. Zonglin Yang, et al. (2024). “Histological morphology and gene expression in the digestive system of Procambarus clarkii.” Aquaculture and Fisheries 12. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95571 | - |
| dc.description.abstract | 美國螯蝦(Procambarus clarkii)是近年來水產養殖中一種重要的飼養物種,於世界各地作為食用或觀賞用。因大量的飼養使養殖業對魚粉的需求增加,導致漁業資源的減少及魚粉價格的升高,因此找到適合的飼料替代成分是目前水產養殖業的挑戰之一;黑水虻(Hermitia illucens)是近年最常被使用的替代材料之一,具有飼養容易、蛋白質含量高等優點,但因其有幾丁質組成的外骨骼,過量的添加會使宿主的腸道受到損害並降低攝食率。
本實驗使用脫脂黑水虻粉做為魚粉的替代材料,並且為提高飼養的效益及解決替代成分的缺陷,挑選具有對幾丁質、蛋白質優秀分解能力的地衣芽孢桿菌(Bacillus licheniformis)作為益生菌進行添加。以0%(控制組)、21%(B21)及30%(B30)的黑水虻比例取代魚粉用量製成飼料,並將地衣芽孢桿菌培養至3x109(CFU/ml)後添加至上述條件的各組飼料中進行投餵,分別為BB0、BB21與BB30,共六組。56天飼養後測量成長指標,採集各組螯蝦的肝胰腺、腸道及尾部肌肉進行基因表現、菌相分析與組織切片,以及肌肉蛋白質含量檢測。結果顯示進食21%黑水虻替換飼料的螯蝦(B21)在各種成長表現的指標皆有提升的趨勢,與添加益生菌的BB21組相比,BB21組的螯蝦成長表現提升更加顯著,腸道健康表現優於其他組別,並且對外在感染源的抗性增加。這證明以一定比例的黑水虻替換魚粉並添加益生菌能有效改善螯蝦的成長及健康表現。 | zh_TW |
| dc.description.abstract | The American crayfish (Procambarus clarkii) is extensively cultivated for both food and ornamental purposes. The rising demand for fish meal in aquaculture has led to decreased wild fish resources and increased fish meal prices, creating a need for alternative feed ingredients. The black soldier fly (Hermetia illucens) known for it’s high protein content and easy for cultivation, has become one of the most commonly used materials in recent years. However, its exoskeleton composed of chitin may potentially damage the crayfish's intestines and reduce feeding efficiency. This study explored the use of defatted black soldier fly powder as a fish meal replacement in crayfish feed and evaluated the effects of supplementing Bacillus licheniformis, a probiotic that can degrade chitin and protein. The crayfish were fed diets containing 0% (B0), 21% (B21), 30% (B30) black soldier fly powder, with same formula and additional receiving Bacillus licheniformis (BB0, BB21, BB30). After 56 days, we assessed growth indicators and collected hepatopancreas, intestines, and tail muscles for gene expression analysis, metagenomics, tissue sections, and tail muscle protein content measurement. Results showed that the BB21 group, which received 21% black soldier fly powder and Bacillus licheniformis, demonstrated significantly better growth performance and intestinal health compared to the B0 and B30 groups. This suggests that replacing fish meal with proportion of black soldier fly, combine with probiotics supplement, can enhance the growth and health of crayfish. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:34:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-11T16:34:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii 第一章 前言 1 1.1美國螯蝦(Procambarus clarkii) 1 1.2 魚粉使用及替代材料 2 1.3 黑水虻(Hermetia illucens) 3 1.4 益生菌 5 1.5 芽孢桿菌與養殖應用 6 1.6 地衣芽孢桿菌(Bacillus licheniformis) 7 1.7 蝦類免疫機制 8 第二章 研究動機與目的 10 第三章 材料與方法 11 3.1美國螯蝦 11 3.2 黑水虻粉(BSF) 11 3.3 益生菌培養 11 3.3.1 DNA萃取 12 3.3.2序列擴增與定序 12 3.3.3 生長曲線 13 3.3.4蛋白酶測試 13 3.3.5幾丁質酶測試 14 3.3.6 澱粉酶測試 14 3.3.7 溶血性測試 14 3.4 實驗飼料製備 15 3.4.1 益生菌添加 15 3.4.2 益生菌存活 15 3.5 投餵實驗與採樣 16 3.6 腸道菌相DNA抽取 16 3.7次世代定序 17 3.8 腸道組織切片 17 3.9 RNA萃取 17 3.10 cDNA合成 18 3.11 Real-time PCR 18 3.12尾肌蛋白質含量 19 3.13 統計分析 20 第四章 實驗結果 21 4.1 菌株鑑定 21 4.2 細菌成長曲線 21 4.3 胞外酶測試 21 4.4 溶血性測試 22 4.5 益生菌存活測試 22 4.6 螯蝦成長表現 22 4.7 腸道組織切片 23 4.8 螯蝦腸道菌相分析 23 4.9 螯蝦免疫相關基因表現 25 4.10 螯蝦成長相關基因表現 26 4.11 螯蝦尾部肌肉蛋白質含量測定 27 第五章 討論 28 第六章 結論 41 圖表 42 參考文獻 67 | - |
| dc.language.iso | zh_TW | - |
| dc.title | 黑水虻替換成分飼料配合地衣芽孢桿菌對美國螯蝦生長表現、免疫反應及飼料效益的影響 | zh_TW |
| dc.title | Effects of black soldier fly replacement feed with Bacillus licheniformis supplement on growth, immunity and feed efficiency of Procambarus clarkii | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 賴亮全;韓玉山;蓋玉軒 | zh_TW |
| dc.contributor.oralexamcommittee | Liang-Quan Lai;Yu-San Han;Yu-Hsuan Kai | en |
| dc.subject.keyword | 美國螯蝦,黑水虻,地衣芽孢桿菌,飼料,免疫表現,成長表現, | zh_TW |
| dc.subject.keyword | Procambarus clarkii,Hermitia illucens,Bacillus licheniformis,Feed meal,Growth performance,Immunity, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202404253 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 漁業科學研究所 | - |
| dc.date.embargo-lift | 2027-04-12 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
