Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95544Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 李世光 | zh_TW |
| dc.contributor.advisor | Chih-Kung Lee | en |
| dc.contributor.author | 林昕叡 | zh_TW |
| dc.contributor.author | Sin-Ruei Lin | en |
| dc.date.accessioned | 2024-09-11T16:25:36Z | - |
| dc.date.available | 2024-09-12 | - |
| dc.date.copyright | 2024-09-11 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | S. Kang et al., "High-resolution adaptive optical imaging within thick scattering media using closed-loop accumulation of single scattering," Nature Communications, vol. 8, no. 1, p. 2157, 2017/12/18 2017, doi: 10.1038/s41467-017-02117-8.
J. B. Shohani, M. Hajimahmoodzadeh, and H. Fallah, "Using a deep learning algorithm in image-based wavefront sensing: determining the optimum number of Zernike terms," Opt. Continuum, vol. 2, no. 3, pp. 632-645, 2023/03/15 2023, doi: 10.1364/OPTCON.485330. K. M. Hampson, J. Antonello, R. Lane, and M. Booth, "Sensorless Adaptive Optics," 2020 2020, doi: 10.5281/ZENODO.4065529. A. S. De Vany, "Using a Murty Interferometer for Testing the Homogeneity of Test Samples of Optical Materials," Appl. Opt., vol. 10, no. 6, pp. 1459-1460, 1971/06/01 1971, doi: 10.1364/AO.10.001459. S. Velghe, J. Primot, N. Guerineau, M. Cohen, and B. Wattellier, "Optical Systems Design 2005," pp. 596512-596512, 09/30 2005. R. Ragazzoni, "Pupil plane wavefront sensing with an oscillating prism," Journal of Modern Optics, vol. 43, no. 2, pp. 289-293, 1996/02/01 1996, doi: 10.1080/09500349608232742. 林峻暉, 李世光, and 吳光鐘, "應用於光波前與物體表面變形檢測之創新剪影干涉儀之設計與建構," (in 繁體中文), 光學工程, no. 81, pp. 77-82, 2003, doi: 10.30011/OE.200303.0009. 間隙剪影板光波前干涉儀之設計與實驗. National Taiwan University Department of Applied Mechanics, 2003. 黃國棟, "直角稜鏡之間隙剪影板架構之設計與實驗:SPARROW之改良," 國立臺灣大學, 2004. [Online]. Available: https://doi.org/10.6342%2fNTU.2004.01709 M. V. Mantravadi and D. Malacara, "Newton, Fizeau, and Haidinger Interferometers," in Optical Shop Testing, 2007, pp. 1-45. D. Malacara, "Twyman–Green Interferometer," in Optical Shop Testing, 2007, pp. 46-96. D. Malacara-Doblado and I. Ghozeil, "Hartmann, Hartmann–Shack, and Other Screen Tests," in Optical Shop Testing, 2007, pp. 361-397. J. Lee, R. V. Shack, and M. R. Descour, "Sorting method to extend the dynamic range of the Shack–Hartmann wave-front sensor," Appl. Opt., vol. 44, no. 23, pp. 4838-4845, 2005/08/10 2005, doi: 10.1364/AO.44.004838. B. Vohnsen, A. Carmichael Martins, S. Qaysi, and N. Sharmin, "Hartmann–Shack wavefront sensing without a lenslet array using a digital micromirror device," Appl. Opt., vol. 57, no. 22, pp. E199-E204, 2018/08/01 2018, doi: 10.1364/AO.57.00E199. J. H. Karp, T. K. Chan, and J. E. Ford, "Integrated diffractive shearing interferometry for adaptive wavefront sensing," Appl. Opt., vol. 47, no. 35, pp. 6666-6674, 2008/12/10 2008, doi: 10.1364/AO.47.006666. T. Mu, C. Zhang, Q. Li, L. Zhang, Y. Wei, and Q. Chen, "Achromatic Savart polariscope: choice of materials," Opt. Express, vol. 22, no. 5, pp. 5043-5051, 2014/03/10 2014, doi: 10.1364/OE.22.005043. F. Dai, F. Tang, X. Wang, and O. Sasaki, "Generalized zonal wavefront reconstruction for high spatial resolution in lateral shearing interferometry," J. Opt. Soc. Am. A, vol. 29, no. 9, pp. 2038-2047, 2012/09/01 2012, doi: 10.1364/JOSAA.29.002038. F. Dai, F. Tang, X. Wang, O. Sasaki, and P. Feng, "Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry: comparisons of existing algorithms," Appl. Opt., vol. 51, no. 21, pp. 5028-5037, 2012/07/20 2012, doi: 10.1364/AO.51.005028. D. C. Ghiglia and L. A. Romero, "Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods," J. Opt. Soc. Am. A, vol. 11, no. 1, pp. 107-117, 1994/01/01 1994, doi: 10.1364/JOSAA.11.000107. H. Takajo and T. Takahashi, "Least-squares phase estimation from the phase difference," J. Opt. Soc. Am. A, vol. 5, no. 3, pp. 416-425, 1988/03/01 1988, doi: 10.1364/JOSAA.5.000416. Y.-f. Guo, H. Chen, J. Xu, and J. Ding, "Two-dimensional wavefront reconstruction from lateral multi-shear interferograms," Opt. Express, vol. 20, no. 14, pp. 15723-15733, 2012/07/02 2012, doi: 10.1364/OE.20.015723. K. R. Freischlad and C. L. Koliopoulos, "Modal estimation of a wave front from difference measurements using the discrete Fourier transform," J. Opt. Soc. Am. A, vol. 3, no. 11, pp. 1852-1861, 1986/11/01 1986, doi: 10.1364/JOSAA.3.001852. C. Elster and I. Weingärtner, "Exact wave-front reconstruction from two lateral shearing interferograms," J. Opt. Soc. Am. A, vol. 16, no. 9, pp. 2281-2285, 1999/09/01 1999, doi: 10.1364/JOSAA.16.002281. J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Mathematics of Computation, vol. 19, pp. 297-301, 1965. A. Dubra, C. Paterson, and C. Dainty, "Wave-front reconstruction from shear phase maps by use of the discrete Fourier transform," Appl. Opt., vol. 43, no. 5, pp. 1108-1113, 2004/02/10 2004, doi: 10.1364/AO.43.001108. P. Li, F. Tang, and X. Wang, "Comparison of processing speed of typical wavefront reconstructionmethods for lateral shearing interferometry," Appl. Opt., vol. 60, no. 2, pp. 312-325, 2021/01/10 2021, doi: 10.1364/AO.409315. J. Schwiegerling, Optical specification, fabrication, and testing. SPIE-International Society for Optical Engineering, 2014. C. Elster and I. Weingärtner, "Solution to the shearing problem," Appl. Opt., vol. 38, no. 23, pp. 5024-5031, 1999/08/10 1999, doi: 10.1364/AO.38.005024. R. M. Goldstein, H. A. Zebker, and C. L. Werner, "Satellite radar interferometry: Two-dimensional phase unwrapping," Radio Science, vol. 23, pp. 713-720, 1988. D. C. Ghiglia, G. A. Mastin, and L. A. Romero, "Cellular-automata method for phase unwrapping," JOSA A, vol. 4, no. 1, pp. 267-280, 1987. T. Ling, J. Jiang, R. Zhang, and Y. Yang, "Quadriwave lateral shearing interferometric microscopy with wideband sensitivity enhancement for quantitative phase imaging in real time," Scientific Reports, vol. 7, no. 1, p. 9, 2017/01/31 2017, doi: 10.1038/s41598-017-00053-7. I. Moreno, G. Paez, and M. Strojnik, "Dove prism with increased throughput for implementation in a rotational-shearing interferometer," Appl. Opt., vol. 42, no. 22, pp. 4514-4521, 2003/08/01 2003, doi: 10.1364/AO.42.004514. I. Moreno, G. Paez, and M. Strojnik, "Polarization transforming properties of Dove prisms," Bs, vol. 2560, 05/01 2003, doi: 10.1016/S0030-4018(03)01423-8. S. Karan, R. Rajput, P. Mohta, and A. Jha, Quantifying polarization changes induced by rotating Dove prisms and K-mirrors. 2022. V. Akondi and A. Dubra, "Shack-Hartmann wavefront sensor optical dynamic range," (in eng), Opt Express, vol. 29, no. 6, pp. 8417-8429, Mar 15 2021, doi: 10.1364/oe.419311. Q. Zhang et al., "Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging," Scientific Reports, vol. 7, no. 1, p. 2532, 2017/05/31 2017, doi: 10.1038/s41598-017-02797-8. A. Finkelstein, "Design and evaluation of a new diagnostic instrument for osmotic gradient ektacytometrie," 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95544 | - |
| dc.description.abstract | 波前感測裝置在光學測量領域扮演著相當重要的角色,其優點為非接觸式與高解析度。本團隊過去曾經開發一款利用剪切干涉片進行橫向剪切干涉的光波前測量裝置SPARROW (Shear Phase Analyzer, Reflective/Reflective Optical Wavefront),其內部有一直角旋轉機構以確保光線入射出射保持平行,並且使用一自感應熱阻絲之熱膨脹轉動直角旋轉機構以產生相位移法所需要之干涉相位改變。SPARROW之優點為其較大的測量波前動態範圍與便於攜帶的機構大小。然而,由於剪切干涉需要測量兩相互垂直方向之干涉條紋,SPARROW之測量需要透過旋轉整個感測器的方式分別對兩方向干涉條紋進行量測,對於測量的精準性與時間長度造成影響。
本研究採用前述直角旋轉機構產生剪影干涉,該機構由垂直的兩個面組成,其中一面為一片鏡子,另一面為一剪切干涉片,兩面相連處為一旋轉軸。該架構類似一回射器,確保入射的光線與出射的光線在任意入射角度下,出射光永遠保持平行。本研究並提出創新想法:使用光波前方向與極化方向同時綁定的方式,進行同時測量兩方向之干涉條紋影像。首先將入射光波前分為兩道,並且使用一組K-mirrors將其中一道之光波前與極化方向同時旋轉90度,接著使用一PBS將極化方向與波前方向進行綁定,最後在經由直角旋轉機構進行干涉後由另一PBS將兩方向之干涉分開分別使用兩相機記錄。如此一來,兩方向之干涉條紋可以同時測得,增快測量的過程;並且由於移除了整體旋轉的過程,也確保了測量的穩定性。 本研究亦針對過往使用的重建算法做出調整,裝置中的剪切干涉片產生干涉條紋,採用四步相移法配合裝置的熱電阻絲調控相移的相位角,取得條紋圖後計算獲得包裹相位,包裹相位的邊界需利用自然填充法將遺失的資訊填充補回,方能進行傅立葉擬合波前重建獲得誤差最小之波前。最後設計不同的實驗驗證本裝置,重複性最差可達PV(峰對峰)值相差1/4.79λ、方均根值相差1/ 112λ;動態範圍與理論值94.173至10.936 波長相差不到一個波長;準確度在量測了除去Coma之各種由可變形鏡產生之低階像差誤差,其rms誤差均在1/17個波長以內,PV誤差均在1/3個波長以內。最後並完成以本儀器進行血液抹片之初步觀察實驗,證明本系統具有良好的量測性能與未來應用於生醫量測領域之可能性。 | zh_TW |
| dc.description.abstract | Wavefront sensing devices play a crucial role in the field of optical measurement, offering advantages such as non-contact measurement and high resolution. Our team previously developed a wavefront measurement device, SPARROW (Shear Phase Analyzer, Reflective/Reflective Optical Wavefront), which utilizes a shear interferometer for lateral shearing interferometry. SPARROW features an internal right-angle rotation mechanism to ensure that the incident and outgoing light beams remain parallel. It also uses a thermally induced self-sensing thermal resistance wire to produce the phase changes required for phase-shifting interferometry. The advantages of SPARROW include a large dynamic range for wavefront measurement and a compact, portable size. However, since shearing interferometry requires measuring interference fringes in two orthogonal directions, SPARROW must rotate the entire sensor to measure fringes in each direction separately, affecting measurement accuracy and time.
This study employs the aforementioned right-angle rotation mechanism to generate shear interferometry. The mechanism consists of two perpendicular surfaces, one being a mirror and the other a shear interferometer, with a rotation axis at their intersection. This setup is similar to a retroreflector, ensuring that the incident and outgoing light beams remain parallel regardless of the incident angle. We propose an innovative approach: binding the wavefront direction with the polarization direction to simultaneously measure interference fringe images in both directions. The incident wavefront is first split into two beams, and a set of K-mirrors is used to rotate the wavefront and polarization direction of one beam by 90 degrees. Then, a PBS is used to bind the polarization direction with the wavefront direction. After interference via the right-angle rotation mechanism, another PBS separates the two directions of interference, which are then recorded by two cameras. This allows for simultaneous measurement of interference fringes in both directions, speeding up the measurement process and ensuring stability by eliminating the need for overall rotation. We also modified the reconstruction algorithm previously used. The shear interferometer in the device produces interference fringes, and the four-step phase-shifting method is employed with the thermal resistance wire to control the phase shift angle. After obtaining the fringe pattern, the wrapped phase is calculated. The boundaries of the wrapped phase need to be filled using natural extension methods to recover the missing information before performing Fourier wavefront reconstruction to obtain the wavefront. Various experiments were designed to validate the device. The repeatability achieved a peak-to-valley (PV) of 1/4.79λ and a root mean square (RMS) of 1/112λ. The dynamic range deviation from the theoretical value was less than one wavelength, ranging from 94.173 to 10.936 wavelengths. The accuracy, when measuring various low-order aberrations produced by a deformable mirror with the removal of coma, showed RMS errors within 1/17 wavelength and PV errors within 1/3 wavelength. Finally, preliminary observation experiments of blood smears using the device demonstrated its excellent measurement performance and potential for future applications in biomedical measurement. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:25:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-11T16:25:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iii ABSTRACT v 目次 vii 圖次 x 表次 xv 第1章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 研究目標 4 1.4 論文架構 4 第2章 波前感測技術 5 2.1 光波前量測原理 5 2.2 光程差直接檢測法 9 2.2.1 斐索干涉儀(Fizeau Interferometer) 9 2.2.2 太曼格林干涉儀(Twyman Green Interferometer) 10 2.2.3 馬赫-曾德爾干涉儀(Mach-Zehnder interferometer) 11 2.3 波前間接檢測法 13 2.3.1 哈特曼測試(Hartmann Test) 13 2.3.2 謝克·哈特曼感測器(Shack-Hartmann Sensor) 14 2.4 量測相位差之波前量測方法 15 第3章 橫向剪切干涉理論 18 3.1 干涉原理 18 3.2 干涉片原理 19 3.3 相位移法 20 3.4 光程差與剪切干涉片旋轉角度 21 3.5 偏振態反射率分析 26 第4章 波前重建演算法 29 4.1 波前重建算法理論 29 4.1.1 波前重建演算法概述 29 4.1.2 解帕松方程式推導 30 4.1.3 格行掃描效應與改進方法 39 4.1.4 函數擬合法與自然填充法 44 4.2 解相位包裹與波前重建步驟 47 4.3 向量化運算 51 4.4 波前誤差探討 52 4.4.1 理論最優解 52 4.4.2 斜率初始條件設定與誤差 53 4.4.3 波前振幅大小與誤差 57 4.4.4 波前重建方式與誤差 58 第5章 光機設計 63 5.1 SPARROW之設計理念 63 5.2 光機構設計 67 5.2.1 設計理念 68 5.2.2 零件規格 71 5.3 自感應熱阻絲制動器之安裝與驗證 74 5.3.1 系統配置 74 5.3.2 熱阻絲理論與驗證 77 第6章 實驗結果與討論 82 6.1 重複性分析 82 6.1.1 光路設計 82 6.1.2 測量結果與分析 82 6.2 動態範圍分析 84 6.2.1 光路設計 84 6.2.2 測量結果與分析 85 6.2.3 動態範圍與商用感測器比較 88 6.3 準確度分析 89 6.3.1 實驗光路設計 89 6.3.2 使用儀器之規格與操作 91 6.3.3 準直與測量步驟 94 6.3.4 測量結果與分析 96 6.4 五步相位移法之實驗 103 6.5 波前分析儀應用於血液抹片之觀察 105 6.5.1 血液抹片製作 106 6.5.2 抹片血液抹片量測與結果 107 第7章 結果與未來展望 111 7.1 結論 111 7.2 未來展望 111 參考資料 112 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 光波前測量 | zh_TW |
| dc.subject | 橫向剪切干涉 | zh_TW |
| dc.subject | 光波前重建 | zh_TW |
| dc.subject | wavefront reconstruction | en |
| dc.subject | lateral shearing wavefront sensing | en |
| dc.subject | wavefront sensing | en |
| dc.title | 一種新的剪切波前分析儀開發 | zh_TW |
| dc.title | Development of a new lateral shearing wavefront analyzer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃君偉;李舒昇;李翔傑;廖愷修 | zh_TW |
| dc.contributor.oralexamcommittee | Jiun-Woei Huang;Shu-Sheng Lee;Hsiang-Chieh Lee;Kai-Hsiu Liao | en |
| dc.subject.keyword | 橫向剪切干涉,光波前測量,光波前重建, | zh_TW |
| dc.subject.keyword | lateral shearing wavefront sensing,wavefront sensing,wavefront reconstruction, | en |
| dc.relation.page | 114 | - |
| dc.identifier.doi | 10.6342/NTU202403670 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2026-08-07 | - |
| Appears in Collections: | 應用力學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf Restricted Access | 24.93 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
