Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95564
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳復國zh_TW
dc.contributor.advisorFuh-Kuo Chenen
dc.contributor.author梁煜晨zh_TW
dc.contributor.authorYu-Chen Liangen
dc.date.accessioned2024-09-11T16:31:57Z-
dc.date.available2024-09-12-
dc.date.copyright2024-09-11-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citationP. J. Pérez and I. A. Sorba, “Energy Consumption of Passenger Land Transport Modes,” Energy & environment, vol. 21, no. 6, pp. 577-600, Oct. 2010.
M. F. Ashby, "Selection in Mechanical Design," Elsevier, Cambridge, UK, 1997.
M. Mestriner, F. D. Rodrigo, and M. Ferrari, “Aerodynamic Sensitivity to Geometry Parameters of an Aircraft Forward Fuselage,” 2018 Applied Aerodynamics Conference, vol. 126, Atlanta, Georgia, U.S.A, Jun. 2018.
Y. Ma, “Manufacturing Process and Raw Materials of Bearing Windshield,” Journal of Physics: Conference Series, vol. 2691, no. 1, pp. 1-8, Sep. 2023.
K. Yang, Y. Yuan, H. Ouyang, F. Yang, and S. Lee, “Solvent-induced Crack Growth in Poly(Methyl Methacrylate)/Multiwalled Carbon Nanotube Composites,” Materials Chemistry and Physics, vol. 291, no.15, pp.126717, Nov. 2022.
李昱勳,《明膠玻璃溫間拉伸成形之研究》,國立台灣大學機械工程學系碩士論文,2023。
T. F. Abaas, K. M. Younis, and K. K. Mansor, “Die Design of Flexible Multi-point Forming Process,” Al-Khwarizmi Engineering Journal, vol. 14, no.2, pp.22-29, Jun. 2018.
H. Peng, H. Liu, and M.Ferrari, “Numerical Investigation of Wrinkle for Multi-Point Thermoforming of Polymethylmethacrylate Sheet,” IOP Conference Series: materials science and engineering, vol. 242, no.1, pp.1-4, Sep. 2017.
S. Wang, Z. Cai, and M. Li, “Numerical Investigation of the Influence of Punch Element in Multi-Point Stretch Forming Process,” The International Journal of Advanced Manufacturing Technology, vol. 49, no.15, pp.475-483, Nov. 2010.
Y. Wang and M. Z. Li, “Research on Three-dimensional Surface Parts in Multi-gripper Flexible Stretch Forming,” The International Journal of Advanced Manufacturing Technology, vol. 71, no.1, pp.1701-1707, Jan. 2014.
X. Chen, M. Z. Li, W. Fu, and Z. Cai, “Numerical Simulation of Different Clamping Modes on Stretch Forming Parts,” Advanced Materials Research, vol. 189, no.5, pp.1922-1925, Feb. 2011.
D. Cheng, T. Chen, and W. Cao, “Study on the Viscoelastic Behaviors of PMMA,” Journal of Physics: Conference Series, vol. 1637, no.1, pp.1-5, Mar. 2020.
O. P. Korobeinichev, А. А. Paletsky, M. B. Gonchikzhapov, R. K. Glaznev, I. E. Gerasimov, Y. K. Naganovsky, I. K. Shundrina, A. Y. Snegirev, and R. Vinu, “Kinetics of Thermal Decomposition of PMMA at Different Heating Rates and in a Wide Temperature Range,” Thermochimica Acta, vol. 671, no.5, pp.17-25, Jan. 2019.
J. P. Mercier, G. Zambelli, and W. Kurz, Introduction to Materials Science, 1st Ed., Elsevier, 2002.
A. Schiavi and A. Prato, “Evidences of Non-linear Short-term Stress Relaxation in Polymers,” Polymer Testing, vol. 59, no. 3, pp. 220-229, May. 2017.
V. Dana, “Stress Relaxation in Poly(methyl methacrylate) (PMMA)” M. S. thesis, Mech. Eng. Dept., Ohio State Univ., Columbus, OH, USA, 2009.
P. A. Kelly. (2015). Mechanics Lecture Notes: An introduction to Solid Mechanics [Online]. Available: http://homepages.engineering.auckland.ac.nz/~pkel015/Solid MechanicsBooks/index.html.
L. Dunn, “Introduction to Viscoelasticity in Polymers and its Impact on Rolling Resistance in Pneumatic Tyres,” International Journal of Squiggly and Wobbly Materials, vol. 23, no.1, pp.1-8, Feb. 2019.
M. Razaei and K. Hasanpour, “Mechanical Model of PMMA in Thermoforming Process Simulation,” in Proc. 14th Int. Conf. Iranian Aerospace Society, Tehran, Iran, Mar. 3-5, 2015, pp.10-15.
S. Berezvai and А. Kossa, “Characterization of a Thermoplastic Foam Material with the Two-layer Viscoplastic Model,” Materials Today: Proceedings, vol. 4, no.5, pp.5749-5754, Jun. 2017.
A. Abdel-Wahab, S. Ataya, and V. V. Silberschmidt, “Temperature-dependent Mechanical Behaviour of PMMA: Experimental Analysis and Modelling,” Polymer Testing, vol. 58, no. 8, pp. 86-95, Apr. 2017.
G. Pierre, C. Luc, and R. Gilles, “Thermoforming of a PMMA Transparency Near Glass Transition Temperature,” Polymer Engineering & Science, vol. 50, no. 10, pp. 2004-2012, Sep. 2010.
E. Mohammadreza and F. Ali, “Tensile Behavior of Thermoplastic Composites Including Temperature, Moisture, and Hygrothermal Effects,” Polymer Testing, vol. 51, no. 8, pp. 151-164, May. 2016.
Z. Z. Gao, W. Liu, Z. Q. Liu, and Z. F. Yue, “Experiment and Simulation Study on the Creep Behavior of PMMA at Different Temperatures,” Polymer-Plastics Technology and Engineering, vol. 49, no. 14, pp. 1478-1482, Dec. 2010.
L. E. Edwards, J. G. Tyler, R. Ihab, and T. R. John, “Optimum Process Parameters for Springback Reduction of Single Point Incrementally Formed Polycarbonate,” Procedia Manufacturing, vol. 10, no. 2, pp. 329-338, Jun. 2017.
U. W. Gedde, “Polymer physics,” Springer Science & Business Media, Stockholm, Sweden, 1995.
I. R. Kuznetsov and D. S. Stewart, “Modeling the Thermal Expansion Boundary Layer During the Combustion of Energetic Materials,” Combustion and flame, vol. 126, no. 4, pp. 1747-1763, Sep. 2001.
S. H. Goods, "Thermal Expansion and Hydration Behavior of PMMA Moulding Materials for LIGA Applications," Sandia National Lab, Albuquerque, NM, SNL-CA, Livermore, CA, 2003.
W. D. Drotning and E. P. Roth, "Effects of Moisture on the Thermal Expansion of Poly(methylmethacrylate)," Journal of materials science, vol. 1, no. 24, pp. 3137-3140, Dec. 1989.
G. Brabie, R. Lupu, A. D. Rizea, C. CĂRĂUȘU, A. Chicea, and C. Maier, “Review of Recent Stretch Forming Development,” Proceedings in Manufacturing Systems, vol. 13, no. 8, pp. 147-152, Mar. 2018.
Y. Cheng, J. Xing, and B. Zhang, “Research on Stretch Forming Process of the Discrete Clamp for Complex Curved Parts,” Mechanics, vol. 28, no. 1, pp. 5-11, Feb. 2022.
L. Sun, Z. Cai, and X. Li, “Research on Contact State and its Effect on Forming Precision in Uniform-Contact Stretch Forming Based on Loading at Multi-Position,” Metals, vol. 9, no. 7, pp. 719-733, Jun. 2019.
O. J. Boelens, K. J. Badcock, S. Görtz, S. Morton, W. Fritz, S. L. Karman, T. Michal, and J. E. Lamar, “F-16XL Geometry and Computational Grids Used in Cranked-Arrow Wing Aerodynamics Project International,” Journal of Aircraft, vol. 46, no. 2, pp. 369-376, Mar. 2009.
W. Grether, “Optical Factors in Aircraft Windshield Design as Related to Pilot Visual Performance,” Aerospace Medical Research Laboratory, Dayton, Ohio, July. 1973.
黃信晏,《鋁合金飛機蒙皮拉伸成形之研究》,國立台灣大學機械工程學系碩士論文,2021。
陳家揚,《鋁合金飛機蒙皮拉伸成形缺陷分析與製程優化設計》,國立台灣大學機械工程學系碩士論文,2022。
J. H. Lawrence, “Guidelines for the Design of Aircraft Windshield/Canopy Systems,” Douglas Aircraft Company, Lakewood Village, Long Beach, Feb. 1980.
J. M. Cariou, J. Dugas, L. Martin, and P. Michel, “Refractive-index Variations with Temperature of PMMA and Polycarbonate,” Applied optics, vol. 23, no. 1, pp. 334-336, Feb. 1986.
L. Su, F. Wang, P. He, O. Dambon, F. Klocke, and A. Y. Yi, “An Integrated Solution for Mold Shape Modification in Precision Glass Molding to Compensate Refractive Index Change and Geometric Deviation,” Optics and Lasers, vol. 53, no.9, pp. 98-103, Feb. 2014.
E. G. Coker and L. N. G. Filon, " Treatise on Photoelasticity," Cambridge Press, Cambridge, England, 1932.
F. Katsamanis, D. Raftopoulos, and P. S. Theocaris, “Static and Dynamic Stress Intensity Factors by the Method of Transmitted Caustics,” Polymer Testing, vol. 99, no. 2, pp. 105-109, Apr. 1977.
O. D. Gonzales, A. Nicassio, and V. Eliasson, “Evaluation of the Effect of Water Content on the Stress Optical Coefficient in PMMA,” Polymer Testing, vol. 50, no. 2, pp. 119-124, Apr. 2016.
C. Y. Robert, A. N. Mark, and S. Miles, “A Comparison of Three Methods for Measuring Distortion in Optical Windows,” NASA, Brevard, Florida, April. 2015.
M. Dixon, R. Glaubius, P. Freeman, R. Pless, and M.P. Gleason, “Measuring Optical Distortion in Aircraft Transparencies: A Fully Automated System for Quantitative Evaluation,” Machine Vision and Applications, vol. 86, no. 2, pp. 3571-3582, Feb. 2016.
J. Peng, W. Li, J. Han, M. Wan, and B. Meng, “Kinetic Locus Design for Longitudinal Stretch Forming of Aircraft Skin Components,” Machine Vision and Applications, vol. 22, no. 5, pp. 791-804, Feb. 2010.
A. Kacem, M. Mense, Y. Pizzo, G. Boyer, S. Suard, P. Boulet, and B. Porterie, “A Fully Coupled Fluid/Solid Model for Open Air Combustion of Horizontally-Oriented PMMA Samples,” Combustion and Flame, vol. 170, no. 1, pp. 135-147, Dec. 2016.
J. Ma and T. Welo, “Analytical Springback Assessment in Flexible Stretch Bending of Complex Shapes,” International Journal of Machine Tools and Manufacture, vol. 160, no. 2, pp. 1-19, Nov. 2021.
X. Chen, P. Liu, and M.Li, “Numerical Simulation of Springback in Stretch Forming with Two Different Grippers,” Advanced Materials, vol. 602, no. 3, pp. 1860-1863, Dec. 2012.
S. K. Panthi, N. Ramakrishnan, M. Ahmed, S. Singh, and M. D. Goel, “Finite Element Analysis of Sheet Metal Bending Process to Predict the Springback,” Materials & Design, vol. 31, no. 2, pp. 657-662, Feb. 2010.
D. E. Hardt, W. A. Norfleet, V. M. Valentin, and A. Parris, “In Process Control of Strain in a Stretch Forming Process” J. Eng. Mater. Technol, vol. 123, no. 4, pp. 496-503, Aug. 2000.
Y. Wang, M. Z. Li, H. Liu, and J. Xing, “Finite Element Simulation of Multi-Gripper Flexible Stretch Forming,” Procedia Engineering, vol. 81, no.10, pp.2445-2450, Oct. 2014.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95564-
dc.description.abstract飛機透明擋風器材係採用明膠玻璃成形,隨著透明擋風器材形狀日益複雜和多變,且越來越多不等曲率透明擋風器材之生產需求,傳統以人工生產之方式逐漸不符合時間與金錢成本,且難以控制成品品質,為了建立相關領域之自動化製程與優化成品品質,本論文採用有限元素模擬做為研究載具,透過建立CAE模型,並分析材料性質、製程參數對不等曲率透明擋風器材產品之影響性,以供相關製程參考應用。
在材料性質方面,本論文透過文獻蒐集、實驗與模擬比較對明膠玻璃之材料特性進行全面的探討,並選擇以彈-塑-黏耦合材料模型做為後續分析之材料模型,因為其考慮材料之彈塑性性質,可以在產品脫模後維持其成形形狀,符合本論文聚焦於脫模後之各項指標表現;此外,也考慮材料之黏性性質,因成形方式為溫間拉伸成形,成形溫度接近玻璃轉化溫度,而文獻也證實明膠材料在高溫的條件下有不可忽視之潛變性質,因此本論文以彈-塑-黏耦合材料模型全面性的考慮材料於高溫下之性質。
於成品品質方面,本論文透過文獻收集歸納出透明擋風器材產品常見的缺陷,包含貼模度不足、回彈缺陷、光線偏折、光線扭曲與霧度等,並利用基本理論推導分析缺陷之成因。其中回彈缺陷主要由產品之內外表面主應力差所造成,光線偏折、扭曲則是產品之折光率分布不均與厚度分布不均所造成,霧度則是表面刮痕或材料內部缺陷所造成。此外還建立缺陷與CAE模擬後處理指標之對應關係,其中貼模度不足與回彈缺陷主要對應至CAD軟體量測成品之曲率分布與回彈量,折光率則與密度分布和殘留應力有關並分別對應至CAE軟體之相關的後處理資訊,厚度分布則也透過CAD軟體進行量測。
於製程參數方面,本論文建立利用電動缸帶動夾爪拉伸板材之一道次成形方式以生產足夠貼模之成品,並針對夾爪之拉伸軌跡進行設計與探討,也同時考慮成形階段後冷卻對於產品品質之影響。而根據實際生產狀況,成品於脫模後有回彈之現象,因此本論文利用機構設備增加板材拉伸量以有效降低各截面之回彈量,最後還探討不同下料尺寸對成品品質之影響,藉由提高材料之使用效率以降低生產成本。
本論文透過CAE模型建立不等曲率透明擋風器材造型之成形方法,也探討透明擋風器材成品常見之缺陷與成因,並利用預拉伸板材之方式降低回彈量,可提供未來相關製程之分析或優化做為參考。
zh_TW
dc.description.abstractThe airplane windshields are made with plexiglass. As the shapes of airplane windshields become more and more complex, and with the growing demand for the production of uneven curvature windshields, traditional manual production methods are gradually becoming inefficient, and difficult to meet the demand for products. To establish automated processes and optimize product quality, this thesis uses finite element simulation and developing a CAE model as a research tool to analyze the impact of material properties and process parameters on the forming of uneven curvature windshields.
In terms of material properties, this thesis conducts a comprehensive study on the material characteristics of plexiglass through literature review, experiment, and simulation comparison. The elastic-plastic-visco coupled material model is chosen for subsequent analysis because it considers the elastic-plastic properties of the material, allowing the windshield to maintain its shape after demolding, which aligns with the focus of this thesis on post-demolding qualities. Additionally, it considers the viscous properties of the material since the forming method is warm stretching, and the forming temperature is close to the glass transition temperature. Literature also confirms that plexiglass exhibits non-negligible creep properties under high-temperature conditions. Therefore, this thesis comprehensively considers the material properties at high temperatures using the elastic-plastic-visco coupled material model.
As to product quality, this thesis summarizes common defects in windshield products through literature review, including insufficient mold adherence, springback, deflection, distortion, and haze. Basic theories are used to derive and analyze the causes of these defects. Springback defects are mainly caused by the principal stress difference between the inner and outer surfaces of the product. Deflection and distortion are caused by uneven refractive index and thickness distribution of the product, while haze is caused by surface scratches or internal material defects. Furthermore, this thesis establishes post-processing indicators corresponding to the defects and CAE simulation results. Insufficient mold adherence and springback mainly correspond to curvature distribution and springback measurements in CAD software, while the refractive index is related to density and residual stress, corresponding to CAE software post-processing information, and thickness distribution is also measured by CAD software.
With respect to process parameters, this thesis establishes a single-pass process using an electric cylinder to drive a gripping jaw which stretches the sheet to produce products that meet the target curvature. The stretching trajectory of the gripping jaw is also designed and discussed, and the impact of cooling on product quality after the forming stage is considered. According to practical production conditions, the product exhibits springback after demolding. Therefore, this thesis effectively reduces the springback by increasing the sheet stretching amount. Finally, the impact of different blank sizes on product quality is discussed to improve material utilization efficiency and reduce production costs.
This thesis establishes a forming method for windshields with uneven curvatures through CAE modeling, investigates common defects and their causes in windshield products, and reduces springback by pre-stretching the sheet. This provides a reference for future analysis and optimization of related processes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:31:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-11T16:31:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iv
目 次 vii
圖 次 x
表 次 xvii
第一章 緒論 1
1.1 前言 1
1.2 研究背景與目的 5
1.3 文獻回顧 7
1.4 研究方法與步驟 13
1.5 論文總覽 14
第二章 材料模型與材料性質探討 16
2.1 材料特性介紹 16
2.2 材料模型介紹 20
2.2.1 彈-塑-黏性材料模型介紹 21
2.2.2 超彈性+黏彈性材料模型介紹 25
2.3 材料模型模擬與比較 27
2.4 本章小結 30
第三章 明膠玻璃溫間拉伸成形模型優化 31
3.1 明膠玻璃熱膨脹係數實驗 31
3.1.1 實驗儀器與步驟 31
3.1.2 實驗結果 36
3.2 CAE模擬設定與模型優化 38
3.2.1 透明擋風器材成品目標尺寸 39
3.2.2 模具幾何尺寸與造型 40
3.2.3 模型幾何優化 43
3.2.4 模型邊界條件設定 44
3.2.5 接觸條件設定 47
3.3 模型收斂性分析 48
3.3.1 板材網格尺寸之收斂性分析 48
3.3.2 板材厚度方向網格層數之收斂性分析 49
3.3.3 板材局部細化之收斂性分析 50
3.3.4 模具網格尺寸之收斂性分析 52
3.4 本章小結 54
第四章 明膠透明擋風器材之品質指標探討與缺陷分析 55
4.1 透明擋風器材成品檢測指標介紹 56
4.2 缺陷種類及成因分析 58
4.2.1 尺寸相關之缺陷 58
4.2.2 光學性質相關之缺陷 63
4.3 透明擋風器材產品指標之檢測方法 74
4.3.1 偏折與扭曲之檢測方法 74
4.3.2 霧度之檢測方法 75
4.4 本章小結 78
第五章 明膠玻璃溫間成形方法探討與製程參數分析 79
5.1 板材下料尺寸設計 79
5.1.1 長方形板材下料尺寸設計 80
5.1.2 梯形板材下料尺寸設計 83
5.2 成形作動方式分析 85
5.2.1 成形作動方式介紹 85
5.2.2 模具頂升之成形方法 85
5.2.3 夾爪拉伸之成形方法 88
5.3 冷卻步驟對成品品質之影響探討 99
5.4 製程參數對成品品質之影響分析 101
5.4.1 影響回彈之因子介紹 101
5.4.2 預拉伸量對成品品質之影響分析 102
5.4.3 製程溫度對成品品質之影響分析 108
5.5 回彈量對成品品質之影響分析 108
5.6 梯形板材對不等曲率造型之影響分析 112
5.7 本章小結 116
第六章 結論與未來展望 118
6.1 結果與討論 118
6.2 未來展望 120
參考文獻 121
-
dc.language.isozh_TW-
dc.subject明膠玻璃zh_TW
dc.subject回彈缺陷改善zh_TW
dc.subject光學性質缺陷分析zh_TW
dc.subject不等曲率透明擋風器材zh_TW
dc.subject有限元素法zh_TW
dc.subject彈-塑-黏耦合材料模型zh_TW
dc.subjectSpringback Improvementen
dc.subjectPlexiglassen
dc.subjectUneven Curvature Windshieden
dc.subjectFinite Element Methoden
dc.subjectElastic-Plastic-Visco Coupled Material Modelen
dc.subjectOptical Defect Analysisen
dc.title明膠玻璃慢速延展成形之模擬分析zh_TW
dc.titleSimulation Analysis on Slow Stretch Forming of Plexiglassen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃永茂;洪景華;林恆勝;楊侑倫zh_TW
dc.contributor.oralexamcommitteeYong-Mao Hwang;Ching-Hua Hung;Heng-Sheng Lin;You-Lun Yangen
dc.subject.keyword明膠玻璃,不等曲率透明擋風器材,有限元素法,彈-塑-黏耦合材料模型,光學性質缺陷分析,回彈缺陷改善,zh_TW
dc.subject.keywordPlexiglass,Uneven Curvature Windshied,Finite Element Method,Elastic-Plastic-Visco Coupled Material Model,Optical Defect Analysis,Springback Improvement,en
dc.relation.page126-
dc.identifier.doi10.6342/NTU202403394-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2029-08-05-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-05
7.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved