Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95548
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王大銘zh_TW
dc.contributor.advisorDa-Ming Wangen
dc.contributor.author曹定榮zh_TW
dc.contributor.authorDing-Rong Caoen
dc.date.accessioned2024-09-11T16:26:50Z-
dc.date.available2024-09-12-
dc.date.copyright2024-09-11-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation1. S. P. Nunes, K. V. Peinemann, Membrane technology in the chemical industry, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2006).
2. M. Mulder, Basic principles of membrane technology, Kluwer Academic Publishers, Dordrecht, The Netherlands (1996).
3. J. A. Nollet, Investigations on the causes for the ebullition of liquids, J. Membr. Sci., 100 (1995) 1-3.
4. K. W. Böddeker, Commentary: Tracing membrane science, J. Membr. Sci., 100 (1995) 65-68.
5. 賴君義,薄膜科技概論,五南圖書出版公司,中華民國 (2019)。
6. C. E. Reid, J. R. Kuppers, Physical characteristics of osmotic membranes of organic polymers., J. Appl. Polym. Sci., 2 (1959) 264-272.
7. S. Loeb, S. Sourirajan, Sea water demineralization by means of an osmotic membrane, Adv. Chem. Ser., 38 (1963) 117-132.
8. 陳翠仙,韓賓兵,朗寧•威,滲透蒸發和蒸氣滲透,化學工業出版,北京,中國 (2004)。
9. R. W. Baker, Membrane technology and applications, John Wiley & Sons Ltd., Chichester, England (2004).
10. 顧聲茹,膜電荷對奈米過濾效能影響之探討,中原大學化學工程學系碩士學位論文 (2007)。
11. X. Wu, T. Chen, G. Dong, M. Tian, J. Wang. R. Zhang, G. Zhang, J. Zhu, Y. Zhang, A critical review on polyamide and polyesteramide nanofiltration membranes: Emerging monomeric structures and interfacial polymerization strategies, Desalination, 577 (2024) 117397.
12. Z. Zhang, K. Fan, Y. Liu, S. Xia, A review on polyester and polyester-amide thin film composite nanofiltration membranes: Synthesis, characteristics and applications, Sci. Total Environ., 858 (2023) 15992.
13. A. W. Mohammad, Y. H. Teow, W. L. Ang, Y. T. Chung, D. L. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: Recent advances and future prospects, Desalination, 356 (2015) 226-254.
14. MarketsandMarkets, Nanofiltration membrane market by type (polymeric, ceramic, hybird), module (spiral wound, tubular, hollow fiber, flat sheet), application (municipal, industrial), and region (North America, Europe, Apac, South America, MEA)-Globle Forecast to 2028, MarketsandMarkets Pub. Co. (2023).
15. J. E. Cadotte, K. E. Cobian, R. H. Forester, R.J. Petersen. Continued evaluation of in-situ-formed condensation polymers for reverse osmosis membranes, NTIS Report No. PB-253193, loc. Cit. (1977).
16. W. J. Koros, Y. H. Ma, T. Shimidzu, Terminology for membranes and membrane processes (IUPAC Recommendations 1996), Pure Appl. Chem., 68 (1996) 1479-1489.
17. W. R. Bowen, H. Mukhtar, Characterization and prediction of separation performance of nanofiltration membranes, J. Membr. Sci., 112 (1996) 263-274.
18. W. R. Bowen, A. W. Mohammad, N. Hilal, Characterization of nanofiltration membranes for predictive purposes — use of salts, uncharged solutes and atomic force microscopy, J. Membr. Sci., 126 (1997) 91-105.
19. X.-L. Wang, T. Tsura, M. Togoh, S. Nakao, S. Kimura, Evaluation of Pore Structure and Electrical Properties of Nanofiltration Membranes, J. Chem. Eng. Jpn., 28 (1995) 186-192.
20. B. Van der Bruggen, J. Schaep, D. Wilms, C. Vandecasteele, A Comparison of Models to Describe the Maximal Retention of Organic Molecules in Nanofiltration, Sep. Sci. Technol., 35 (2000) 169-182.
21. 洪麗敏,複合奈米過濾薄膜效能精進之策略,中原大學,化學工程學系博士學位論文 (2018)。
22. R. R. Sharma, R. Agrawal, S. Chellam, Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: pore size distributions and transport parameters, J. Membr. Sci., 223 (2003) 69-87.
23. F. G. Donnan, The Theory of Membrane Equilibria., Chem. Rev., 1 (1924) 73-90.
24. J. Luo, Y. Wan, Effects of pH and salt on nanofiltration—a critical review, J. Membr. Sci., 438 (2013) 18-28.
25. 黃書賢,界面聚合聚醯胺複合膜應用於滲透蒸發分離程序之研究,中原大學化學工程學系博士學位論文 (2008)。
26. 林芳慶,薄膜結構之控制-非溶劑添加物對成膜的影響,私立中原大學化學工程研究所博士學位論文 (1997)。
27. D.-M. Wang, T.-T. Wu, F.-C. Lin, J.-Y. Hou, J.-Y. Lai, A novel method for controlling the surface morphology of polymeric membranes, J. Membr. Sci., 169 (2000) 39-51.
28. 鄭璿臣,界面聚合聚磺醯胺-二氧化矽複合膜應用於滲透蒸發分離醇類水溶液之研究,國立宜蘭大學化學工程與材料工程學系碩士論文 (2020)。
29. M. J. T. Raaijmakers, N. E. Benes, Current trends in interfacial polymerization chemistry, Prog. Polym. Sci., 63 (2016) 86-142.
30. G, Odian, Principles of polymerization. 4th ed, New York, John Wiley and Sons (2004).
31. P. W. Morgan, Condensation polymers: By interfacial and solution methods, New York, Interscience Publishers (1965).
32. W. J. Lau, A. F. Ismail, N. Misdan, M. A. Kassim, A recent progress in thin film composite membrane: A review, Desalination, 287 (2011) 190-199.
33. X. Han, Y. Wang, Z. Wang, X. Li, Y. Liu, C. Wang, F. Yang, J. Wang, Interfacial polymerization plus: A new strategy for membrane selective layer construction, J. Membr. Sci., 642 (2022) 119973.
34. M. E. Hermes, Enough for One Lifetime: Wallace Carothers, Inventor of Nylon, American Chemical Society and the Chemical Heritage Foundation, Maple Press (1996).
35. R. J. Petersen, Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci., 83 (1993) 81-150.
36. J. E. Cadotte, Reverse osmosis membrane, U.S Patent No. 4,259,183 (1981).
37. N. Bektaş, S. Öncel, H.Y. Akbulut, A. Dimoglo, Removal of boron by electrocoagulation, Environ. Chem. Lett., 2 (2004) 51-54.
38. M. Bryjak, J. Wolska, N. Kabay, Removal of boron from seawater by adsorption–membrane hybrid process: implementation and challenges, Desalination, 223 (2008) 57-62.
39. Y. Seki, S. Seyhan, M. Yurdakoc, Removal of boron from aqueous solution by adsorption on Al2O3 based materials using full factorial design, J. Hazard. Mater., 138 (2006) 60-66.
40. G. Sayiner, F. Kandemirli, A. Dimoglo, Evaluation of boron removal by electrocoagulation using iron and aluminum electrodes, Desalination, 230 (2008) 205-212.
41. U. B. Demirci, P. Miele, P. G. Yot, Boron-Based (Nano-)Materials: Fundamentals and Applications, Crystals, 6 (2016) 118.
42. S. Barth, Application of boron isotopes for tracing sources of anthropogenic contamination in groundwater, Water Research, 32 (1998) 685-690.
43. E. H. Ezechi, M. H. Isa, S. R. M. Kutty, A. Yaqub, Boron removal from produced water using electrocoagulation, Process Saf. Environ. Prot., 92 (2014) 509-514.
44. 賴振煌,由廢偏光片中去除碘及硼成分之研究,國立臺北科技大學資源工程研究所碩士論文 (2016)。
45. 陳榮逸,高濃度含硼廢水處理製程改善之研究~以南部科學園區某偏光板廠為例,國立臺南大學綠色能源科技學系碩士論文 (2015)。
46. 李中光,王悅慈,李庭慧,林正敏,以化學法去除廢水中硼離子之研究與建議,工業污染防治,145 (2019) 31-62。
47. X. Li, Z. Wang, X. Han, J. Wang, Facile fabrication of hydroxyl-rich polyamide TFC RO membranes for enhanced boron removal performance, Desalination, 531 (2022) 115723.
48. K. L. Tu, A. R. Chivas, L. D. Nghiem, Effects of membrane fouling and scaling on boron rejection by nanofiltration and reverse osmosis membranes, Desalination, 279 (2011) 269-277.
49. B. Zeytuncu, M. E. Pasaoglu, B. Eryildiz, A. Kazak, A. Yuksekdag, S. Korkut, R. Kaya, T. Turken, M. Ceylan, I. Koyuncu, Application of different treatment systems for boron removal from industrial wastewater with extremely high boron content, J. Water Process Eng., 55 (2023) 104083.
50. 林政立,地下水中薄膜積垢物二氧化矽去除之研究,國立臺北科技大學環境規劃與管理研究所碩士論文 (2005)。
51. Y. So, Y. Lee, S. Kim, J. Lee, C. Park, Role of co-existing ions in the removal of dissolved silica by ceramic nanofiltration membrane, J. Water Process Eng., 53 (2023) 103873.
52. Y. Lee, M. Cha, Y. So, I.-H. Song, C. Park, Functionalized boron nitride ceramic nanofiltration membranes for semiconductor wastewater treatment. Sep. Purif. Technol., 300 (2022) 121945.
53. V. Mavrov, H. Chmiel, B. Heitele, F. Rögener, Desalination of surface water to industrial water with lower impact on the environment part 3: water desalination under alkaline conditions, Desalination, 123 (1999) 33-43.
54. G. B. Alexander, W. M. Heston, R. K. Iler, The Solubility of Amorphous Silica in Water, J. Phys. Chem., 58 (1954) 453-455.
55. C. Hu, S. Lo, C. Li, W. Kuan, Treating chemical mechanical polishing (CMP) wastewater by electro-coagulation-flotation process with surfactant, J. Hazard. Mater., 120 (2005) 15-20.
56. H. G. C. PE, Semiconductor Manufacturing Handbook, McGraw-Hill Education (2018).
57. 黃志彬,以薄膜分離含次微米顆粒廢水之臨界通量研究-理論與應用(Ⅲ),行政院國家科學委員會專題研究計畫 (2005)。
58. 羅金生,半導體廠化學機械研磨(CMP)廢液之資源化處理研究,國立臺灣大學環境工程研究所碩士論文 (2001)。
59. 楊叢印,結合電過濾/電透析技術處理CMP廢水並同步產製電解水之研究,國立中山大學環境工程研究所博士論文 (2003)。
60. 翁榮華,以中空纖維膜處理半導體廠化學機械研磨(CMP)廢水回收之研究-以模廠試驗為例,國立交通大學工學院永續環境科技學程碩士論文 (2013)。
61. Y. Qiu, L.-F. Ren, L. Xia, J. Shao, Y. Zhao, B. Van der Bruggen, Investigation of fluoride and silica removal from semiconductor wastewaters with a clean coagulation-ultrafiltration process, Chem. Eng. J., 438 (2022) 135562.
62. J. Lee, Y. So, S. Kim, Y. Yoon, H. Rho, C. Park, Efficient integration of electro-coagulation and ceramic membranes for the treatment of real chemical mechanical polishing (CMP) slurry wastewater from the semiconductor industry, J. Water Process Eng., 61 (2024) 105326.
63. R. C. Ropp, Encyclopedia of the Alkaline Earth Compounds, Elsevier (2013).
64. Y. Wu, J. Luo, Q. Zhang, M. Aleem, F. Fang, Z. Xue, J. Cao, Potentials and challenges of phosphorus recovery as vivianite from wastewater: a review, Chemosphere, 226 (2019) 246-258.
65. D. Sun, L. Hale, G. Kar, R. Soolanayakanahally, S. Adl, Phosphorus recovery and reuse by pyrolysis: applications for agriculture and environment, Chemosphere, 194 (2018) 682-691.
66. S. Xu, R. He, C. Dong, N. Sun, S. Zhao, H. He, H. Yu, Y.-B. Zhang, T. He, Acid stable layer-by-layer nanofiltration membranes for phosphoric acid purification, J. Membr. Sci., 644 (2022) 120090.
67. 吳舒穎,微胞輔助薄膜過濾系統應用於前驅滲透驅動液(磷酸鹽)回收之研究,國立臺北科技大學環境工程與管理研究所碩士論文 (2015)。
68. 汪鴻佑,以疏水性中空纖維模組為油水分離器之萃取-反萃取系統開發,國立臺灣大學化學工程研究所碩士論文 (2021)。
69. 吳嘉瑜,應用奈米薄膜程序處理鋁蝕刻廢液中鉬酸及磷酸之截留機制研究,國立臺北科技大學環境規劃與管理研究所碩士論文 (2014)。
70. 盛守祥,柯鑫,汪潔,四甲基氫氧化銨的危險性及應急救援措施分析,職業衛生與應急救,37 (2019) 185-187。
71. 吳政龍,林宏榮,郭浩然,蘇世斌,氫氧化四甲基銨(TMAH)中毒。中華職業醫學雜誌,14 (2007) 67-76。
72. I. E. Noor, J. Coenen, A. Martin, O. Dahl, M. Åslin, Experimental investigation and techno-economic analysis of tetramethylammonium hydroxide removal from wastewater in nanoelectronics manufacturing via membrane distillation. J. Membr. Sci., 579 (2019) 283-293.
73. Y. Wang, Z. Zhang, C. Jiang, T. Xu, Electrodialysis Process for the Recycling and Concentrating of Tetramethylammonium Hydroxide (TMAH) from Photoresist Developer Wastewater. Ind. Eng. Chem. Res., 52 (2013) 18356-18361.
74. H.-M. Chang, S.-S. Chen, S.-S. Hsiao, W.-S. Chang, I.-C. Chien, C.-C. Duong, T. X. Q. Nguyen, Water reclamation and microbial community investigation: Treatment of tetramethylammonium hydroxide wastewater through an anaerobic osmotic membrane bioreactor hybrid system. J. Hazard. Mater., 427 (2022) 128200.
75. W. A. Jury, H. Vanx, The role of science in solving the world's emerging water problems, Proc. Natl. Acad. Sci., 102 (2005) 15715-15720.
76. C. Abels, F. Carstensen, M. Wessling, Membrane processes in biorefinery applications, J. Membr. Sci., 444 (2013) 285-317.
77. X. Li, Y. Liu, J. Wang, J. Gascon, J. Li, B. Van der Bruggen, Metal-organic frameworks based membranes for liquid separation, Chem. Soc. Rev., 46 (2017) 7124-7144.
78. S. Guo, Y. Wan, X. Chen, J. Luo, Loose nanofiltration membrane custom-tailored for resource recovery, Chem. Eng. J., 409 (2021) 12736.
79. 王悅慈,鈣鹽-鋁鹽化學沉澱法去除廢水中之硼,萬能科技大學環境工程研究所碩士論文 (2018)。
80. H. Feng, C. Huang, T. Xu, Production of Tetramethyl Ammonium Hydroxide Using Bipolar Membrane Electrodialysis, Ind. Eng. Chem. Res., 47 (2008) 7552-7557.
81. J. Lv, Q. Ni, J. Dong, C. Ou, Y. Cao, J. Gan, F. Xiao, Effects of influent organic load on TMAH (tetramethylammonium hydroxide) wastewater treatment by anaerobic process, J. Environ. Chem. Eng., 11 (2023) 19315.
82. J. Lv, Y. Wang, M. Fu, C. Ou, F. Xiao, Removal of tetramethylammonium hydroxide (TMAH) from thin-film transistor liquid crystal display (TFT-LCD) industry wastewater by hydrolysis acidification-aerobic and anaerobic processes, J. Cleaner Prod., 279 (2021) 123502.
83. Z. Li, L. Ren, X. Wang, M. Chen, T. Wang, R. Dai, Z. Wang, Anaerobic hydrolysis of recalcitrant tetramethylammonium from semiconductor wastewater: Performance and mechanisms, J. Hazard. Mater., 459 (2023) 132239.
84. H.-Y. Shu, M.-C. Chang, J.-J. Liu, Cation resin fixed-bed column for the recovery of valuable THAM reagent from the wastewater, Process Saf. Environ. Prot., 104 (2016) 571-586.
85. J. Shibata, N. Murayama, S. Matsumoto, Recovery of tetra-methylammonium hydroxide from waste solution byion exchange resin, Resource Processing, 53 (2006) 199-203.
86. L. A. Richards, M. Vuachère, A. I. Schäfer, Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis, Desalination, 261 (2010) 331-337.
87. K. L. Tu, L. D. Nghiem, A. R. Chivas, Coupling effects of feed solution pH and ionic strength on the rejection of boron by NF/RO membranes, Chem. Eng. J., 168 (2011) 700-706.
88. A. O. Regis, J. Vanneste, S. Acker, G. Martínez, J. Ticona, V. García, F. D. Alejo, J. Zea, R. Krahenbuhl, G. Vanzin, J. O. Sharp, Pressure-driven membrane processes for boron and arsenic removal: pH and synergistic effects, Desalination, 522 (2022) 115441.
89. L. Han, J. Tian, C. Liu, J. Lin, J. W. Chew, Influence of pH and NaCl concentration on boron rejection during nanofiltration, Sep. Purif. Technol., 261 (2021) 118248.
90. M. Mänttäri, A. Pihlajamäki, M. Nyström, Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH, J. Membr. Sci., 280 (2006) 311-320.
91. M. Dalwani, N. E. Benes, G. Bargeman, D. Stamatialis, M. Wessling, Effect of pH on the performance of polyamide/polyacrylonitrile based thin film composite membranes, J. Membr. Sci., 372 (2011) 228-238.
92. B. Govardhan, S. Fatima, S. Kalyani, S. Sridhar, An integrated approach of membrane and resin for processing highly toxic and corrosive tetramethylammonium hydroxide alkali to ultrahigh purity, J. Environ. Chem. Eng., 9 (2021) 106125.
93. S. Nishihama, Y. Tsutsumi, K. Yoshizuka, Separation of tetramethyl ammonium hydroxide using an MFI-type zeolite-coated membrane, Sep. Purif. Technol., 120 (2013) 129-133.
94. Xi. Li, Z. Li, J. Zhu, Z. Wu, R. Dai, Z. Wang, Anaerobic biodegradation enables zero liquid discharge of two-stage nanofiltration system for microelectronic wastewater treatment, J. Hazard. Mater., 475 (2024) 134924.
95. L. Shao, X. Q. Cheng, Y. Liu, S. Quan, J. Ma, S. Z. Zhao, K. Y. Wang, Newly developed nanofiltration (NF) composite membranes by interfacial polymerization for Safranin O and Aniline blue removal, J. Membr. Sci., 430 (2013) 96-105.
96. Q.-Y. Zhu, Z.-Y. Xu, J.-H. Fu, J. Huang, Z.-L. Xu, M. Tong, E.-C. Li, Y.-J. Tang, Can the mix-charged NF membrane directly obtained by the interfacial polymerization of PIP and TMC?, Desalination, 558 (2023) 116623.
97. J. Tian, H. Chang, S. Gao, R. Zhang, How to fabricate a negatively charged NF membrane for heavy metal removal via the interfacial polymerization between PIP and TMC?, Desalination, 491 (2020) 114499.
98. L. Li, G. Zhu, Y. Tong, K. Ding, Z. Wang, C. Meng, C. Gao, Polyethyleneimine modified polyamide composite nanofiltration membrane for separation of lithium and magnesium, J. Water Process Eng., 54 (2023) 103894.
99. M. Liu, Y. Zheng, S. Shuai, Q. Zhou, S. Yu, C. Gao, Thin-film composite membrane formed by interfacial polymerization of polyvinylamine (PVAm) and trimesoyl chloride (TMC) for nanofiltration, Desalination, 288 (2012) 98-107.
100. Y. Zhang, P. Xu, X. Chen, M. Qiu, Y. Fan, Preparation of high permeance thin-film composite nanofiltration membrane on macroporous ceramic support, J. Membr. Sci., 663 (2022) 121076.
101. X. Li, Y. Cao, H. Yu, G. Kang, X. Jie, Z. Liu, Q. Yuan, A novel composite nanofiltration membrane prepared with PHGH and TMC by interfacial polymerization, J. Membr. Sci., 466 (2014) 82-91.
102. H. Bukšek, T. Luxbacher, I. Petrinić, Zeta potential determination of polymeric materials using two differently designed measuring cells of an electrokinetic analyzer, Acta. Chim. Slov., 57 (2010) 700-706.
103. C. Wang, Y. Chen, X. Hu, X. Feng, In-situ synthesis of PA/PVDF composite hollow fiber membranes with an outer selective structure for efficient fractionation of low-molecular-weight dyes-salts, Desalination, 503 (2021) 114957.
104. J. Zhu, S. Yuan, A. Uliana, J. Hou, J. Li, X. Li, M. Tian, Y. Chen, A. Volodin, B. Van der Bruggen, High-flux thin film composite membranes for nanofiltration mediated by a rapid co-deposition of polydopamine/piperazine, J. Membr. Sci., 554 (2018) 97-108.
105. H. Li, W. Shi, H. Zhang, R. Zhou, X. Qin, Preparation of internally pressurized polyamide thin-film composite hollow fiber nanofiltration membrane with high ions selectivity by a facile coating method, Prog. Org. Coat., 139 (2020) 105456.
106. Y. Marcus , Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K, J. Chem. Soc., Faraday Trans., 87 (1991) 2995-2999.
107. J. Lee, S. Lee, Y. Choi, S. Lee, Treatment of semiconductor wastewater containing tetramethylammonium hydroxide (TMAH) using nanofiltration, reverse osmosis, and membrane capacitive deionization, Membranes, 13 (2023) 336.
108. X. Cheng, Q. Pan, H. Tan, K. Chen, W Liu, Y. Shi, S. Dua, B. Zhu, The construction of an efficient magnesium–lithium separation thin film composite membrane with dual aqueous-phase monomers (PIP and MPD), RSC Adv., 13 (2023) 22113-22121.
109. A. G. Volkov, S. Paula, D.W. Deamer, Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers, Bioelectrochem. Bioenerg., 42 (1997) 153-160.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95548-
dc.description.abstract無機弱酸如硼酸、矽酸以及磷酸是工業上經常使用的重要原料,這些工業所排放的廢水必須妥善處理。而半導體產業經常使用四甲基氫氧化銨作為晶圓製程的顯影劑,其高毒性的四甲基銨離子具有純化回收的工業價值。因此,本研究以piperazine (PIP)作為水相單體,與有機相單體trimesoyl chloride (TMC)在PSf基材膜表面進行界面聚合反應,製備聚醯胺奈米過濾複合膜,分別探討弱酸水溶液與四甲基氫氧化銨(TMAH)水溶液在不同條件下的分離效能。
弱酸在水溶液中的解離程度取決於其pKa值。在鹼性環境下(i.e., pH > pKa),弱酸會由中性分子轉變為帶負電荷的陰離子,有利於奈米過濾膜利用道南效應(Donnan effect)對其進行分離。因此,本研究以硼酸、矽酸以及磷酸水溶液作為進料溶液,藉由調整進料溶液的pH值,探討弱酸水溶液在不同pH值條件下的奈米過濾效能,並將實驗結果量化分析,深入分析各條件下弱酸的型態分佈、離子成分及濃度、薄膜表面電位以及滲透壓等參數對實驗結果的影響。藉由這些分析以理解聚醯胺複合膜在不同條件下對弱酸所展現的分離機制與效能。研究後續亦探討改變界面聚合條件對薄膜結構、表面電荷以及弱酸分離效能的影響。
本研究亦探討聚醯胺複合膜對TMAH水溶液的奈米過濾效能。研究中以H2SO4調整進料溶液pH值,利用二價陰離子SO42-更容易受道南效應排斥的特點,並藉由水溶液的電中性原則,提升TMA+阻擋率。研究中探討pH值變化對TMA+分離效能的影響。除此之外,本研究也探討了TMA+離子與一價金屬離子分離的可行性,利用聚醯胺複合膜測試TMA+/Na+混合溶液,探討薄膜在不同pH條件下對TMA+/Na+離子之選擇性。
由弱酸水溶液的研究結果顯示,PIP-TMC/PSf複合膜的阻擋率與通量皆隨著pH值上升而提高,在pH 12時對硼酸及矽酸具有最高的阻擋率,分別為72.1 %及 77.7 %;磷酸在pH 10-12之間具有最高的阻擋率(約96.3 % ~ 96.7 %);滲透通量在pH 12時約60 LMH。另外,增加有機相單體濃度,在pH 12時可將硼酸與矽酸的阻擋率分別提升至80.1 %及85.0 %,但滲透通量下降至約40 LMH。而提高MPDA在水相單體中的比例,可使複合膜選擇層更加緻密,但阻擋率並未改善。
對於TMAH水溶液,PIP-TMC/PSf複合膜在中性與酸性條件下具有最佳的TMA+阻擋效果,其阻擋率約90.3 % ~ 92.3 %。另外,利用PIP-TMC/PSf複合膜分離TMA+/Na+混合離子,在pH 2時具有最理想的效果,阻擋率分別為RTMA+ % = 91.7 %, RNa+ % = 49.8 %,選擇比SNa+/TMA+ = 6.07,溶液滲透通量為30.9 LMH。
zh_TW
dc.description.abstractWeak acids such as boric acid, silicic acid, and phosphoric acid extensively employed in various industries, and the wastewater discharged from these industries must be properly treated. In the semiconductor industry, tetramethylammonium hydroxide (TMAH) is commonly used as a developer in wafer processing, and its highly toxic tetramethylammonium ions (TMA+) are necessary for purification and recycling. In this study, piperazine (PIP) as the aqueous monomer reacted with trimesoyl chloride (TMC) organic monomer via interfacial polymerization on the surface of polysulfone (PSf) substrate membrane to prepare polyamide composite nanofiltration membranes, and the resulting composite membranes were used to investigate the separation performance of weak acid solutions and TMAH solutions under different conditions.
The dissociation degree of weak acids in aqueous solutions dependent on their pKa values. In an alkaline environment (i.e., pH > pKa), weak acids convert from neutral molecules into negatively charged anions, facilitating the separation via the Donnan effect using nanofiltration membranes. Therefore, this study employs boric, silicic, and phosphoric acid solutions as feed solutions. By adjusting the pH of the feed solutions, the nanofiltration performance of weak acid solutions at different pH conditions is explored. The experimental results are analyzed to comprehensively understand the influence of weak acid species distribution, ionic composition and concentration, membrane surface charge, and osmotic pressure on the separation mechanism and performance of polyamide composite membranes under various conditions. Subsequent research also investigates the impact of altering membrane structure and surface charge through interfacial polymerization on the separation performance of weak acids.
This study also investigates the nanofiltration performance of polyamide composite membranes for TMAH solutions. By adjusting the pH of the feed solution using H2SO4 and enhancing the Donnan effect with divalent anions (SO42-) to improve TMA+ rejection. This study examines the effect of pH on the separation performance of TMA+. Additionally, the feasibility of separating TMA+ ions from monovalent metal ions is explored. Polyamide composite membranes were used to test the selectivity for TMA+/Na+ ions under different pH conditions.
The results show that the rejection and flux of the PIP-TMC/PSf composite membranes increase with rising pH values. The optimal pH value for nanofiltration of boric and silicic acids is pH 12, the boron rejection is 72.0 % and the silicon rejection is 77.7 %. Phosphate rejection is approximately 96.3 % ~ 96.7 % at both pH 10 and 12. The water flux is around 60 LMH at pH 12. Furthermore, increasing the concentration of the organic monomer can further enhance the rejection of boric and silicic acids to 80.1 % and 85.0 %, but the flux decreases to around 40 LMH. Additionally, increasing the proportion of MPDA in the aqueous monomers results in a denser selective layer of composite membranes, but the rejection does not improve.
The PIP-TMC/PSf composite membranes exhibit optimal TMA+ rejection under neutral and acidic conditions, achieving rejection approximately 90.3 % ~ 92.3 %. Additionally, for the separation of TMA+/Na+ ions, the PIP-TMC/PSf composite membranes perform optimally at pH 2, with RTMA+ % = 91.7 %, RNa+ % = 49.8 %, separation factor SNa+/TMA+ = 6.07, and flux = 30.9 LMH.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:26:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-11T16:26:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
Abstract V
目錄 VII
圖次 XI
表次 XVII
第一章 緒論 1
1-1前言 1
1-2 薄膜的定義 2
1-3 薄膜分離技術 4
1-3-1 薄膜分離技術的演進 4
1-3-2 薄膜分離技術的原理 5
1-4 奈米過濾 9
1-4-1 奈米過濾程序 9
1-4-2 奈米過濾的發展 10
1-4-3 奈米過濾原理 11
1-5 複合膜之製備 15
1-5-1 基材膜之製備 16
1-5-2 選擇層之製備 17
1-6 界面聚合製備複合膜 18
1-7聚醯胺複合膜 20
1-8 弱酸廢水 22
1-8-1含硼廢水之來源與特性 22
1-8-2含矽廢水之來源與特性 24
1-8-3含磷廢水之來源與特性 26
1-9 顯影廢水 28
1-10 文獻回顧 30
1-11 研究動機與目的 36
第二章 實驗 38
2-1實驗藥品 38
2-2實驗儀器 41
2-3 薄膜製備 43
2-3-1基材膜之製備 43
2-3-2界面聚合法製備聚醯胺複合膜 43
2-4 薄膜鑑定 45
2-4-1 全反射式傅立葉轉換紅外線光譜儀(Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy,ATR-FTIR) 45
2-4-2 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy,FE-SEM) 46
2-4-3 原子力顯微鏡(Atomic Force Microscopy,AFM) 47
2-4-4 接觸角量測儀(Contact Angle Meter) 48
2-4-5 固體表面界達電位分析儀 49
2-5 奈米過濾測試 50
2-5-1 奈米過濾模組 50
2-5-2 奈米過濾測試 51
2-6 奈米過濾效能分析 52
2-6-1 薄膜滲透通量 52
2-6-2 溶液濃度定量分析 53
第三章 結果與討論 56
3-1 聚醯胺複合膜之鑑定 56
3-1-1 薄膜化學結構 56
3-1-2 薄膜結構型態 58
3-1-3薄膜表面親水性與粗糙度 60
3-1-4 薄膜表面電位 62
3-2 硼酸之奈米過濾效能分析 64
3-2-1 進料溶液pH值對硼酸截留率之影響 65
3-2-2 分析進料液與滲透液中的硼酸型態與分佈 67
3-2-3 利用離子電荷平衡分析薄膜對陰陽離子截留行為 69
3-2-4 複合膜滲透通量與滲透係數 74
3-3 矽酸之奈米過濾效能分析 77
3-3-1 進料溶液pH值對矽酸截留率之影響 78
3-3-2 分析進料液與滲透液中的矽酸型態與分佈 80
3-3-3 利用離子電荷平衡分析薄膜對陰陽離子截留行為 83
3-3-4 複合膜滲透通量與滲透係數 88
3-4 磷酸之奈米過濾效能分析 91
3-4-1 進料溶液pH值對磷酸截留率之影響 92
3-4-2 分析進料液與滲透液中的磷酸型態與分佈 94
3-4-3 利用離子電荷平衡分析薄膜對陰陽離子截留行為 97
3-4-4 複合膜滲透通量與滲透係數 102
3-5 界面聚合條件對弱酸分離效能之影響 105
3-5-1 有機相單體濃度對弱酸奈米過濾效能之影響 105
3-5-2 水相單體比例對弱酸奈米過濾效能之影響 109
3-6 奈米過濾對四甲基銨離子之純化與回收 114
3-6-1 進料溶液pH對四甲基銨離子奈米過濾效能之影響 115
3-6-2 進料溶液pH對鈉離子奈米過濾效能之影響 118
3-6-3 利用奈米過濾分離四甲基銨離子與鈉離子之可行性探討 121
第四章 結論 124
參考文獻 125
-
dc.language.isozh_TW-
dc.subject弱酸廢水zh_TW
dc.subject四甲基氫氧化銨zh_TW
dc.subject聚醯胺zh_TW
dc.subject複合膜zh_TW
dc.subject界面聚合zh_TW
dc.subject奈米過濾zh_TW
dc.subjecttetramethylammonium hydroxideen
dc.subjectpolyamideen
dc.subjectcomposite membranesen
dc.subjectinterfacial polymerizationen
dc.subjectnanofiltrationen
dc.subjectweak acid wastewateren
dc.title製備聚醯胺奈米過濾複合膜回收廢水中弱酸與四甲基銨離子之研究zh_TW
dc.titlePreparation of Polyamide Composite Nanofiltration Membranes for the Recovery of Weak Acids and Tetramethylammonium ions from Wastewateren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor黃書賢zh_TW
dc.contributor.coadvisorShu-Hsien Huangen
dc.contributor.oralexamcommittee李魁然zh_TW
dc.contributor.oralexamcommitteeKueir-Rarn Leeen
dc.subject.keyword聚醯胺,複合膜,界面聚合,奈米過濾,弱酸廢水,四甲基氫氧化銨,zh_TW
dc.subject.keywordpolyamide,composite membranes,interfacial polymerization,nanofiltration,weak acid wastewater,tetramethylammonium hydroxide,en
dc.relation.page136-
dc.identifier.doi10.6342/NTU202403853-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2026-08-07-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2026-08-07
4.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved