請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95504完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫珍理 | zh_TW |
| dc.contributor.advisor | Chen-li Sun | en |
| dc.contributor.author | 張神瑋 | zh_TW |
| dc.contributor.author | Shen-Wei Chang | en |
| dc.date.accessioned | 2024-09-11T16:13:32Z | - |
| dc.date.available | 2024-09-12 | - |
| dc.date.copyright | 2024-09-11 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | [1] J. L. Gustafson, "Moore’s Law," in Encyclopedia of Parallel Computing, D. Padua Ed. Boston, MA: Springer US, 2011, pp. 1177-1184.
[2] H. Y. Zhang, D. Pinjala, and T. Poi-Siong, "Thermal management of high power dissipation electronic packages: from air cooling to liquid cooling," in Proceedings of the 5th Electronics Packaging Technology Conference (EPTC 2003), 2003, pp. 620-625, doi: 10.1109/EPTC.2003.1271593. [3] N. A. Pambudi, A. Sarifudin, R. A. Firdaus, D. K. Ulfa, I. M. Gandidi, and R. Romadhon, "The immersion cooling technology: current and future development in energy saving," Alexandria Engineering Journal, vol. 61, no. 12, pp. 9509-9527, 2022, doi: 10.1016/j.aej.2022.02.059. [4] R. Xu, G. Wang, and P. Jiang, "Spray cooling on enhanced surfaces: a review of the progress and mechanisms," Journal of Electronic Packaging, vol. 144, no. 1, 2021, doi: 10.1115/1.4050046. [5] S. A. Nada, R. M. El-Zoheiry, M. Elsharnoby, and O. S. Osman, "Experimental investigation of hydrothermal characteristics of data center servers’ liquid cooling system for different flow configurations and geometric conditions," Case Studies in Thermal Engineering, vol. 27, p. 101276, 2021, doi: 10.1016/j.csite.2021.101276. [6] O. S. Osman, R. M. El-Zoheiry, M. Elsharnoby, and S. A. Nada, "Performance enhancement and comprehensive experimental comparative study of cold plate cooling of electronic servers using different configurations of mini-channels flow," Alexandria Engineering Journal, vol. 60, no. 5, pp. 4451-4459, 2021, doi: 10.1016/j.aej.2021.03.027. [7] A. Faghri, "Review and advances in heat pipe science and technology," Journal of Heat Transfer, vol. 134, no. 12, 2012, doi: 10.1115/1.4007407. [8] T. G. Karayiannis and M. M. Mahmoud, "Flow boiling in microchannels: fundamentals and applications," Applied Thermal Engineering, vol. 115, pp. 1372-1397, 2017, doi: 10.1016/j.applthermaleng.2016.08.063. [9] D. Deng, L. Zeng, and W. Sun, "A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks," International Journal of Heat and Mass Transfer, vol. 175, p. 121332, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121332. [10] M. A. Chan, C. R. Yap, and K. C. Ng, "Pool boiling heat transfer of water on finned surfaces at near vacuum pressures," Journal of Heat Transfer, vol. 132, no. 3, 2009, doi: 10.1115/1.4000054. [11] M. Shojaeian and A. Koşar, "Pool boiling and flow boiling on micro- and nanostructured surfaces," Experimental Thermal and Fluid Science, vol. 63, pp. 45-73, 2015, doi: 10.1016/j.expthermflusci.2014.12.016. [12] S. G. Kandlikar, "Heat transfer mechanisms during flow boiling in microchannels," Journal of Heat Transfer, vol. 126, no. 1, pp. 8-16, 2004, doi: 10.1115/1.1643090. [13] N. H. Naqiuddin, L. H. Saw, M. C. Yew, F. Yusof, T. C. Ng, and M. K. Yew, "Overview of micro-channel design for high heat flux application," Renewable and Sustainable Energy Reviews, vol. 82, pp. 901-914, 2018, doi: 10.1016/j.rser.2017.09.110. [14] B. Markal, B. Kul, M. Avci, and R. Varol, "Effect of gradually expanding flow passages on flow boiling of micro pin fin heat sinks," International Journal of Heat and Mass Transfer, vol. 197, p. 123355, 2022, doi: 10.1016/j.ijheatmasstransfer.2022.123355. [15] C. T. Lu and C. Pan, "Convective boiling in a parallel microchannel heat sink with a diverging cross section and artificial nucleation sites," Experimental Thermal and Fluid Science, vol. 35, no. 5, pp. 810-815, 2011, doi: 10.1016/j.expthermflusci.2010.08.018. [16] A. Reeser, A. Bar-Cohen, and G. Hetsroni, "High quality flow boiling heat transfer and pressure drop in microgap pin fin arrays," International Journal of Heat and Mass Transfer, vol. 78, pp. 974-985, 2014, doi: 10.1016/j.ijheatmasstransfer.2014.05.021. [17] W. Wan, D. Deng, Q. Huang, T. Zeng, and Y. Huang, "Experimental study and optimization of pin fin shapes in flow boiling of micro pin fin heat sinks," Applied Thermal Engineering, vol. 114, pp. 436-449, 2017, doi: 10.1016/j.applthermaleng.2016.11.182. [18] R. Sun, J. Hua, X. Zhang, and X. Zhao, "Experimental study on the effect of shape on the boiling flow and heat transfer characteristics of different pin-fin microchannels," Heat and Mass Transfer, vol. 57, no. 12, pp. 2081-2095, 2021, doi: 10.1007/s00231-021-03092-z. [19] L. Qin, S. Li, X. Zhao, and X. Zhang, "Experimental research on flow boiling characteristics of micro pin-fin arrays with different hydrophobic coatings," International Communications in Heat and Mass Transfer, vol. 126, p. 105456, 2021, doi: 10.1016/j.icheatmasstransfer.2021.105456. [20] T. Alam, P. S. Lee, C. R. Yap, L. Jin, and K. Balasubramanian, "Experimental investigation and flow visualization to determine the optimum dimension range of microgap heat sinks," International Journal of Heat and Mass Transfer, vol. 55, no. 25, pp. 7623-7634, 2012, doi: 10.1016/j.ijheatmasstransfer.2012.07.080. [21] A. Kalani and S. G. Kandlikar, "Evaluation of pressure drop performance during enhanced flow boiling in open microchannels with tapered manifolds," Journal of Heat Transfer, vol. 136, no. 5, 2014, doi: 10.1115/1.4026306. [22] S. G. Kandlikar, T. Widger, A. Kalani, and V. Mejia, "Enhanced flow boiling over open microchannels with uniform and tapered gap manifolds," Journal of Heat Transfer, vol. 135, no. 6, 2013, doi: 10.1115/1.4023574. [23] T. L. Bergman, A. Lavine, F. P. Incropera, and D. P. DeWitt, Incropera's Principles of Heat and Mass Transfer, 8th Global ed. Hoboken, New Jersey: Wiley, 2017. [24] H. Allan, "Thermodynamic Properties of Water: Tabulation from the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use," ed: National Institute of Standards and Technology, Gaithersburg, MD, 1998. [25] F. M. White and S. A. Klein, Fluid Mechanics, 7th edition ed. New York, N.Y.: McGraw Hill, 2011. [26] R. W. Fox, A. T. McDonald, P. J. Pritchard, and J. W. Mitchell, Fluid Mechanics, 9th edition ed. Hoboken, NJ: John Wiley & Sons, 2016. [27] Y. A. Çengel and J. M. Cimbala, Fluid Mechanics : Fundamentals and Applications, 3rd ed. New York: McGraw Hill, 2014. [28] V. P. Carey, Liquid-vapor phase-change Phenomena : An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, 2nd ed. New York: Taylor and Francis, 2008. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95504 | - |
| dc.description.abstract | 本研究主要在探討斜面流道以及表面的微結構設計對於尺寸較大的加熱表面之流沸騰熱傳性能。使用斜面上蓋流道、墊片、紅銅加熱塊及下蓋組成微流道裝置,其散熱區域面積為31 mm × 25 mm,並以去離子水作為工作流體,將流體之入口溫度控制在21±1.5°C來進行流沸騰實驗。實驗中採用光滑表面、漸擴型圓形鰭片陣列與平板形鰭片三種加熱表面設計,兩種不同傾斜角度的上蓋斜面流道(2.29°和12.72°),以及兩種入出口壓力差(55 kPa和85 kPa) 作為變數來探討最佳熱傳性能表現的設計。
實驗結果顯示,表面微結構的設計使散熱面積提高,並增加沸騰時的氣泡成核點,可以降低加熱表面的溫度並且提高熱傳系數,其中以平板形鰭片的加熱表面溫度最低,此外具有微結構的加熱表面其臨界熱通量比較高,圓形鰭片陣列因為有漸擴式設計,可以幫助氣泡排除,在入口壓力為70 kPa的實驗中,加熱表面溫度在107.3°C時可達最大臨界熱通量0.87 W mm-2。而增加上蓋流道的傾斜角度除了可以增加質量流率也可以提升氣泡排除效果,並提高臨界熱通量值,但傾斜角度較大的上蓋流道會產生較大的流道間隙,工作流體從間隙離開微流道,並未全部接觸到加熱表面,對於能夠產生較多氣泡的微結構加熱表面,傾斜角度較大的上蓋流道不易帶走表面剛生成之氣泡,使加熱表面的溫度可能會高於上蓋流道傾斜角度較小的實驗。另外,提高入口端與出口端壓力差可以增加質量流率並提升散熱效果,壓力差較大的熱傳係數會高於壓差較小的實驗。在入口壓力為100 kPa時,使用平板形鰭片加熱表面以及上蓋流道傾斜角度較大的組合,其沸騰熱傳性能最佳,此時的最大熱通量為0.98 W mm-2,對應的加熱表面溫度為101.9°C。 | zh_TW |
| dc.description.abstract | This study investigates the use of the tapered manifold on flow boiling over a large-area microstructured surface. The microchannel device is composed of the tapered manifold, copper heated block with microstructured surface, sealed by a teflon washer. The heat dissipation area is 31 mm × 25 mm. Deionized water is used as the working fluid and held at 21±1.5°C at the inlet. Three microstructure designs are studied: plain surface, shrinking circular fins, and plate fins. The inclined angle of the tapered manifold is 2.29° and 12.72°, and the inlet pressure is kept at 70 kPa and 100 kPa, while the outlet pressure is maintained at 15 kPa to investigate their influence.
At the inlet pressure of 100 kPa, using the plate fins and the tapered manifold with a large inclined angle achieves the best heat transfer performance of flow boiling in this study. Because the fins provide extended surfaces of heat transfer and bubble nucleation sites, microstructured surfaces is found to reduce the wall temperature and obtain higher critical heat flux (CHF). Among these designs, the plate-fin surface results in the lowest wall temperature, and the shrinking circular-fin surface leads to the highest CHF. Additionally, increasing the inclined angle of the tapered manifold also helps to improve CHF due to its larger mass flow rate and easier bubble removal. However, a large inclined angle also increases the gap between the manifold and the heated surface. This prevents the fluid from flowing between fins, resulting in the elevation of wall temperature. Increasing the pressure difference between the inlet and outlet increases the mass flow rate and reduces the wall temperature. A maximum heat flux of 0.98 W mm-2 with a wall temperature of 101.9°C is achieved by using the plate-fin surface and the tapered manifold with a large inclined angle under a pressure difference of 85 kPa. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:13:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-11T16:13:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv 目次 vi 符號索引 ix 圖次 xii 表次 xvii 第一章 導論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 加熱表面結構的影響 2 1.2.2 流道設計的影響 4 1.3 研究目的 6 第二章 實驗架構與不確定性分析 7 2.1 實驗設備 7 2.1.1 微流道裝置 7 2.1.2 加熱裝置 10 2.1.3 壓力控制裝置 11 2.1.4 流體循環裝置 11 2.1.5 流體冷凝裝置 13 2.1.6 資料擷取系統 13 2.2 實驗量測流程 14 2.3 實驗數據分析 16 2.4 不確定性分析 18 2.4.1 溫度量測 19 2.4.2 熱通量 20 2.4.3 加熱塊表面溫度 20 2.4.4 壓力 22 2.4.5 工作流體飽和溫度 24 2.4.6 過熱溫度 24 2.4.7 沸騰熱傳系數 25 2.4.8 質量流率 25 第三章 實驗結果與討論 27 3.1 加熱表面比較 27 3.1.1 熱通量 27 3.1.2 流沸騰曲線 30 3.1.3 熱傳係數 32 3.1.4 質量流率 34 3.1.5 加熱表面的影響 35 3.2 流道傾斜角度比較 36 3.2.1 熱通量 36 3.2.2 流沸騰曲線 37 3.2.3 熱傳係數 38 3.2.4 質量流率 40 3.2.5 流道傾斜角度的影響 42 3.3 不同壓力差比較 43 3.3.1 熱通量 43 3.3.2 流沸騰曲線 45 3.3.3 熱傳係數 46 3.3.4 質量流率 48 3.3.5 入口端與出口端之間壓力差的影響 48 第四章 結論與建議 50 4.1 結論 50 4.2 建議 51 參考文獻 53 附錄 58 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 流沸騰 | zh_TW |
| dc.subject | 斜面流道 | zh_TW |
| dc.subject | 表面微結構 | zh_TW |
| dc.subject | 過冷流體 | zh_TW |
| dc.subject | 壓力差 | zh_TW |
| dc.subject | tapered manifold | en |
| dc.subject | microstructured surface | en |
| dc.subject | subcooled fluid | en |
| dc.subject | flow boiling | en |
| dc.subject | pressure difference | en |
| dc.title | 斜面通道應用於大面積微結構加熱表面的過冷流沸騰熱傳 | zh_TW |
| dc.title | Application of tapered manifolds for subcooled flow boiling on large-area microstructured surface | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃美嬌;許麗;廖英志 | zh_TW |
| dc.contributor.oralexamcommittee | Mei-Jiau Huang;Li Xu;Ying-Chih Liao | en |
| dc.subject.keyword | 流沸騰,表面微結構,斜面流道,壓力差,過冷流體, | zh_TW |
| dc.subject.keyword | flow boiling,microstructured surface,tapered manifold,pressure difference,subcooled fluid, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202402704 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2029-08-01 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-08-01 | 2.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
