請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95493完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂良鴻 | zh_TW |
| dc.contributor.advisor | Liang-Hung Lu | en |
| dc.contributor.author | 毛若穎 | zh_TW |
| dc.contributor.author | Ruo-Ying Mao | en |
| dc.date.accessioned | 2024-09-11T16:10:06Z | - |
| dc.date.available | 2024-09-12 | - |
| dc.date.copyright | 2024-09-11 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | [1] E. Charbon, F. Sebastiano, M. Babaie, A. Vladimirescu, M. Shahmohammadi, R. B.Staszewski, H. A. Homulle, B. Patra, J. P. van Dijk, R. M. Incandela, L. Song, and B. Valizadehpasha, “15.5 Cryo-CMOS circuits and systems for scalable quantum computing,” in 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 264–265.
[2] B. Patra, R. M. Incandela, J. P. G. van Dijk, H. A. R. Homulle, L. Song, M. Shahmohammadi, R. B. Staszewski, A. Vladimirescu, M. Babaie, F. Sebastiano, and E. Charbon, “Cryo-CMOS Circuits and Systems for Quantum Computing Applications,” IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 309–321, 2018. [3] J. P. G. Van Dijk, B. Patra, S. Subramanian, X. Xue, N. Samkharadze, A. Corna, C. Jeon, F. Sheikh, E. Juarez-Hernandez, B. P. Esparza, H. Rampurawala, B. R. Carlton, S. Ravikumar, C. Nieva, S. Kim, H.-J. Lee, A. Sammak, G. Scappucci, M. Veldhorst, L. M. K. Vandersypen, E. Charbon, S. Pellerano, M. Babaie, and F. Sebastiano, “A Scalable Cryo-CMOS Controller for the Wideband Frequency-Multiplexed Control of Spin Qubits and Transmons,” IEEE Journal of Solid-State Circuits, vol. 55, no. 11, pp. 2930–2946, 2020. [4] K. Kang, D. Minn, S. Bae, J. Lee, S. Kang, M. Lee, H.-J. Song, and J.-Y. Sim, “A 40-nm Cryo-CMOS Quantum Controller IC for Superconducting Qubit,” IEEE Journal of Solid-State Circuits, vol. 57, no. 11, pp. 3274–3287, 2022. [5] Y. Peng, A. Ruffino, T.-Y. Yang, J. Michniewicz, M. F. Gonzalez-Zalba, and E. Charbon, “A Cryo-CMOS Wideband Quadrature Receiver With Frequency Synthesizer for Scalable Multiplexed Readout of Silicon Spin Qubits,” IEEE Journal of Solid-State Circuits, vol. 57, no. 8, pp. 2374–2389, 2022. [6] Y. Guo, Q. Liu, W. Huang, Y. Li, T. Tian, N. Wu, S. Zhang, T. Li, Z. Wang, N. Deng, Y. Zheng, and H. Jiang, “29.4 A Cryo-CMOS Quantum Computing Unit Interface Chipset in 28nm Bulk CMOS with Phase-Detection Based Readout and Phase-Shifter Based Pulse Generation,” in 2024 IEEE International Solid-State Circuits Conference (ISSCC), vol. 67, 2024, pp. 476–478. [7] C. Doan, S. Emami, A. Niknejad, and R. Brodersen, “Millimeter-wave CMOS design,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 144–155, 2005. [8] M. Frounchi, A. Alizadeh, C. T. Coen, and J. D. Cressler, “A Low-Loss Broadband Quadrature Signal Generation Network for High Image Rejection at Millimeter-Wave Frequencies,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5336–5346, 2018. [9] X. Yi, C. C. Boon, H. Liu, J. F. Lin, and W. M. Lim, “A 57.9-to-68.3 GHz 24.6 mW Frequency Synthesizer With In-Phase Injection-Coupled QVCO in 65 nm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol. 49, no. 2, pp. 347–359, 2014. [10] L. Zhang, N.-C. Kuo, and A. M. Niknejad, “A 37.5–45 GHz Superharmonic-Coupled QVCO With Tunable Phase Accuracy in 28 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 54, no. 10, pp. 2754–2764, 2019. [11] A. Iesurum, D. Manente, F. Padovan, M. Bassi, and A. Bevilacqua, “Analysis and Design of Coupled PLL-Based CMOS Quadrature VCOs,” IEEE Journal of Solid-State Circuits, vol. 59, no. 1, pp. 294–306, 2024. [12] G. Huang and B.-S. Kim, “Low Phase Noise Self-Switched Biasing CMOS LC Quadrature VCO,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 2, pp. 344–351, 2009. [13] P.-Y. Wang, G.-Y. Su, Y.-C. Chang, D.-C. Chang, and S. S. H. Hsu, “A transformer-based current-reuse qvco with an fom up to −200.5 dbc/hz,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 6, pp. 749–753, 2018. [14] A. Hajimiri and T. Lee, “A general theory of phase noise in electrical oscillators,” IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179–194, 1998. [15] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in 1996 IEEE International Solid-State Circuits Conference. Digest of TEchnical Papers, ISSCC, 1996, pp. 392–393. [16] J.-S. Syu, H.-L. Lu, and C. Meng, “A 0.6-V 30 GHz CMOS Quadrature VCO Using Microwave 1:1:1 Trifilar Transformer,” IEEE Microwave and Wireless Components Letters, vol. 22, no. 2, pp. 88–90, 2012. [17] J. Lee, “A 3-to-8-GHz fast-hopping frequency synthesizer in 0.18-/spl mu/m CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp. 566–573, 2006. [18] L.-S. Lai, H.-H. Hsieh, and L.-H. Lu, “An Image-Band-Rejection Technique for Error Detection of On-Chip Quadrature Phases,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 10, pp. 2173–2179, 2008. [19] X. Chen, Y. Hu, T. Siriburanon, J. Du, R. B. Staszewski, and A. Zhu, “A 30-GHz Class-F Quadrature DCO Using Phase Shifts Between Drain–Gate–Source for Low Flicker Phase Noise and I/Q Exactness,” IEEE Journal of Solid-State Circuits, vol. 58, no. 7, pp. 1945–1958, 2023. [20] N. Xi, F. Lin, and T. Ye, “A Low Phase Noise, High Phase Accuracy Quadrature LC-VCO With Dual-Tail Current Biasing to Insert Reconfigurable Phase Delay,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 3, pp. 450–454, 2020. [21] B. Jiang and H. C. Luong, “A 7.9-GHz Transformer-Feedback Quadrature Oscillator With a Noise-Shifting Coupling Network,” IEEE Journal of Solid-State Circuits, vol. 52, no. 10, pp. 2636–2646, 2017. [22] C.-H. Lin and H.-Y. Chang, “A Low-Phase-Noise CMOS Quadrature Voltage-Controlled Oscillator Using a Self-Injection-Coupled Technique,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59, no. 10, pp. 623–627, 2012. [23] S.-L. Jang, T.-S. Lee, C.-W. Hsue, and C.-W. Chang, “A Low Voltage and Low Power Bottom-Series Coupled Quadrature VCO,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 11, pp. 722–724, 2009. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95493 | - |
| dc.description.abstract | 量子運算為關鍵的研究領域,其利用量子位元的疊加性和糾纏性能夠指數級地增加計算速度,從而有望在人工智慧應用中帶來革命性的進展。特定頻率的射頻訊號對於控制和讀取量子晶片中的量子位元至關重要。本研究針對超導量子位元所需的 4-8 GHz 頻率範圍提出正交相位壓控振盪器的設計。有鑑於廣泛應用於通訊收發器中的直接轉換架構,該架構利用正交相位本地振盪器直接將射頻訊號轉換至基頻,從而有效緩解鏡像問題,這是一項關鍵的電路技術。在文獻回顧中,先前的研究著重於低溫壓控振盪器的雜訊降低,但它們尚未能覆蓋 4-8 GHz 的調諧範圍。因此,本論文目標是設計一個能夠在 4 K 絕對溫度下維持 4-8 GHz 頻寬內保持精準正交相位精度的正交訊號產成器。
為了驗證提出的背閘控制技術可實現有效的相位調整,使用 0.18 μm CMOS 製程設計 16 GHz 正交壓控振盪器。量測到的頻率調整範圍是 15.66 到 16.16 GHz(3.14%),在 16.15 GHz 載波頻率 1 MHz 偏移處的相位雜訊為 -105.55 dBc/Hz。在15.9 GHz 的振盪頻率下,測得的相位誤差為 3.32°,通過手動調整背閘電壓可將相位誤差降到幾乎為零。該相位誤差調整機制能夠調整大約 10° 的相位範圍,同時保持振福誤差在可接受的範圍內。 具有相位誤差自動校正機制適用於低溫 CMOS 應用的 4-8 GHz 正交相位壓控振盪器接著被提出,利用可切換電感的雙模 LC 共振腔和數位開關電容陣列以及連續調諧變容器實現寬頻調整範圍,此外,利用正交相位偵測器和運算放大器形成負回授來實現自動相位誤差校正機制。該電路使用 TSMC 90 nm CMOS 製程製造,在絕對溫度 4K 下測量到的頻率調整範圍為 3.48 到 7.68 GHz (75.3%),在 1 MHz 偏移處的相位雜訊範圍為 -102.22 到 -114.41 dBc/Hz,在輸出頻率是 6.04 GHz 的狀態下,相位誤差自動校正機制將相位誤差從 4.56° 校正到 0.72°,每個振盪器消耗21.6 mW 的功率。 | zh_TW |
| dc.description.abstract | Quantum computing has emerged as a pivotal research area, leveraging the superposition and entanglement properties of qubits to exponentially enhance computational speed, thereby promising revolutionary advancements in AI applications. Specific frequency RF signals are crucial for controlling and reading qubits in quantum chips. This paper presents the design of a quadrature voltage-controlled oscillator (QVCO) targeting the 4-8 GHz range required for superconducting transmon qubits. Direct conversion architecture, widely utilized in communication transceivers, employs quadrature-phase local oscillators (LO) to directly convert RF to baseband, effectively mitigating image issues, which is a key circuit technology. The literature review indicates that while prior studies have focused on noise reduction in low-temperature VCOs, they fall short of covering the 4-8 GHz tuning range. Thus, our objective is to develop a quadrature generator capable of maintaining precise quadrature phase accuracy over a 4-8 GHz bandwidth at an absolute temperature of 4K.
To validate the proposed back-gate control technique for effective phase adjustment, we designed a 16 GHz QVCO using TSMC 0.18-μm CMOS process. This QVCO, incorporating a self-switched biasing technique to enhance phase noise performance, demonstrates a tuning range from 15.66 to 16.16 GHz (3.14%) and a phase noise of -105.55 dBc/Hz at a 1 MHz offset from the 16.15 GHz carrier. At a 15.9 GHz oscillation frequency, the measured phase error is 3.32°, which can be reduced to nearly zero through manual adjustment of the body voltage. The phase adjustment mechanism allows for tuning the phase error over a range of approximately 10°, while keeping the amplitude error within acceptable limits. The paper further introduces a 4-8 GHz QVCO with an automatic phase error correction mechanism for cryo-CMOS applications. The circuit architecture leverages wide tuning range techniques and an automatic correction mechanism to achieve both wide bandwidth and precise phase performance. The wide tuning range is achieved using a switchable-inductor-based dual-mode LC-tank, combined with a digital switching capacitor bank and continuous tuning varactor. The automatic phase error correction mechanism utilizes a quadrature phase detector and an operational amplifier to form negative feedback, achieving automatic phase error correction. Implemented using TSMC 90 nm CMOS process, measurements at 4K reveal a frequency range from 3.48 to 7.68 GHz (75.3%), with 1 MHz offset phase noise ranging from -102.22 to -114.41 dBc/Hz. The automatic phase error correction mechanism reduces phase error from 4.56° to 0.72°, with each VCO consuming 21.6 mW of power. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:10:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-11T16:10:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Approval i
Acknowledgments iii Chinese Abstract v Abstract vii List of Figures xiii List of Tables xvii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Fundamentals of Oscillator 5 2.1 Review of Oscillation Theory . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Circuit Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 MOSFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Inductors and Transformers . . . . . . . . . . . . . . . . . . . . 12 2.2.3 Transmission Line . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.4 Capacitors and Varactors . . . . . . . . . . . . . . . . . . . . . . 17 2.2.5 Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Cross-Coupled Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Quality Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Output Swing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.1 Phase Noise Definition . . . . . . . . . . . . . . . . . . . . . . . 25 2.4.2 Phase Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4.3 Phase Noise in LC-VCOs . . . . . . . . . . . . . . . . . . . . . 30 3 Techniques for Quadrature LO Signal Generation 35 3.1 Overview of Multi-Phase VCO Topologies . . . . . . . . . . . . . . . . . 35 3.1.1 Introduction to Multi-Phase VCOs . . . . . . . . . . . . . . . . . 35 3.1.2 Common Topologies . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 Review Previous Works of QVCO . . . . . . . . . . . . . . . . . . . . . 41 3.2.1 Off-resonance Locking . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 In-phase Injection Locking . . . . . . . . . . . . . . . . . . . . . 42 3.2.3 Quadrature Locking . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.4 Coupled phase-locked loop . . . . . . . . . . . . . . . . . . . . . 43 3.3 Design Parameters of QVCO . . . . . . . . . . . . . . . . . . . . . . . . 44 4 A 16-GHz QVCO with Phase Error Tunable Mechanism through Back-gate Control Technique 49 4.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Proposed Tunable Phase Error QVCO . . . . . . . . . . . . . . . . . . . 51 4.2.1 Self-Switched Biasing Technique . . . . . . . . . . . . . . . . . 55 4.2.2 Back-gate Control Technique . . . . . . . . . . . . . . . . . . . 56 4.2.3 Output Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 Phase Error Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4.1 Die Micrograph . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.4.2 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4.3 Measurement Result . . . . . . . . . . . . . . . . . . . . . . . . 63 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5 A 4-8 GHz QVCO with Automatic Phase Error Correction Mechanism Used in Quantum Computers 69 5.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2 Circuit Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3.1 Quadrature VCO . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3.2 Switchable Inductor . . . . . . . . . . . . . . . . . . . . . . . . 76 5.3.3 Switched-Capacitor Bank . . . . . . . . . . . . . . . . . . . . . 79 5.3.4 Mixer-Based Phase Detector . . . . . . . . . . . . . . . . . . . . 81 5.3.5 Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . 83 5.3.6 Feedback Loop Control . . . . . . . . . . . . . . . . . . . . . . . 84 5.3.7 Open Drain Buffer . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.3.8 On-Chip Bypass Capacitor . . . . . . . . . . . . . . . . . . . . . 85 5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.4.1 Die Micrograph . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.4.2 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.4.3 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 89 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6 Conclusions 99 Reference 101 | - |
| dc.language.iso | en | - |
| dc.subject | 可調相位誤差機制 | zh_TW |
| dc.subject | 低溫互補式金屬氧化物半導體 | zh_TW |
| dc.subject | 寬頻調整範圍技術 | zh_TW |
| dc.subject | 自動相位誤差校正機制 | zh_TW |
| dc.subject | 正交壓控振盪器 | zh_TW |
| dc.subject | quadrature voltage-controlled oscillator (QVCO) | en |
| dc.subject | wide tuning range technique | en |
| dc.subject | Cryo-CMOS | en |
| dc.subject | tunable phase error mechanism | en |
| dc.subject | automatic phase error correction mechanism | en |
| dc.title | 具有相位誤差校正機制之正交相位壓控振盪器的實現與應用 | zh_TW |
| dc.title | Implementation and Application of Quadrature Voltage-Controlled Oscillator with Phase Error Correction Mechanism | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳怡然;陳巍仁 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Jan Chen;Wei-Zen Chen | en |
| dc.subject.keyword | 低溫互補式金屬氧化物半導體,正交壓控振盪器,可調相位誤差機制,自動相位誤差校正機制,寬頻調整範圍技術, | zh_TW |
| dc.subject.keyword | Cryo-CMOS,quadrature voltage-controlled oscillator (QVCO),tunable phase error mechanism,automatic phase error correction mechanism,wide tuning range technique, | en |
| dc.relation.page | 104 | - |
| dc.identifier.doi | 10.6342/NTU202404006 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 5.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
