請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95547完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光 | zh_TW |
| dc.contributor.advisor | Chih-Kung Lee | en |
| dc.contributor.author | 郭涵焜 | zh_TW |
| dc.contributor.author | Han-Kun Kuo | en |
| dc.date.accessioned | 2024-09-11T16:26:31Z | - |
| dc.date.available | 2024-09-12 | - |
| dc.date.copyright | 2024-09-11 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | [1] "Piezoelectric Devices Market by Product, Material, Element, Application and Region - Global Forecast to 2028." MarketsAndMarkets. https://www.marketsandmarkets.com/Market-Reports/piezoelectric devices-market-256019882.html (accessed Jul. 7, 2024).
[2] "Piezoelectric Motor Market by Product, by End-Use industry, by Region-Global market insights 2020 to 2030." Fact.MR. https://www.factmr.com/report/2438/piezoelectric-motor-market (accessed Jul.31, 2024). [3] "Piezoelectric Actruator Market - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2023-2031." Tramsparency Market Research. https://www.transparencymarketresearch.com/piezoelectric-actuator-market.html (accessed Jul. 7, 2024). [4] 陳詳達, "以模態疊加驅動多自由度壓電馬達之設計與開發," Design and development of multi-degree-of-freedom piezoelectric motor driven by modal superposition, 國立臺灣大學工程科學及海洋工程學系, 2023. [5] 黃郁翔, "以希爾伯特轉換成本函數分析之最佳化高模態傳遞波及其在多方向二維壓電平板致動器之應用," Optimize high-frequency mode traveling waves using analysis of Hilbert transform cost function and its application in multidirectional two-dimensional piezoelectric plate actuator, 國立臺灣大學工程科學及海洋工程學系, 2022. [6] X. Tian, Y. Liu, J. Deng, L. Wang, and W. Chen, "A review on piezoelectric ultrasonic motors for the past decade: Classification, operating principle, performance, and future work perspectives," Sensors and Actuators A: Physical, vol. 306, p. 111971, 2020. [7] H. Barth, "Ultrasonic driven motor," IBM Tech. Disclosure Bull., vol. 16, p. 2263, 1973. [8] M. Kuribayashi, S. Ueha, and E. Mori, "Excitation conditions of flexural traveling waves for a reversible ultrasonic linear motor," The Journal of the Acoustical Society of America, vol. 77, no. 4, pp. 1431-1435, 1985. [9] H. Hariri, Y. Bernard, and A. Razek, "A traveling wave piezoelectric beam robot," Smart Materials and Structures, vol. 23, no. 2, p. 025013, 2013. [10] H. Hariri, Y. Bernard, and A. Razek, "2-D traveling wave driven piezoelectric plate robot for planar motion," IEEE/ASME Transactions on Mechatronics, vol. 23, no. 1, pp. 242-251, 2018. [11] 林育民, "以雙頻雙模態激發之二維傳遞波產生器開發及在二維壓電馬達之應用," 碩士論文, 國立臺灣大學工程科學及海洋工程學系 2019. [12] 高苑庭, "以希爾伯特轉換最佳化多方向傳遞波驅動的二維壓電平板致動器," 碩士論文, 國立臺灣大學工程科學及海洋工程學系, 2020. [13] Y.-H. Hsu, Y.-M. Lin, and C.-K. Lee, "A two-dimensional piezoelectric traveling wave generator using a multi-integer frequency, two-mode method (MIF-TM)," Smart Materials and Structures, vol. 30, no. 12, p. 125026, 2021, doi: https://doi.org/10.1088/1361-665X/ac3432 [14] 楊孟翰, "以模態疊加之空間及時間相位探討行進波於二維有限結構上產生之研究," 國立臺灣大學工程科學及海洋工程學系學位論文, 2023. [15] 吳昇勳, "單頻雙模態及雙頻雙模態行進波壓電聲波馬達之最佳化設計," 臺灣大學應用力學研究所學位論文, 2017. [16] 潘忠岳, "以單頻雙模態驅動彎曲扭曲複合模態壓電馬達之研究," 碩士論文, 國立臺灣大學應用力學所, 2022. [17] 賴似蓉, "以希爾伯特轉換最佳化之自走式壓電行進波旋轉致動器," 碩士論文, 應用力學研究所, 國立臺灣大學, 2023. [18] M.-H. Yang, Y.-H. Hsu, and C.-K. Lee, "Traveling wave characteristics on two-dimensional finite structures using Hilbert transform," in Active and Passive Smart Structures and Integrated Systems XVII, 2023, vol. 12483: SPIE, pp. 482-489, doi: https://doi.org/10.1117/12.2657425. [19] C.-K. Lee, "Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships," The Journal of the Acoustical Society of America, vol. 87, no. 3, pp. 1144-1158, 1990, doi: https://doi.org/10.1121/1.398788. [20] T.-Y. Chu, Y.-H. Hsu, and C.-K. Lee, "Optimization of a two-frequency-two-mode piezoelectric linear motor," in Active and Passive Smart Structures and Integrated Systems XII, 2018, vol. 10595: SPIE, pp. 583-589, doi: https://doi.org/10.1117/12.2296769. [21] Y.-T. Kao, Y.-H. Hsu, and C.-K. Lee, "Design and experimental verification of a planar type two-dimensional piezoelectric actuator," in Active and Passive Smart Structures and Integrated Systems XIV, 2020, vol. 11376: SPIE, pp. 88-99, doi: https://doi.org/10.1117/12.2557970. [22] K. F. Graff, Wave motion in elastic solids. Courier Corporation, 2012. [23] H. Hariri, Y. Bernard, and A. Razek, "Modeling and experimental study of a two modes excitation traveling wave piezoelectric miniuature robot," Actuator12, pp. 346-349, 2012. [24] M. Feldman, "Hilbert transform in vibration analysis," Mechanical systems and signal processing, vol. 25, no. 3, pp. 735-802, 2011, doi: https://doi.org/10.1016/j.ymssp.2010.07.018. [25] "Hi221 9軸 IMU/VRU/AHRS." Sea Land Technology. https://sealandtech.com.tw/product_anrot_hi221.html (accessed Jul. 7, 2024). [26] M. F. Golnaraghi and B. C. Kuo, Automatic control systems, Tenth edition. ed. New York: McGraw-Hill Education, 2017, pp. xvii, 846 pages. [27] G. Ellis, Control system design guide : using your computer to understand and diagnose feedback controllers, Fourth edition. ed. Amsterdam ;: Elsevier/BH, 2012, pp. xxi, 498 pages. [28] Y. Shang, C.-L. Liu, and K.-C. Cao, "Event-triggered consensus control of nonlinear multi-agent systems based on first-order hold," International Journal of Control, Automation and Systems, vol. 19, no. 4, pp. 1461-1469, 2021. [29] U. Graf, Applied Laplace transforms and z-transforms for scientists and engineers : a computational approach using a Mathematica package. Basel ; Boston: Birkhäuser, 2004, pp. x, 500 p. [30] H.-J. Chen, Y.-H. Hsu, and C.-K. Lee, "Rotary piezoelectric motor using a rectangular vibrator of four actuators," in Active and Passive Smart Structures and Integrated Systems XVII, 2023, vol. 12483: SPIE, pp. 511-518, doi: https://doi.org/10.1117/12.2658219. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95547 | - |
| dc.description.abstract | 目前自走式線性壓電馬達已可大幅提升速度表現下,但其移動時的偏移問題也隨之加劇。因此本研究旨在開發一種使用陀螺儀與磁力計進行姿態控制的自走式線性壓電馬達,達到三自由度操控之性能,將原先本團隊的自走式壓電馬達位移偏移進行有效抑制,達到穩定控制前進方向之研究目標。本研究使用四個模態的選擇性疊加達到三個驅動自由度的操控能力,本研究透過在同一結構上同時引入單頻雙模態與整數倍頻兩種不同驅動理論以達成在同一結構上同時實現三個自由度行進波的生成,分別為x方向、y方向的直線移動與相對於z方向的旋轉移動。本研究在此基礎上引入了姿態控制系統,解決自走式壓電馬達因運動表現上升帶來的位移偏移問題。透過系統鑑別得出壓電馬達系統的姿態轉移函數,並透過數值模擬設計姿態控制的控制系統,得出最適合該系統表現的控制系統並以數位控制器實現。經過姿態控制的系統,旋轉運動時姿態控制穩態誤差可達0.001°以下,且累積誤差為0.000038°/min。直線移動時,x方向移動角度偏移量由原先的1.42°~ 44.8°下降至0.44°~ 4.78°,最大誤差修正率達到95.9%。100Vpp下未加入負載開迴路最大速度為44.1mm/s,加入姿態控制後平均速度為11.6 mm/s,最大負載可達140 g。y方向移動角度偏移量由原先的7.91°~ 64.7°下降至1.2°~ 7.17°,最大誤差修正率達到99.2%。100Vpp下未加入負載開迴路最大速度為45.29mm/s,加入姿態控制後平均速度為9.1 mm/s,最大負載可達140g。 | zh_TW |
| dc.description.abstract | In recent years, self-propelled linear piezoelectric motors have much improved in speed performance. But, the offset of its moving trajectories has become an inevitable problem. Therefore, this research aims to develop a self-propelled linear piezoelectric motor that uses gyroscopes and magnetometers for attitude control to achieve three-degree-of-freedom control. We integrate this technology into the self-propelled piezoelectric motor previously reported by our team. To enable three driving degrees of freedom, we selectively superpose two of four chosen bending modes to achieve multi-direction control. Two different driving methods are used, including One-Frequency Two-Mode (OF-TM) and Multi-Integer Frequency Two-Mode (MIF-TM). Then, different traveling waves that can create three degrees of freedom can be activated to propel the linear piezoelectric motor, including x-direction, y-direction and rotational movement with respect to the z-direction. On top of this design, we also introduces an attitude control system to solve the problem of displacement offset of an open-loop self-propelled piezoelectric linear motor. Using the system identification method, the attitude transfer function of the piezoelectric motor system is obtained, and the attitude control system is designed using numerical simulation. Then, the control system that is most suitable for the performance of the system is obtained and implemented with a digital controller. After attitude control of the system, the steady-state error of attitude control during rotation can reach less than 0.001°, and the cumulative error is 0.000038°/min. When moving in a straight line, the angular offset of the x-direction movement dropped from the original 1.42°~44.8° to 0.44°~4.78°, and the maximum error correction rate reached 95.9%. The maximum open-loop speed under 100Vpp without loading is 44.1mm/s. After adding attitude control, the average speed is 11.6 mm/s, and the maximum load can reach 140 g. The y-direction movement angle offset dropped from the original 7.91°~64.7° to 1.2°~7.17°, and the maximum error correction rate reached 99.2%. The maximum open-loop speed under 100Vpp without loading is 45.29mm/s. After adding attitude control, the average speed is 9.1 mm/s, and the maximum load can reach 140g. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:26:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-11T16:26:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目次 iv 圖次 viii 表次 xix 第1章 緒論 1 1.1 壓電致動器產業及市場趨勢 1 1.2 研究背景與動機 2 1.3 文獻回顧 2 1.4 論文架構 9 第2章 壓電理論推導與多維壓電制動器設計 10 2.1 設計理念與系統架構 10 2.1.1 設計理念 10 2.1.2 系統架構 15 2.2 結構設計 16 2.2.1 材料選擇 16 2.2.2 多維壓電致動器結構 17 2.2.3 驅動支腳設計 22 2.3 多維壓電致動器理論 24 2.3.1 統御方程式推導 24 2.3.2 雙模態驅動理論 33 2.4 希爾伯特轉換 34 2.4.1 理論介紹 34 2.4.2 行進波效率分析 36 2.5 驅動訊號設計與最佳化 44 2.5.1 以整數倍頻驅動理論設計x與y方向驅動訊號 44 2.5.2 以單頻雙模驅動理論設計z方向驅動訊號 46 2.5.3 等效材料參數方法 47 2.5.4 振幅補償方法 48 2.6 控制系統設計 49 2.6.1 控制系統架構 49 2.6.2 系統轉移函數推導 52 2.6.3 控制器設計方法 53 第3章 數值模擬分析 58 3.1 數值模型之建立與參數設定 58 3.2 結構模態分析 59 3.3 設計x方向行進波最佳驅動參數 60 3.3.1 不同相位差的貢獻與影響 61 3.3.2 不同電壓比的貢獻與影響 65 3.4 設計y方向行進波最佳驅動參數 68 3.4.1 不同相位差的貢獻與影響 68 3.4.2 不同電壓比的貢獻與影響 73 3.5 以希爾伯特轉換設計z方向行進波最佳驅動參數 75 3.5.1 不同電壓比的貢獻與影響 78 3.5.2 不同相位差的貢獻與影響 81 第4章 有限元素模擬分析 86 4.1 有限元素模型之建立與參數設定 86 4.2 結構模態分析 87 4.3 等效材料參數 88 4.4 分析x方向行進波最佳驅動參數 88 4.5 分析y方向行進波最佳驅動參數 90 4.6 以希爾伯特轉換分析z方向行進波最佳驅動參數 92 4.6.1 驅動參數相位差效率分析 92 4.6.2 驅動參數電壓比效率分析 96 第5章 多維壓電致動器之行進波實驗驗證 99 5.1 多維壓電制動器之共振頻量測 99 5.2 多維壓電致動器波型量測之實驗架設 100 5.3 等效材料參數 101 5.4 驅動訊號振幅補償分析 102 5.5 x方向行進波實驗驗證 103 5.5.1 驅動參數相位差效率分析實驗驗證 104 5.5.2 驅動參數電壓比效率分析實驗驗證 107 5.6 y方向行進波實驗驗證 109 5.6.1 驅動參數相位差效率分析實驗驗證 109 5.6.2 驅動參數電壓比效率分析實驗驗證 112 5.7 z方向行進波實驗驗證 114 5.7.1 驅動參數相位差效率分析實驗驗證 114 5.7.2 驅動參數電壓比效率分析實驗驗證 118 第6章 控制系統建立與系統鑑別 122 6.1 控制策略 122 6.2 控制系統建立與控制器平行運算處理 123 6.2.1 感測器數據處理 123 6.2.2 控制器數據處理 124 6.3 旋轉自由度系統鑑別 128 6.4 控制系統模擬與控制器參數設計 132 第7章 多維壓電致動器之控制實驗結果與討論 139 7.1 感測器之準確度與累積誤差驗證 139 7.2 多維壓電致動器驅動z方向旋轉實驗 140 7.2.1 不同驅動電壓之移動速度分析 140 7.2.2 不同荷重之移動速度分析 144 7.3 控制策略效果驗證 147 7.3.1 控制器設計驗證與系統響應分析 147 7.3.2 控制策略表現分析 148 7.4 多維壓電致動器驅動x方向位移實驗 154 7.4.1 不同驅動電壓對系統影響分析 154 7.4.2 不同荷重對系統影響分析 163 7.5 多維壓電致動器驅動y方向位移實驗 167 7.5.1 不同驅動電壓對系統影響分析 167 7.5.2 不同荷重對系統影響分析 176 7.6 多方向連續驅動實驗 179 第8章 結論與未來展望 182 8.1 結論 182 8.2 未來展望 183 REFERENCES 184 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 單頻雙模驅動 | zh_TW |
| dc.subject | 壓電致動器 | zh_TW |
| dc.subject | 線性壓電馬達 | zh_TW |
| dc.subject | 整數倍頻驅動 | zh_TW |
| dc.subject | 姿態控制 | zh_TW |
| dc.subject | Attitude control | en |
| dc.subject | Piezoelectric actuator | en |
| dc.subject | Piezoelectric linear motor | en |
| dc.subject | One-Frequency Two-Mode | en |
| dc.subject | Multi-Integer Frequency Two-Mode | en |
| dc.title | 以陀螺儀與磁力計實現線性多自由度自走式壓電馬達 回授控制系統之設計與開發 | zh_TW |
| dc.title | Feedback Control of a Multi-direction Piezoelectric Linear Motor Using Gyroscope and Magnetometer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 許聿翔 | zh_TW |
| dc.contributor.coadvisor | Yu-Hsiang Hsu | en |
| dc.contributor.oralexamcommittee | 吳文中;柯文清;謝志文 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Jong Wu;WEN-CHING KE;JR-WEN SHIE | en |
| dc.subject.keyword | 壓電致動器,線性壓電馬達,單頻雙模驅動,整數倍頻驅動,姿態控制, | zh_TW |
| dc.subject.keyword | Piezoelectric actuator,Piezoelectric linear motor,One-Frequency Two-Mode,Multi-Integer Frequency Two-Mode,Attitude control, | en |
| dc.relation.page | 186 | - |
| dc.identifier.doi | 10.6342/NTU202403537 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2026-08-13 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 18.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
