請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95545
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭茂坤 | zh_TW |
dc.contributor.advisor | Mao-Kuen Kuo | en |
dc.contributor.author | 陳亭瑋 | zh_TW |
dc.contributor.author | Ting-Wei Chen | en |
dc.date.accessioned | 2024-09-11T16:25:54Z | - |
dc.date.available | 2024-09-12 | - |
dc.date.copyright | 2024-09-11 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-10 | - |
dc.identifier.citation | 1. Hentschel, M., et al., “Chiral plasmonics,” Science Advances 3(5), e1602735, 2017.
2. Zhang, J., L. Zhang, and W. Xu, “Surface plasmon polaritons: physics and applications,” Journal of Physics D 45(11), 113001, 2012. 3. Andrews, S.S. and J. Tretton, “Physical principles of circular dichroism,” Journal of Chemical Education 97(12), 4370-4376, 2020. 4. Ebbesen, T.W., et al., “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667-669, 1998. 5. Zhang, Z., et al., “Rayleigh anomaly-enabled mode hybridization in gold nanohole arrays by scalable colloidal lithography for highly-sensitive biosensing,” Nanophotonics 11(3), 507-517, 2022. 6. Petronijevic, E., et al., “Chiral effects in low-cost plasmonic arrays of elliptic nanoholes,” Optical and Quantum Electronics 52, 1-10, 2020. 7. Lee, S.H., et al., “Self-assembled plasmonic nanohole arrays,” Langmuir, 25(23) 13685-13693, 2009. 8. Ai, B., H.M. Luong, and Y. Zhao, “Chiral nanohole arrays,” Nanoscale, 12(4) 2479-2491, 2020. 9. Ai, B. and Y. Zhao, “Glancing angle deposition meets colloidal lithography: A new evolution in the design of nanostructures,” Nanophotonics 8(1), 1-26, 2018. 10. Bochenkov, V.E. and T.I. Shabatina, “Chiral plasmonic biosensors,” Biosensors 8(4), 120, 2018. 11. Matuschek, M., et al., “Chiral plasmonic hydrogen sensors,” Small 14(7), 1702990, 2018. 12. Kosters, D., et al., “Core–shell plasmonic nanohelices,” ACS Photonics 4(7), 1858-1863, 2017. 13. Schäferling, M., et al., “Helical plasmonic nanostructures as prototypical chiral near-field sources,” Acs Photonics 1(6), 530-537, 2014. 14. Luo, Y., et al., “Enhanced circular dichroism by F-type chiral metal nanostructures,” Photonics 10(9), 1028, 2023. 15. Valev, V.K., et al., “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Letters 9(11), 3945-3948, 2009. 16. Narushima, T., S. Hashiyada, and H. Okamoto, “Nanoscopic study on developing optical activity with increasing chirality for two-dimensional metal nanostructures,” ACS Photonics 1(8), 732-738, 2014. 17. Tang, Y. and A.E. Cohen, “Optical chirality and its interaction with matter,” Physical Review Letters 104(16), 163901, 2010. 18. Both, Steffen, et al., “Nanophotonic chiral sensing: How does it actually work?,” ACS Nano 16(2), 2822-2832, 2022. 19. Zayats, A.V., I.I. Smolyaninov, and A.A. Maradudin, “Nano-optics of surface plasmon polaritons,” Physics Reports 408(3-4), 131-314, 2005. 20. Ekşioğlu, Y., A.E. Cetin, and J. Petráček, “Optical response of plasmonic nanohole arrays: comparison of square and hexagonal lattices,” Plasmonics 11, 851-856, 2016. 21. Leahu, G., et al., “Evidence of Optical Circular Dichroism in GaAs‐Based Nanowires Partially Covered with Gold,” Advanced Optical Materials 5(16), 1601063, 2017. 22. Lipkin, D.M., “Existence of a new conservation law in electromagnetic theory,” Journal of Mathematical Physics 5(5), 696-700, 1964. 23. Johnson, P.B. and R.-W. Christy, “Optical constants of the noble metals,” Physical Review B 6(12), 4370, 1972. 24. Malitson, I.H., “Interspecimen comparison of the refractive index of fused silica,” Josa 55(10), 1205-1209, 1965. 25. Sahu, S.K. and M. Singh, “Plasmonic Elliptical Nanohole Array for On-Chip Human Blood Group Detection,” IEEE Sensors Journal, 2023. 26. Ali, H., et al., “Circular dichroism in a plasmonic array of elliptical nanoholes with square lattice,” Optics Express 31(9), 14196-14211, 2023. 27. Wang, H., et al., “Nanorice: a hybrid plasmonic nanostructure,” Nano letters 6(4), 827-832, 2006. 28. Biswas, A., et al., “Tunable plasmonic superchiral light for ultrasensitive detection of chiral molecules,” Science Advances 10(8), eadk2560, 2024. 29. Ameling, R., et al., “Cavity-enhanced localized plasmon resonance sensing,” Applied Physics Letters 97(25), 2010. 30. Sun, Q.a., et al., “Arbitrary-Order and Multichannel Optical Vortices with Simultaneous Amplitude and Phase Modulation on Plasmonic Metasurfaces,” Nanomaterials 12(19), 3476, 2022. 31. Wang, Z. and S. Jian, “Vectorial vortex beam detection using plasmonic interferences on a structured gold film,” Optics & Laser Technology 109, 241-248, 2019. 32. Ni, J., et al., “Giant helical dichroism of single chiral nanostructures with photonic orbital angular momentum,” ACS Nano 15(2), 2893-2900, 2021. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95545 | - |
dc.description.abstract | 本論文探討二維金膜孔洞陣列結構和三維金奈米螺旋陣列結構的圓二色性 (Circular Dichroism, CD)。第一部分探討橢圓金奈米孔洞陣列的圓二色性,透過改變了橢圓與晶格對稱軸的角度、晶格尺寸、金膜厚度與橢圓展弦比,在穿透、吸收能量和圓二色性上產生的差異;孔洞陣列缺陷分析,該部分延續六方最密堆積的橢圓金奈米孔洞陣列結構,在週期性結構增加不同形狀和尺寸的結構來引入輻射性質,將原本由於Bloch條件而駐留於金膜表面的表面電漿子,透過次級結構的導入與輻射至遠場的能量進行轉換,進而在特定的波長處的穿透能量頻譜產生額外的能帶,將入射的平面波聚焦形成類似點光源的形式,電場分布亦會產生駐留於特定一孔洞的現象;多層銀膜孔洞的部分則探討各個不具手徵性的陣列疊合產生圓二色性和對於品質因子(Figure of Merit, FoM)所造成的影響,多層銀結構造就了更長的孔洞深度使入射波能完整的共振以形成單頻的響應,進而降低FWHM提升FoM。
第二部分探討三維的核殼金奈米螺旋結構的圓二色性和手徵密度(Chiral Density),三維結構相較於二維孔洞陣列,提供了更多波段良好的圓二色性,透過調整螺線半徑和螺距,分析了其穿透、吸收頻譜和圓二色性的變化,並進一步探討吸收圓二色性與結構手徵密度強度分布的關係。設計上適當的螺線半徑和螺距可以使螺旋結構內外分別產生高強度且相反手徵密度,進而利用此近場增強的效果提升應用端檢測特定旋性生物分子和手徵性藥物分子的訊號。 | zh_TW |
dc.description.abstract | This thesis explores the circular dichroism (CD) of two-dimensional gold film nanohole arrays and three-dimensional gold nanohelices arrays. The first part investigates the circular dichroism of elliptical gold nanohole arrays. By altering the angle between the elliptical holes and the lattice symmetry axis, lattice size, gold film thickness, and elliptical aspect ratio, differences in transmission, absorption energy, and circular dichroism are observed. The analysis of defects in the nanohole arrays extends the study of hexagonally close-packed elliptical gold nanohole arrays by introducing periodic structures with varying shapes and sizes to induce radiative properties. This modification allows surface plasmon polaritons, which are originally confined to the gold film surface due to Bloch conditions, to convert into radiative energy in the far field through the incorporation of secondary structures. This results in additional energy bands in the transmission energy spectrum at specific wavelengths, with the incident plane wave focusing to form a point source-like effect, and the electric field distribution showing localization within specific nanoholes. The section on multi-layered silver nanohole arrays explores how the stacking of non-chiral arrays induces circular dichroism and its impact on the Figure of Merit (FoM). The multilayer silver structure creates deeper holes, allowing for complete resonance of the incident waves to form single-frequency responses, thereby reducing the full width at half maximum (FWHM) and enhancing the figure of merit (FoM).
The second part investigates the circular dichroism and chiral density of three-dimensional core-shell gold nanohelices structures. Compared to two-dimensional nanohole arrays, the three-dimensional structures provide more bands with strong circular dichroism. By adjusting the spiral radius and pitch, the changes in transmission, absorption spectra, and circular dichroism are analyzed. Furthermore, the relationship between absorptive circular dichroism and the distribution of chiral density in the structure is explored. Appropriately designed spiral radius and pitch can create high-intensity and oppositely oriented chiral densities inside and outside the spiral structure. This near-field enhancement can be utilized to improve the detection signals of specific chiral biomolecules and chiral drugs in practical applications. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:25:54Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-11T16:25:54Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目次 vi 圖次 viii 表次 x 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機 4 第2章 理論原理 5 2.1 表面電漿子 5 2.2 布洛赫條件 7 2.3 圓二色性 7 2.4 手徵密度 8 第3章 二維奈米孔洞陣列 10 3.1 模型建立 11 3.2 橢圓孔洞陣列 12 3.2.1 圓孔旋轉角度與晶格的關係 12 3.2.2 橢圓展弦比 17 3.2.3 金膜厚度與晶格尺寸 18 3.3 二維光子晶體缺陷 23 3.4 多層銀膜孔洞陣列 27 3.4.1 圓二色性 28 3.4.2 折射率敏感度 29 第4章 三維螺旋核殼層結構 33 4.1 模型建立 34 4.2 螺距和匝數 35 4.2.1 穿透、吸收頻譜和圓二色性 35 4.2.2 手徵密度 37 4.3 螺旋半徑 43 4.3.1 穿透、吸收頻譜和圓二色性 43 4.3.2 手徵密度 46 第5章 結論與未來展望 50 5.1 結論 50 5.2 未來展望 51 參考文獻 53 | - |
dc.language.iso | zh_TW | - |
dc.title | 具手徵性金奈米結構陣列之圓二色性分析 | zh_TW |
dc.title | Analysis of Circular Dichroism of Chiral Gold Nanostructure Array | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 藍永強;廖駿偉 | zh_TW |
dc.contributor.oralexamcommittee | Yung-Chiang Lan;Jiunn-Woei Liaw | en |
dc.subject.keyword | 表面電漿子共振,手徵性,圓二色性,金奈米孔洞陣列,Bloch條件,折射率敏感度,手徵密度, | zh_TW |
dc.subject.keyword | Surface Plasmon Resonance,Chirality,Circular Dichroism,Gold Nanohole Array,Bloch Condition,Refractive Index Sensitivity,Chiral Density, | en |
dc.relation.page | 54 | - |
dc.identifier.doi | 10.6342/NTU202402992 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
dc.date.embargo-lift | 2029-08-13 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 此日期後於網路公開 2029-08-13 | 6.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。