Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95569
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡瑞彬zh_TW
dc.contributor.advisorJui-Pin Tsaien
dc.contributor.author梁哲維zh_TW
dc.contributor.authorChe-Wei Liangen
dc.date.accessioned2024-09-11T16:34:09Z-
dc.date.available2024-09-12-
dc.date.copyright2024-09-11-
dc.date.issued2024-
dc.date.submitted2024-08-14-
dc.identifier.citation1. Aggarwal, H. K., Mani, M. P., & Jacob, M. (2018). MoDL: Model-based deep learning architecture for inverse problems. IEEE transactions on medical imaging, 38(2), 394-405.
2. Andersson, O., Hellström, G., & Nordell, B. (2003). Heating and cooling with UTES in Sweden: current situation and potential market development. International Conference on Thermal Energy Storage: 01/09/2003-04/09/2003,
3. Austin III, W. A. (1998). Development of an in situ system for measuring ground thermal properties Oklahoma State University].
4. Bakema, G., & Snijders, A. (1998). ATES and ground-source heat pumps in the Netherlands. IEA Heat Pump Center Newsletter, 16.
5. Battocletti, E. C., & Glassley, W. E. (2013). Measuring the Costs & Benefits of Nationwide Geothermal Heat Deployment. https://www.osti.gov/biblio/1186828
6. https://www.osti.gov/servlets/purl/1186828
7. Berg, S. J., & Illman, W. A. (2015). Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site. Groundwater, 53(1), 71-89.
8. Brauchler, R., Hu, R., Dietrich, P., & Sauter, M. (2011). A field assessment of high‐resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography. Water Resources Research, 47(3).
9. Farzanehkhameneh, P., Soltani, M., Kashkooli, F. M., & Ziabasharhagh, M. (2020). Optimization and energy-economic assessment of a geothermal heat pump system. Renewable and Sustainable Energy Reviews, 133, 110282.
10. Gao, Q., Li, M., Yu, M., Spitler, J. D., & Yan, Y. Y. (2009). Review of development from GSHP to UTES in China and other countries. Renewable and Sustainable Energy Reviews, 13(6), 1383-1394. https://doi.org/https://doi.org/10.1016/j.rser.2008.09.012
11. Hwang, S., Ooka, R., & Nam, Y. (2010). Evaluation of estimation method of ground properties for the ground source heat pump system. Renewable energy, 35(9), 2123-2130.
12. Jardani, A., Vu, T., & Fischer, P. (2022). Use of convolutional neural networks with encoder-decoder structure for predicting the inverse operator in hydraulic tomography. Journal of Hydrology, 604, 127233.
13. Liu, X., Illman, W., Craig, A., Zhu, J., & Yeh, T. C. (2007). Laboratory sandbox validation of transient hydraulic tomography. Water Resources Research, 43(5).
14. McDaniel, A., Tinjum, J., Hart, D. J., Lin, Y.-F., Stumpf, A., & Thomas, L. (2018). Distributed thermal response test to analyze thermal properties in heterogeneous lithology. Geothermics, 76, 116-124.
15. Mink, L. L. (2017). The Nation’s oldest and largest geothermal district heating system. Geotherm. Resour. Counc. Trans, 41, 205-212.
16. Mo, S., Zabaras, N., Shi, X., & Wu, J. (2019). Deep autoregressive neural networks for high‐dimensional inverse problems in groundwater contaminant source identification. Water Resources Research, 55(5), 3856-3881.
17. Molz, F. J., Morin, R. H., Hess, A. E., Melville, J. G., & Güven, O. (1989). The impeller meter for measuring aquifer permeability variations: evaluation and comparison with other tests. Water Resources Research, 25(7), 1677-1683.
18. Noorollahi, Y., Saeidi, R., Mohammadi, M., Amiri, A., & Hosseinzadeh, M. (2018). The effects of ground heat exchanger parameters changes on geothermal heat pump performance–A review. Applied Thermal Engineering, 129, 1645-1658.
19. Ongie, G., Jalal, A., Metzler, C. A., Baraniuk, R. G., Dimakis, A. G., & Willett, R. (2020). Deep learning techniques for inverse problems in imaging. IEEE Journal on Selected Areas in Information Theory, 1(1), 39-56.
20. Sanner, B. (2018). Standards and Guidelines for UTES/GSHP wells and boreholes. 14th International Conference on Energy Storage Adana,
21. Serrano, S. E. (1997). The Theis solution in heterogeneous aquifers. Groundwater, 35(3), 463-467.
22. Shi, Y., Cui, Q., Song, X., Liu, S., Yang, Z., Peng, J., Wang, L., & Guo, Y. (2023). Thermal performance of the aquifer thermal energy storage system considering vertical heat losses through aquitards. Renewable energy, 207, 447-460. https://doi.org/https://doi.org/10.1016/j.renene.2023.03.044
23. Todorov, O. (2022). Ground Source Heat Pumps (GSHP) and Underground Thermal Energy Storage (UTES) - Key Vectors to a Future Energy Transition.
24. Todorov, O., Alanne, K., Virtanen, M., & Kosonen, R. (2020). Aquifer thermal energy storage (ATES) for district heating and cooling: A novel modeling approach applied in a case study of a Finnish urban district. Energies, 13(10), 2478.
25. Yeh, T. C. J., & Liu, S. (2000). Hydraulic tomography: Development of a new aquifer test method. Water Resources Research, 36(8), 2095-2105.
26. Zhao, Z., & Illman, W. A. (2017). On the importance of geological data for three-dimensional steady-state hydraulic tomography analysis at a highly heterogeneous aquifer-aquitard system. Journal of Hydrology, 544, 640-657.
27. Zheng, N., Li, Z., Xia, X., Gu, S., Li, X., & Jiang, S. (2024). Estimating line contaminant sources in non-Gaussian groundwater conductivity fields using deep learning-based framework. Journal of Hydrology, 630, 130727.
28. Zhu, N., Hu, P., Xu, L., Jiang, Z., & Lei, F. (2014). Recent research and applications of ground source heat pump integrated with thermal energy storage systems: A review. Applied Thermal Engineering, 71(1), 142-151.
29. Yeh, S. W., (2022). 融合地下水位與溫度資料於地層三維水力及熱傳參數異質場推估 (Publication Number 2022年) 國立臺灣大學]. AiritiLibrary.
30. Chen, Y. K., Tsai J. P. (2023). Hydraulic Heterogeneity Estimation Using Convolutional Neural Network and Hydraulic Tomography. Asia Oceania Geosciences Society
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95569-
dc.description.abstract地源熱泵(Ground Source Heat Pump, GSHP)是一種高效的熱交換系統,利用自然環境中的能量進行供暖和制冷。熱交換效率不僅取決於熱交換管材質和管徑等因素,更受地下水流場和熱傳參數的影響。為了有效地推估地下水流與熱傳參數異質場,以之作為熱交換井群最佳化設計之依據,本研究提出利用卷積編碼解碼器(Encoder-Decoder)架構的神經網絡結合水力掃描(Hydraulic Tomography,HT),推估水力與熱傳參數異質場,並將此神經網路命名為THT-NN(Thermal and Hydraulic Tomography Neural Network),並透過數值試驗檢驗THT-NN的效能。在數值試驗的設計上,本研究使用TOUGH2創建了一個二維異質地下水與熱傳模式,並生成了20000組給定統計條件下的水力與熱傳參數異質場,再以之建立神經網路的訓練、驗證與測試資料集。THT-NN的建立流程首先從數值模式的觀測位置中收集溫度與水位資料建立輸入檔,再透過編碼與解碼提取水位與溫度特徵轉換成水力(Permeability and porosity, kp and n)與熱傳(Thermal conductivity and specific heat, kt and Sp)參數異質場。隨後,本研究通過均方根誤差(RMSE)、平均絕對誤差(MAE)和判定係數(R²)來檢驗估算結果的正確性與可行性。在數值試驗設計部分,本研究分別探討(1)檢驗THT-NN推估參數之可行性、(2)討論噪訊(noise)對THT-NN推估結果之影響,並檢驗其強健性(robustness)、(3)探討邊界條件引起的平流(advection)對THT-NN推估結果之影響,並檢驗其強健性。研究結果顯示,THT-NN具備同時推估kp場、n場、kt場、Sp場之能力;噪訊會影響THT-NN之表現,因此本研究提出加入具噪訊之資料重新訓練THT-NN,使THT-NN適應噪訊,有效的降低噪訊之影響;邊界條件引起的平流會改變水位與溫度分布,進而改變觀測資料的數值,導致資料特徵不足,使得THT-NN推估表現下降,因此本研究利用不同強度之邊界平流下產生之資料訓練THT-NN,使THT-NN掌握不同觀測資料的特徵,提升此情況下THT-NN推估表現。研究結果證實THT-NN在考慮輸入資料有噪訊與平流的影響下,依然能夠準確推估參數,顯示THT-NN可以作為強健且有效的水力與熱傳參數推估方法。zh_TW
dc.description.abstractThe ground source heat pump (GSHP) is an efficient thermal exchange system that utilizes natural environmental heat for heating and cooling. The heat exchange efficiency depends not only on factors such as the material and diameter of the heat exchange pipes but also on groundwater flow fields and thermal parameters. To effectively estimate the heterogeneous fields of hydraulic and thermal parameters, which are critical for optimizing the design of heat exchange well groups, this study proposes using a neural network, THT-NN (Thermal and Hydraulic Tomography Neural Network), with an encoder-decoder architecture combined with hydraulic tomography (HT). To evaluate the parameter estimation capabilities of THT-NN, numerical experiments were conducted, using a two-dimensional heterogeneous groundwater and heat transfer model created with TOUGH2, generating 20,000 data sets and divided into training, validation, and testing. The process of establishing THT-NN begins with collecting temperature and water level data from observation points in the numerical model to create the input files. Features of the water level and temperature are then extracted through encoding and decoding, transforming them into heterogeneous hydraulic (permeability and porosity, kp and n) and thermal (thermal conductivity and specific heat, kt and Sp) parameter fields. Subsequently, the accuracy and feasibility of the estimated results were verified using root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2). The numerical experiments were designed to explore (1) the feasibility of THT-NN in estimating parameters, (2) the impact of noise on the estimation results of THT-NN and examining its robustness, and (3) the effect of advection on the estimation results of THT-NN and examining its robustness. The results show that THT-NN is capable of simultaneously estimating kp, n, kt, and Sp fields. Noise affects the performance of THT-NN, so this study proposes retraining THT-NN with noisy data to adapt to the noise and effectively reduce impact of noise. Advection changes the distribution of water levels and temperatures, altering the patterns of observation data, which hinders THT-NN's data analysis and reduces its estimation performance. Therefore, data generated under different advection strengths were used to train THT-NN, allowing it to capture the features of various observation data and improve its estimation performance under these conditions. The results confirm that THT-NN can accurately estimate parameters despite the influence of noisy input data and advection, demonstrating that THT-NN can be a robust and effective method for estimating hydraulic and thermal parameters.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:34:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-11T16:34:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌 謝 i
摘 要 ii
Abstract iv
Content vi
List of Figures vii
List of Tables xxii
Chapter 1. Introduction 1
1.1. Backgrounds and motivation 1
1.2. Organization 9
Chapter 2. Methodology 10
2.1. Governing equation 10
2.2. Hydraulic tomography 12
2.3. Numerical model 13
2.4. Deep learning model 30
2.5. Design of numerical experiments 49
2.6. Evaluate the model performance 59
Chapter 3. Result and Discussions 60
3.1. Topic 1: examination of THT-NN’s Performance 60
3.2. Topic 2: impact of data noise on THT-NN’s performance 69
3.3. Topic 3: advection effect on THT-NN’s performance 133
3.4. Topic 4: effect of background flow field and noise on THT-NN’s performance 169
Chapter 4. Conclusions and Recommendations 179
4.1. Conclusions 179
4.2. Recommendations 180
Reference 182
-
dc.language.isoen-
dc.subject卷積神經網路zh_TW
dc.subject深度學習zh_TW
dc.subject地熱參數zh_TW
dc.subject水文地質參數zh_TW
dc.subject水力掃描zh_TW
dc.subjectConvolutional neural networken
dc.subjectHydraulic tomographyen
dc.subjectHydrogeological parametersen
dc.subjectGeothermal parametersen
dc.title利用卷積神經網路與水力掃描推估水力與熱傳參數異質場zh_TW
dc.titleEstimation of Heterogeneous Hydraulic and Thermal Parameter Fields Using Convolutional Neural Network and Hydraulic Tomographyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張斐章;張良正;余化龍zh_TW
dc.contributor.oralexamcommitteeFi-John Chang;Liang-Cheng Chang;Hwa-Lung Yuen
dc.subject.keyword水力掃描,水文地質參數,地熱參數,深度學習,卷積神經網路,zh_TW
dc.subject.keywordHydraulic tomography,Hydrogeological parameters,Geothermal parameters,Convolutional neural network,en
dc.relation.page186-
dc.identifier.doi10.6342/NTU202402885-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
dc.date.embargo-lift2029-08-08-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-08
21.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved