Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95561
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳復國zh_TW
dc.contributor.advisorFuh-Kuo Chenen
dc.contributor.author張 翔zh_TW
dc.contributor.authorHsiang Changen
dc.date.accessioned2024-09-11T16:31:00Z-
dc.date.available2024-09-12-
dc.date.copyright2024-09-11-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citation[1]K. Laue and H. Stenger, " Extrusion: Processes, Machinery, Tooling,” American Society for Metals, Metals Park, ch.3, pp.132, 1981.
[2]S. Kalpakjian and S.R. Schmid, “Manufacturing Engineering and Technology,” 8th ed in SI Units, Pearson Education Limited, ch.15, pp.418-424, 2023.
[3]A. Fadaei, F. Farahafshan, and S. Sepahi-Boroujeni, “Spiral equal channel angular extrusion (Sp-ECAE) as a modified ECAE process,” Materials & Design, vol.113, pp.361-368, Jan. 2017.
[4]DEFORM v12.1 System Documentation
[5]R. K. Sahu, R. Das, B.C. Routara, B.B. Nayak, and S. Sahu, “Multi-hole extrusion process: A review. ” Materials Today: Proceedings, vol.62, no.1, pp.3522-3527. Jan 2022.
[6]J. Lof and Y. Blokhuis, “ FEM simulations of the extrusion of complex thin-walled aluminium sections,” Journal of Materials Processing Technology, vol. 122 , no. 2-3, pp. 344-354, Jan. 2002.
[7]G. Fang , J. Zhou, and J. Duszczyk, “FEM simulation of aluminium extrusion through two-hole multi-step pocket dies, ” Journal of Materials Processing Technology, vol.209, no.4, pp.1891-1900, Feb. 2009.
[8]Z. Feng, J. Song, X. Ma, J. Ma, and J. Zhang, “Three-dimensioned extrusion simulation and analysis of bending aluminum-alloy tube based on Deform software, ” Advanced Materials Research, vol.129-131, pp.908-915, Aug. 2010.
[9]H.H. Jo, S. K. Lee, C.S. Jung, & B.M. Kim,“A non-steady state FE analysis of Al tubes hot extrusion by a porthole die,” Journal of Materials Processing Technology, vol. 173, no. 2, pp. 223-231, Jan.2006.
[10]P.K. Saha, Aluminum extrusion technology, Asm International, 2000.
[11]樊剛,《熱擠壓模具設計與製造基礎》,重慶:重慶大學出版社, 2001.
[12]J. Yu, G. Zhao, X. Chen, and M. Liang, “A comparative study on hot deformation and solid-state bonding behavior of aluminum alloys for the integration of solid-state joining and forming processes, ” The International Journal of Advanced Manufacturing Technology, vol.104, pp.3849-3866. Jul. 2019.
[13]H.R. Rezaei Ashtiani, M.H. Parsa, and H. Bisadi, “Constitutive equations for elevated temperature flow behavior of commercial purity aluminum, ” Materials Science and Engineering: A, vol.545, No.30 pp.61-67. May. 2012.
[14]M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and A. Abolhasani, “Constitutive base analysis of a 7075 aluminum alloy during hot compression testing, ” Materials & Design, vol.32, No.10, pp.4955-4960. Dec. 2011.
[15]C.M. Sellars and W.J. McTegart, “On the mechanism of hot deformation,” Acta Metallurgica, vol.14, No.9, pp.1136-1138, Sep. 1966.
[16]L. Donati, J.S. Dzwonczyk, J. Zhou, and L. Tomesani1, “Microstructure Prediction of Hot-Deformed Aluminium Alloys,” Key Engineering Materials, vol.367, pp.107-116. Feb. 2008.
[17]L. Donati, L. Tomesani, M. Schikorra, N.B. Khalifa, and A.E. Tekkaya, “Friction model selection in FEM simulations of aluminium extrusion”, International Journal of Surface Science and Engineering, vol.4, no.1 , pp.27-41, Dec. 2009.
[18]A. Gamberoni, L. Donati, B. Reggiani, M. Haase, L. Tomesani, and A.E. Tekkaya, “Industrial Benchmark 2015: Process Monitoring and Analysis of Hollow EN AW-6063 Extruded Profile,” Materials Today: Proceedings, vol.2, no.10, pp.4714-4725, 2015.
[19]C. Bandini, B. Reggiani, L. Donati, and L. Tomesani, “Code Validation and Development of User Routines for Microstructural Prediction with Qform,” Materials Today: Proceedings, vol.2, no.10 , pp.4904-4914, 2015.
[20]魯品毅,《多孔穴鋁合金擠製成形模具設計之研究》,國立台灣大學工學院機械工程學系碩士論文, 2023。
[21]B. Reggiani, A. Segatori, L. Donati, and L. Tomesani, “ Prediction of charge welds in hollow profiles extrusion by FEM simulations and experimental validation,” The International Journal of Advanced Manufacturing Technology, vol.69, pp.855–872, July 2013.
[22]S. Lou, A. Wang, S. Lu, G. Guo, C. Qu, and C. Su, “ Tensile property and micro-texture evolution of the charge weld in a billet-to-billet extrusion of AA6061 aluminum profile,” The International Journal of Advanced Manufacturing Technology, vol.103, pp.1309–1323, April 2019.
[23]S. Lou, Y. Wang, C. Liu, S. Lu, S. Liu and C. Su, “ Analysis and Prediction of the Billet Butt and Transverse Weld in the Continuous Extrusion Process of a Hollow Aluminum Profile,” Journal of Materials Engineering and Performance, vol.26, pp.4121–4130, July 2017.
[24]G. Oberhausen and D.R. Cooper, “Modeling the strength of aluminum extrusion transverse welds using the film theory of solid-state welding,” Journal of Materials Processing Technology, vol.324, March 2024.
[25]J. Yu, G. Zhao, W. Cui, L. Chen, and X. Chen., “Evaluating the welding quality of longitudinal welds in a hollow profile manufactured by porthole die extrusion: Experiments and simulation,” Journal of Manufacturing Processes, vol.38, pp.502–515, February 2019.
[26]Y. Wang, G. Zhao, L. Sun, X. Wang, Z. Lv, and Y. Sun, “ Effects of billet heating temperature and extrusion speed on the microstructures and mechanical properties of the longitudinal welds in aluminum alloy profiles with complex cross-section,” Vacuum, vol.207, pp.502–515, January 2023.
[27]T. Short, “The Identification and Prevention of Defects on Anodized Aluminium Parts,” Metal Finishing Information Services Ltd, UK, 2003.
[28]盛鉑灃,《以有限元素分析暨田口式品質方法模擬高強度鋁合金銲合壓力與材料特性之研究》,國立高雄應用科技大學機械與精密工程研究所碩士論文,2011。
[29]C.Q. Deng, “Causes of Streak Defect on 6063 Aluminium Alloy Profile and Measures to Prevent It,” Light Alloy Fabrication Technology, vol.30, pp.21-22, 2002.
[30]H. Zhu, X. Zhang, M.J. Couper, and A.K. Dahle , “The formation of streak defects on anodized Aluminium Extrusions,” JOM, vol.62, no.5, pp.46-51, 2010.
[31]J. Walker, “Streaking on Aluminium alloy extrusions,” Master thesis, Department of Mechanical Engineering, Auckland University of Technology, Pennsylvania, New Zealand, 2012.
[32]H. Zhu, X. Zhang, M.J. Couper, and A.K. Dahle, “Effect of Initial Microstructure on Surface Appearance of Anodized Aluminum Extrusions,” Metallurgical and Materials Transactions A, vol.40, pp.3264-3275, Sep. 2010.
[33]J. Yu, G. Zhao, C. Zhang, and L. Chen, “Dynamic evolution of grain structure and micro-texture along a welding path of aluminum alloy profiles extruded by porthole dies,” Materials Science & Engineering A, vol.682, pp.679-690, Jan. 2017.
[34]G. Chen, L. Chen, G. Zhao, and C. Zhang, “Microstructure evolution during solution treatment of extruded Al-Zn-Mg profile containing a longitudinal weld seam,” Journal of Alloys and Compounds, vol.729, pp.210-621, Jan. 2017.
[35]A. Güzel, A. Jäger, F. Parvizian, H.-G. Lambers, A.E. Tekkaya, B. Svendsen, and H.J. Maier, “A new method for determining dynamic grain structure evolution during hot aluminum extrusion,” Journal of Materials Processing Technology, vol.212, no.1, pp.323-330, Jan. 2012.
[36]G.V. Voort, B. Suárez-Peña, and J. Asensio-Lozano, “Microstructure Investigations of Streak Formation in 6063 Aluminum Extrusions by Optical Metallographic Techniques,” Microscopy and Microanalysis, vol.19, no.2, pp.276-684, Apr. 2013.
[37]N. Park, Y. Song, S. Jung, J. Song, J. Lee, H. Lee, H. Sung, and G. Bae, “Numerical and Experimental Investigation on the Surface Defect Generation during the Hot Extrusion of Al6063 Alloy,” Materials, vol.14, no.22, pp.67-68, Nov. 2021.
[38]J. Asensio-Lozano, B. Suárez-Peña, and G.F.V. Voort, “Effect of Processing Steps on the Mechanical Properties and Surface Appearance of 6063 Aluminium Extruded Products,” Materials, vol.7, no.6, pp.4224-4242, May. 2014.
[39]Y. Sun, D.R. Johnson, K.P. Trumble, P. Priya, and M.J.M. Krane, “Effect of Mg2Si Phase on Extrusion of AA6005 Aluminum Alloy,” Light Metals 2014, pp.429-433, 2014.
[40]劉靜安,《鋁型材擠壓模具設計、 製造、使用及維修》,冶金工業出版社,1999.
[41]趙雲路、唐志玉,《鋁塑型材擠壓成形技術》,機械工業出版社, 2003.
[42]“Joseph Bramah,” Wikipedia. Accessed: Jul. 2024. [Online.] Available:https://en.wikipedia.org/wiki/Joseph_Bramah
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95561-
dc.description.abstract隨著全球暖化效應的加劇,輕量化技術成為減少碳排放的重要途徑之一。鋁合金因其重量輕、強度高、延展性好、耐腐蝕性優異、導熱性和導電性良好及易於加工的特性,廣泛應用於多個領域。然而,鋁合金材料在生產擠型材的過程中經常發生條紋缺陷,這是目前業界難以控制的問題之一。
本論文旨在建立複雜中空截面鋁擠型模具的擠製模擬模型,透過電腦模擬分析擠製過程中型材的受力情況與溫度分布,並結合材料分析性質實驗,探討型材表面出現條紋缺陷的可能因素。本研究使用DEFORM-3D 有限元素分析軟體對鋁合金擠製成形製程進行分析,觀察擠製過程中擠型如何產生表面條紋缺陷,並依據材料實驗發現的現象,找出擠製成形中的可能導致條紋發生之關鍵因素。
在模擬模型建立方面,經過測試發現,採用雙曲線正弦函數方程式來建立材料卡,並選擇絕對網格做為生成網格的設定,更適用於擠製成形的模擬分析,能使模擬時間更高效且結果更準確。
分析結果顯示,模擬結果與實際成形過程中的擠壓負荷、型材料頭的成形趨勢,以及焊合線位置幾乎相符,證明 DEFORM-3D 在預測型材變形方面具有一定的可信度且分析數值具有一定的準確性。
在材料分析實驗方面,透過電子背向散射繞射技術(EBSD)分析發現,沒有條紋缺陷位置的低角度晶界 (2°~10°) 比例較高且晶粒方位具有極強的方向性;經由粗糙度實驗測試發現,在條紋缺陷處使用較高目數砂紙再次研磨微量深度可以消除條紋缺陷;而在硬度檢測顯示,正常區域的硬度明顯高於有條紋缺陷的區域。
在模型分析方面,在型材肉厚變化區存在較高溫現象,推論條紋可能與 Mg2Si 析出相顆粒尺寸較大有關,而肋骨區的條紋可能與表面受力情況有關。本論文透過製程參數調整與模具設計修改,發現型材在擠製過程中之等效應力與溫度呈現規律性的變化,當盛錠筒溫度較低時,型材於出口端溫度分布較為平均,能使肉厚變化區條紋較高溫的現象獲得改善。
本研究有助於改善產品外觀,提高生產效率,降低成本,同時提升產品品質,研究成果兼具學術研究與產業應用的價值。
zh_TW
dc.description.abstractAs the effects of global warming intensify, lightweight has become an important approach to reducing carbon emissions. Aluminum alloys, due to their lightweight, high strength, good ductility, excellent corrosion resistance, good thermal and electrical conductivity, and ease of processing, are widely used in various fields. However, aluminum alloy materials often encounter streak defects during the production of extruded profiles, which is currently one of the most uncontrollable issues in the industry.
This thesis aims to establish a finite element simulation model for the extrusion process with complex-shaped hollow cross-section aluminum extrusion dies. Through simulation, the study analyzes the stress conditions and temperature distribution during the extrusion process and, combined with material analysis experiments, investigates the possible factors causing surface streak defects on the profiles. This research employs DEFORM-3D finite element analysis software to analyze the aluminum alloy extrusion process, observing how streak defects are formed on the surface during extrusion, and identifying key factors that may lead to the occurrence of streaks based on the phenomena observed in material properties experiments.
In the finite element model development, testing has shown that using a hyperbolic sine function equation to create material lists and selecting an absolute mesh for mesh generation is more suitable for extrusion simulation. This approach makes the simulation results more efficient and accurate.
The analysis results show that the simulation results closely match the actual forming process in terms of extrusion load, the forming trend of the profile head, and the location of weld lines. This proves that DEFORM-3D has a certain degree of reliability in predicting profile deformation and the numerical accuracy of its analyses.
In terms of material properties experiments, Electron Back Scatter Diffraction (EBSD) analysis reveals that the proportion of small-angle grain boundaries (2°~10°) is higher and the grain orientation is strongly directional in areas without streak defects. Roughness tests indicate that re-grinding with higher grit sandpaper at the streak defect locations can eliminate the defects. Hardness tests show that the hardness of normal areas is significantly higher than that of areas with streak defects.
As to model analysis, it is observed that the high-temperature phenomenon in the thickness variation zone of the profile might be related to the larger particle size of the Mg2Si precipitates, while the streaks in the rib area might be related to the surface stress conditions. This thesis, through process parameter adjustments and die design modifications, found that the equivalent stress and temperature of the profile show regular changes during the extrusion process. When the container temperature is lower, the temperature distribution at the profile exit becomes more uniform, which helps to improve streaks caused by high-temperature in the thickness variation zone.
This research helps to improve product appearance, increase production efficiency, reduce costs, and enhance product quality, providing both academic research contribution and industrial application value.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:30:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-11T16:31:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌 謝 i
摘 要 iii
Abstract v
目 次 vii
圖 次 x
表 次 xvi
第一章 緒論 1
1.1 研究背景與目的 1
1.2 研究方法與步驟 5
1.3 文獻回顧 6
1.4 論文總覽 11
第二章 鋁擠型擠製模型建立 13
2.1 鋁擠型模具類型介紹 15
2.1.1 依擠型形狀截面分類 15
2.1.2 依擠型模具結構分類 16
2.2 鋁擠型擠製方式 20
2.2.1 依成形溫度分類 20
2.2.2 依成形方式分類 20
2.3 鋁擠錠材料 24
2.3.1 鋁合金材料編號 24
2.3.2 6063材料特性與成分 26
2.4 鋁擠製有限元素模型建立 27
2.4.1 有限元素分析軟體DEFORM-3D簡介 27
2.4.2 3D擠製模型建立 29
2.4.3 DEFORM前處理模組設定 33
2.4.4 胚料無法擠出型材的解決辦法 44
第三章 鋁擠型擠製模擬實務驗證 47
3.1 擠壓負荷驗證 47
3.2 型材變形特徵驗證 48
3.3 焊合線位置驗證 49
3.3.1 焊合線實驗文獻收集 50
3.3.2 焊合線試片製備 52
3.3.3 化學試劑配置 55
3.3.4 化學浸蝕測試 56
3.3.5 浸蝕結果與模擬分析比對 58
第四章 型材微觀組織觀察與機械性質檢測 60
4.1 型材條紋位置 60
4.2 金相試驗 62
4.2.1 光學顯微鏡金相實驗流程 62
4.2.2 光學顯微鏡金相實驗初步判別 65
4.2.3 EBSD實驗製備 70
4.2.4 EBSD分析介紹 72
4.2.5 EBSD分析結果 73
4.3 陽極氧化膜厚度檢測 82
4.4 表面粗糙度測試 85
4.5 硬度檢測 88
第五章 擠製模擬中形成條紋缺陷的因素分析 92
5.1 模擬中條紋處現象 92
5.2 模具設計與製程方法修改的影響 94
5.3 製程數值分析 98
5.3.1 擠壓桿速度分析 98
5.3.2 胚料初始溫度分析 100
5.3.3 盛錠筒溫度分析 101
5.3.4 製程數值分析分析小結 102
第六章 結論與未來展望 104
參考文獻 107
附錄 113
-
dc.language.isozh_TW-
dc.subject表面條紋缺陷zh_TW
dc.subject電子背向散射繞射技術分析zh_TW
dc.subject材料性質分析實驗zh_TW
dc.subject有限元素分析zh_TW
dc.subject單孔穴複雜中空截面擠製模具zh_TW
dc.subject鋁合金擠製成形zh_TW
dc.subjectaluminum alloy extrusion formingen
dc.subjectsurface streaks defecten
dc.subjectsingle-cavity complex-shaped hollow cross-section extrusion dieen
dc.subjectfinite element analysisen
dc.subjectmaterial property analysis experimenten
dc.subjectEBSD analysisen
dc.title複雜中空截面鋁擠型成形模擬分析與表面條紋缺陷研究zh_TW
dc.titleComplex-Shaped Hollow Cross-Section Aluminum Extrusion Process Simulation Analysis and Surface Streaks Defect Studyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee顏鴻威;洪景華;黃永茂;林恆勝zh_TW
dc.contributor.oralexamcommitteeHung-Wei Yen;Ching-Hua Hung;Yong-Mao Hwang;Heng-Sheng Linen
dc.subject.keyword鋁合金擠製成形,表面條紋缺陷,單孔穴複雜中空截面擠製模具,有限元素分析,材料性質分析實驗,電子背向散射繞射技術分析,zh_TW
dc.subject.keywordaluminum alloy extrusion forming,surface streaks defect,single-cavity complex-shaped hollow cross-section extrusion die,finite element analysis,material property analysis experiment,EBSD analysis,en
dc.relation.page113-
dc.identifier.doi10.6342/NTU202403387-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2029-08-12-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
10.29 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved