Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95495
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭浩明zh_TW
dc.contributor.advisorHao-Ming Hsiaoen
dc.contributor.author沈鈺珽zh_TW
dc.contributor.authorYu-Ting Shenen
dc.date.accessioned2024-09-11T16:10:42Z-
dc.date.available2024-09-12-
dc.date.copyright2024-09-11-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation[1] “111年國人死因統計結果,” 中華民國衛生福利部, 2022. Accessed: Apr. 25, 2024. [Online]. Available: https://www.mohw.gov.tw/cp-6563-74869-1.html.
[2] “The Top 10 Causes of Death,” World Health Organization, 2022. Accessed: Apr. 25, 2024. [Online]. Available: https//www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
[3] “Diagnostic Criteria for Acute Myocardial Infarction: Cardiac Troponins, ECG & Symptoms,” ECG & Echo Learning, 2023. Accessed: Apr. 25, 2024. [Online]. Available: https://ecgwaves.com/topic/diagnostic-criteria-acute-myocardial-infarction-troponins-ecg-symptoms/.
[4] “What Is Coronary Artery Bypass Grafting?,” National Heart, Lung, and Blood Institute, 2022. Accessed: Apr. 25, 2024. [Online]. Available: https://www.nhlbi.nih.gov/health/coronary-artery-bypass-grafting.
[5] J. H. Alexander, and P. K. Smith, “Coronary-Artery Bypass Grafting,” The New England Journal of Medicine, Vol. 374, pp. 1954-1964, 2016.
[6] “Heart & Lung Programme,” CVSKL, 2023. Accessed: Apr. 26, 2024. [Online]. Available: https://medium.com/@cvskl.ccfm/heart-lung-programme-4cd84e701961.
[7] E. D. Grech, “Percutaneous coronary intervention. I: History and development,” Bmj, Vol. 326, pp. 1080-1082, 2003.
[8] A. Yartsev, “Arterial cannulation technique,” 2015. Accessed: Apr. 26, 2024. [Online]. Available: https://derangedphysiology.com/main/cicm-primary-exam/required-reading/cardiovascular-system/Chapter%20756/arterial-cannulation-technique.
[9] “Coronary artery disease,” Institute for Quality and Efficiency in Health Care 2022. Accessed: May. 1, 2024. [Online]. Available: https://www.informedhealth.org/coronary-artery-disease.html#topic-sources.
[10] D. Buccheri, D. Piraino, G. Andolina, and B. Cortese, “Understanding and managing in-stent restenosis: a review of clinical data, from pathogenesis to treatment,” Journal of Thoracic Disease, Vol. 8, No. 10, pp. 1150-1162, 2016.
[11] C. H. Kuo, and J. S. Dai, “Robotics for minimally invasive surgery: a historical review from the perspective of kinematics,” International symposium on history of machines and mechanisms, pp. 337-354, 2009.
[12] “da Vinci Surgery,” Cleveland Clinic, 2021. Accessed: May. 2, 2024. [Online]. Available: https://my.clevelandclinic.org/health/treatments/16908-da-vinci-surgery.
[13] S. A. Antoniou, G. A. Antoniou, A. I. Antoniou, and F.A. Granderath, “Past, Present, and Future of Minimally Invasive Abdominal Surgery,” Journal of the Society of Laparoendoscopic Surgeons, Vol. 19, No. 3, 2015.
[14] “達文西機械手臂微創手術介紹,” 國泰綜合醫院, 2023. Accessed: May. 3, 2024. [Online]. Available: https://www.cgh.org.tw/ec99/rwd1320/category.asp?category_id=139.
[15] “機器人開刀的時代來了! 達文西手術系統(Da Vinci surgery system)-讓大手術不等於大傷口,” 亞東紀念醫院, 2010. Accessed: May. 3, 2024. [Online]. Available: https://www.femh.org.tw/epaperadmin/viewarticle.aspx?ID=2850.
[16] R. Beyar, L. Gruberg, D. Deleanu, A. Roguin, Y. Almagor, S. Cohen, G. Kumar, and T. Wenderow, “Remote-control percutaneous coronary interventions: concept, validation, and first-in-humans pilot clinical trial,” Journal of the American College of Cardiology, Vol. 47, No. 2, pp. 296-300, 2006.
[17] J. Guo, S. Guo, and Y. Yu, “Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery,” Biomedical microdevices, Vol. 18, pp. 1-16, 2016.
[18] Y. Wang, S. Guo, N. Xiao, Y. Li, and Y. Jiang, “Online measuring and evaluation of guidewire inserting resistance for robotic interventional surgery systems,” Microsystem Technologies, Vol. 24, No. 7, pp. 3467-3477, 2018.
[19] S. B. Pancholy, S. C. Shah, and T. M. Patel, “Safety and Efficacy of Robotic-Assisted PCI,” Current Cardiology Reports, Vol. 24, No. 7, pp. 817-821, 2022.
[20] J. F. Granada, J. A. Delgado, M. P. Uribe, A. Fernandez, G. Blanco, M.B. Leon, and G. Weisz, “First-in-human evaluation of a novel robotic-assisted coronary angioplasty system,” JACC: Cardiovascular Interventions, Vol. 4, No. 4, pp. 460-465, 2011.
[21] E. Maor, M. F. Eleid, R. Gulati, A. Lerman, and G. S. Sandhu, “Current and future use of robotic devices to perform percutaneous coronary interventions: a review,” Journal of the American Heart Association, Vol. 6, No. 7, 2017.
[22] R. V. Swaminathan, and S. V. Rao, “Robotic‐assisted transradial diagnostic coronary angiography,” Catheterization and Cardiovascular Interventions, Vol. 92, No. 1, pp. 54-57, 2018.
[23] E. Mahmud, A. Pourdjabbar, L. Ang, O. Behnamfar, M. P. Patel, and R. R. Reeves, “Robotic technology in interventional cardiology: Current status and future perspectives,” Catheterization and Cardiovascular Interventions, Vol. 90, No. 6, pp. 956-962, 2017.
[24] “Corindus,” Farm 2018. Accessed: Jun. 10, 2024. [Online]. Available: https://www.farmpd.com/medical-equipment-product-development/corindus.
[25] Z. K. Wegermann, R. V. Swaminathan, and S. V. Rao “Cath lab robotics: paradigm change in interventional cardiology?” Current Cardiology Reports, Vol. 21, pp. 1-7, 2019.
[26] 彭成豪,“心導管手術自動化設備之開發”,碩士論文,國立臺灣大學,臺北市,2020。
[27] J. Smoot, “旋轉編碼器:選擇絕對型還是增量型?” 2018. Accessed: Jun. 21, 2024. [Online]. Available: https://www.digikey.tw/zh/articles/rotary-encoder-options-absolute-or-incremental.
[28] V. V. Rankovska, and G. D. Goranov, “Interrupts in Teaching Microcontrollers Using Arduino.” 2020 XXIX International Scientific Conference Electronics (ET). IEEE, pp. 1-4, 2020.
[29] “TSM-Integrated-Step-Serve,” 鳴志自動化設備有限公司, 2018. Accessed: Jul. 2, 2024. [Online]. Available: https://www.ipcmotors.com/wp-content/uploads/2024/03/TSM-Integrated-Step-Servo.pdf.
[30] “單軸機器人,” TBIMOTION, 2019. [Online]. Available: https://www.tmts.tw/storage/files/12eceef68aae.pdf. [Accessed: Jul. 2, 2024].
[31] “ELECTROMAGNETIC POWDER CLUTCH & BRAKE,” Helistar CO., LTD, 2018. Accessed: Jul. 3, 2024. [Online]. Available: https://www.helistar.com.tw/ebook/EBook_en.html#page/55.
[32] “ROTORY TORQUE SENSOR,” JIHSENSE, 2023. Accessed: Jul. 3, 2024. [Online]. Available: https://jihsense-loadcell.com/pdf/rt.pdf.
[33] “JS-420 DUAL DISPLAY TORQUE CONTROLLER,” JIHSENSE, 2023. Accessed: Jul. 3, 2024. [Online]. Available: https://jihsense-loadcell.com/pdf/js420m.pdf.
[34] “ML LOAD CELL,” JIHSENSE, 2023. Accessed: Jul. 3, 2024. [Online]. Available: https://jihsense-loadcell.com/pdf/ml.pdf.
[35] “JS-320 DUAL DISPLAY LOAD CONTROLLER,” JIHSENSE, 2023. Accessed: Jul. 3, 2024. [Online]. Available: https://jihsense-loadcell.com/pdf/js320.pdf.
[36] “Z-EFG-20 產品手冊,” HITBOT, 2023. Accessed: Jul. 3, 2024. [Online]. Available: https://cn.hitbot.cc/hitbot/product/actuator/efg/z-efg-20/z-efg-20-manual.pdf.
[37] H. M. K. K. M. B. Herath, S. V. A. S. H. Ariyathunge, and H. D. N. S. Priyankara, “Development of a data acquisition and monitoring system based on MODBUS RTU communication protocol.” Development, Vol. 5, No. 6, pp. 433-440, 2020.
[38] “TSM17S/Q集成式步進伺服馬達硬件手冊,” 鳴志自動化設備有限公司, 2013. Accessed: Jul. 6, 2024. [Online]. Available: https://file.elecfans.com/web1/M00/8E/3C/o4YBAFy0CbqAAxJ1AC_qC4YzrYw687.pdf.
[39] “Host Command Reference,” MOONS’, 2014. Accessed: Jul. 6, 2024. [Online]. Available: https://www.moonsindustries.com/medias/HOST-COMMAND- reference.pdf?context=bWFzdGVyfHJvb3R8NzEzMDczM3xhcHBsaWNhdGlvbi9wZGZ8aDI0L2hmOC84ODE2MTE3Njc4MTEwLnBkZnxiNzY0Y2ZlNDc2Njk1NjA2MmEzNWRmYTM5NzBhOTA5OWI2OTRhZjZjMDQ4OGQ0M2UzMDA2NTFiZWJlYTdmNmY3&attachment=true.
[40] X. Lin, “Multi-behaviors finite state machine.” IEEE Youth Conference on Information, Computing and Telecommunication, pp. 201-203, 2009.
[41] T. L. Blevins, “PID advances in industrial control.” IFAC Proceedings Volumes, Vol. 45, No. 3, pp. 23-28, 2012.
[42] R. P. Borase, D. K. Maghade, S. Y. Sondkar, and S. N. Pawar, “A review of PID control, tuning methods and applications,” International Journal of Dynamics and Control, Vol. 9, pp. 818-827, 2021.
[43] J. M. Belman-Flores, D. A. Rodríguez-Valderrama, S. Ledesma, J. J. García-Pabón, D. Hernández, and D. M. Pardo-Cely, “A review on applications of fuzzy logic control for refrigeration systems,” Applied Sciences, Vol. 12, No. 3, pp. 1302, 2022.
[44] R. Babuška, and H. B.Verbruggen, “An overview of fuzzy modeling for control,” Control Engineering Practice, Vol. 4, No. 11, pp. 1593-1606, 1996.
[45] “FG-5005,” YALAB儀 器 科 技 網 , 2020. Accessed: Jul 12, 2024. [Online]. Available: https://www.yalab.com.tw/sfront/Proddesp.asp?Pid=FG-5005.
[46] W. T. Fai, L. I. A. O. Ting, L. M. Ha, W. Y. In, and C. H. E. O. N. G. Ha, “經股動脈穿刺介入術後股動脈血管內縫合技術的回顧性分析,” 鏡湖醫學, Vol. 20, No. 2, pp. 19-23+, 2020.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95495-
dc.description.abstract心導管手術因術後傷口小、手術時間與恢復時間短等特性,逐漸取代心臟繞道手術,成為治療心肌梗塞的主流方法。然而,心導管手術過程中,醫生和護理人員會長時間暴露在輻射環境中,對身體造成負面影響。為了解決這一問題,本研究開發了一套全自動化心導管手術系統,旨在提升心導管手術的安全性與效率。
這套系統包括醫生端設備、病人端設備及自動送線設備。醫生端設備使醫生能在手術室外使用與臨床手術一致的推拉導絲和旋轉導絲手法進行操作;病人端設備則代替醫生在手術室內執行手術,具有旋轉和推送導絲的功能,並將導絲進入病人體內的阻力值回傳給醫生端設備,實現力回饋;自動送線設備則之功能為自動更換導絲或導管,可達成無人輔助手術過程,減少醫護人員的輻射暴露。
在硬體設計方面,本研究採用了兩顆步進伺服馬達設計出可在單一軸上進行位移和旋轉的單軸機械手臂,並在醫生端設備和病人端設備之間加入控制器,以減少響應誤差。軟體方面,使用C#語言撰寫人機介面,並加入有限狀態機進行程式流程管理。通訊上,使用UART與Modbus RTU通訊協定,使三個設備能相互傳輸控制命令與感測器數值。
最後,本研究開發的全自動化心導管手術系統有效提升了手術的安全性和效率,並且通過多次實驗驗證了其實際手術的可行性。
zh_TW
dc.description.abstractPercutaneous Coronary Intervention (PCI) is gradually replacing Coronary Artery Bypass Grafting (CABG) as the mainstream method for treating acute myocardial infarction due to its smaller postoperative wounds and reduced surgery and recovery time. However, during the PCI procedure, surgeons and nurses are exposed to radiation for extended periods, which negatively impacts their health. To address this issue, this study developed a fully-automated surgical system aimed at enhancing the safety and efficiency of the procedure.
This system is divided into three major components: the surgeon-side, the patient-side, and the automatic wire delivery system. The surgeon-side allows the surgeons to perform operations outside the operating room using push-pull and rotational wire techniques consistent with clinical procedures. The patient-side replaces the doctor in performing the surgery in the operating room. It has the function of rotating and pushing the guidewire and transmitting the resistance value of the guidewire as it enters the patient's body back to the surgeon-side to achieve force feedback. The automatic wire delivery system automatically changes the guidewires and catheters during surgeries, eliminating the need for medical staff to manually change them and thereby reducing their radiation exposure.
In terms of hardware design, this study utilized two stepper servo motors to design a single-axis robotic arm capable of both displacement and rotation on a single axis. A controller was added between the surgeon-side and patient-side to minimize response errors. For software, the human-machine interface was programmed using C#, incorporating a finite state machine to manage the program flow. Communication between devices was facilitated using UART and Modbus RTU protocols, enabling the three devices to transmit control commands and sensor values to each other.
Ultimately, the fully-automated surgical system developed in this study significantly improved the safety and efficiency of the procedure. Its feasibility in actual surgeries was validated through multiple experiments.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:10:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-11T16:10:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目 次 v
圖 次 vii
表 次 xi
第一章 緒論 1
1.1 前言 1
1.2 心導管手術 2
1.3 研究動機與架構 4
第二章 文獻回顧 6
2.1 達文西手術機器人 6
2.2 心導管手術機器人 7
第三章 硬體設計 10
3.1 醫生端設備 11
3.1.1 機構設計 11
3.1.2 操作方法 16
3.1.3 控制方法 17
3.2 病人端設備 21
3.2.1 機構設計 21
3.2.2 運作方式 31
3.2.3 控制方法 34
3.3 自動送線設備 37
3.3.1 機構設計 39
3.3.2 運行與控制方式 42
第四章 通訊架構與軟體控制系統 44
4.1 使用者介面 44
4.2通訊架構 47
4.3 軟體架構 48
第五章 實驗分析與結果討論 50
5.1 控制系統實驗 50
5.1.1 實驗方法 52
5.1.2 PID控制器 53
5.1.3 模糊控制器 60
5.1.4 結果與討論 64
5.2 力回饋實驗 66
5.2.1 角度與阻力值 66
5.2.2 血管模型 68
5.2.3 實際應用實驗 69
5.3 手術模擬操作實驗 70
5.3.1 手術流程 70
5.3.3 結果與討論 71
第六章 結論與未來展望 72
參考文獻 74
-
dc.language.isozh_TW-
dc.subject力回饋zh_TW
dc.subject心導管手術zh_TW
dc.subject模糊控制zh_TW
dc.subjectPID控制zh_TW
dc.subject自動化系統zh_TW
dc.subjectFuzzy controlleren
dc.subjectPercutaneous Coronary Interventionen
dc.subjectAutomated Systemen
dc.subjectForce feedbacken
dc.subjectPID controlleren
dc.title全自動化心導管手術系統之設計與開發zh_TW
dc.titleDesign and Development of a Fully-Automated Surgical System for Percutaneous Coronary Interventionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee盧彥文;李典儒zh_TW
dc.contributor.oralexamcommitteeYen-Wen Lu;Dian-Ru Lien
dc.subject.keyword心導管手術,自動化系統,力回饋,PID控制,模糊控制,zh_TW
dc.subject.keywordPercutaneous Coronary Intervention,Automated System,Force feedback,PID controller,Fuzzy controller,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202403747-
dc.rights.note未授權-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
9.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved