請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95489完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許聿翔 | zh_TW |
| dc.contributor.advisor | Yu-Hsiang Hsu | en |
| dc.contributor.author | 李孟修 | zh_TW |
| dc.contributor.author | Meng-Siou Li | en |
| dc.date.accessioned | 2024-09-10T16:20:11Z | - |
| dc.date.available | 2024-09-11 | - |
| dc.date.copyright | 2024-09-10 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-10 | - |
| dc.identifier.citation | [1] M. A. Case, H. A. Burwick, K. G. Volpp, and M. S. Patel, "Accuracy of smartphone applications and wearable devices for tracking physical activity data," Jama, vol. 313, no. 6, pp. 625-626, 2015.
[2] M. Dehghani and R. M. Dangelico, "Smart wearable technologies: Current status and market orientation through a patent analysis," in 2017 IEEE International Conference on Industrial Technology (ICIT), 2017: IEEE, pp. 1570-1575. [3] G. Aroganam, N. Manivannan, and D. Harrison, "Review on wearable technology sensors used in consumer sport applications," Sensors, vol. 19, no. 9, p. 1983, 2019. [4] P. Research. "Wearable Medical Devices Market Size, Share, and Trends 2024 to 2034." Precedence Research, Nov, 2023. https://www.precedenceresearch.com/wearable-medical-device-market. [5] T. Poongodi, R. Krishnamurthi, R. Indrakumari, P. Suresh, and B. Balusamy, "Wearable devices and IoT," A handbook of Internet of Things in biomedical and cyber physical system, pp. 245-273, 2020. [6] S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, "A review of wearable sensors and systems with application in rehabilitation," Journal of neuroengineering and rehabilitation, vol. 9, pp. 1-17, 2012. [7] J. R. Wilmoth, D. Bas, S. Mukherjee, and N. Hanif, World social report 2023: Leaving no one behind in an ageing world. UN, 2023. [8] F. Zandt. "The World's Aging Societies." Sep, 2022. https://www.statista.com/chart/28319/estimated-share-of-population-aged-65--by-country/. [9] W.H.O. "Ageing and health." World Health, Oct, 2022. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health. [10] J. Osareme, M. Muonde, C. P. Maduka, T. O. Olorunsogo, and O. Omotayo, "Demographic shifts and healthcare: A review of aging populations and systemic challenges," International Journal of Science and Research Archive, vol. 11, no. 1, pp. 383-395, 2024. [11] L. Sura, A. Madhavan, G. Carnaby, and M. A. Crary, "Dysphagia in the elderly: management and nutritional considerations," Clinical interventions in aging, pp. 287-298, 2012. [12] M. R. Zavala-Solares, C. A. Reyes-Torres, and V. Funez-Madrid, "Oropharyngeal dysphagia treatment," 2020. [13] R. Dziewas et al., "Diagnosis and treatment of neurogenic dysphagia–S1 guideline of the German Society of Neurology," Neurological research and practice, vol. 3, pp. 1-30, 2021. [14] K. Nagashima, T. Kikutani, T. Miyashita, Y. Yajima, and F. Tamura, "Tongue muscle strength affects posterior pharyngeal wall advancement during swallowing: a cross‐sectional study of outpatients with dysphagia," Journal of Oral Rehabilitation, vol. 48, no. 2, pp. 169-175, 2021. [15] C. Christmas and N. Rogus‐Pulia, "Swallowing disorders in the older population," Journal of the American Geriatrics Society, vol. 67, no. 12, pp. 2643-2649, 2019. [16] K. H. N. Le, E. E. Low, and R. Yadlapati, "Evaluation of esophageal dysphagia in elderly patients," Current gastroenterology reports, vol. 25, no. 7, pp. 146-159, 2023. [17] R. Cordier, R. Speyer, M. Martinez, and L. Parsons, "Reliability and validity of non-instrumental clinical assessments for adults with oropharyngeal dysphagia: a systematic review," Journal of Clinical Medicine, vol. 12, no. 2, p. 721, 2023. [18] K. Matsuo and J. B. Palmer, "Anatomy and physiology of feeding and swallowing: normal and abnormal," Physical medicine and rehabilitation clinics of North America, vol. 19, no. 4, pp. 691-707, 2008. [19] J. Walton and P. Silva, "Physiology of swallowing," Surgery (Oxford), vol. 36, no. 10, pp. 529-534, 2018. [20] A. Sasegbon and S. Hamdy, "The anatomy and physiology of normal and abnormal swallowing in oropharyngeal dysphagia," Neurogastroenterology & Motility, vol. 29, no. 11, p. e13100, 2017. [21] M. Aslam and M. F. Vaezi, "Dysphagia in the elderly," Gastroenterology & hepatology, vol. 9, no. 12, p. 784, 2013. [22] M. Nakao-Kato and F. A. Rathore, "An Overview of the Management and Rehabilitation of Dysphagia," JPMA, pp. 2-19, 2023. [23] A. Dylczyk-Sommer, "Dysphagia. Part 1: General issues," Anaesthesiology Intensive Therapy, vol. 52, no. 3, pp. 226-232, 2020. [24] H.-Y. Feng, P.-P. Zhang, and X.-W. Wang, "Presbyphagia: Dysphagia in the elderly," World journal of clinical cases, vol. 11, no. 11, p. 2363, 2023. [25] T. Nishino and K. Hiraga, "Coordination of swallowing and respiration in unconscious subjects," Journal of Applied Physiology, vol. 70, no. 3, pp. 988-993, 1991. [26] D. H. McFarland and J. P. Lund, "Modification of mastication and respiration during swallowing in the adult human," Journal of neurophysiology, vol. 74, no. 4, pp. 1509-1517, 1995. [27] W. Selley, F. Flack, R. Ellis, and W. Brooks, "Respiratory patterns associated with swallowing: Part 1. The normal adult pattern and changes with age," Age and ageing, vol. 18, no. 3, pp. 168-172, 1989. [28] M. S. Klahn and A. L. Perlman, "Temporal and durational patterns associating respiration and swallowing," Dysphagia, vol. 14, pp. 131-138, 1999. [29] B. Martin-Harris, M. B. Brodsky, Y. Michel, C. L. Ford, B. Walters, and J. Heffner, "Breathing and swallowing dynamics across the adult lifespan," Archives of Otolaryngology–Head & Neck Surgery, vol. 131, no. 9, pp. 762-770, 2005. [30] R. Shaker et al., "Coordination of deglutition and phases of respiration: effect of aging, tachypnea, bolus volume, and chronic obstructive pulmonary disease," American Journal of Physiology-Gastrointestinal and Liver Physiology, vol. 263, no. 5, pp. G750-G755, 1992. [31] R. Wirth et al., "Oropharyngeal dysphagia in older persons–from pathophysiology to adequate intervention: a review and summary of an international expert meeting," Clinical interventions in aging, pp. 189-208, 2016. [32] R. Möller, S. Safa, and P. Östberg, "Validation of the Swedish translation of eating assessment tool (S-EAT-10)," Acta oto-laryngologica, vol. 136, no. 7, pp. 749-753, 2016. [33] P. C. Belafsky et al., "Validity and reliability of the Eating Assessment Tool (EAT-10)," Annals of Otology, Rhinology & Laryngology, vol. 117, no. 12, pp. 919-924, 2008. [34] A. Schindler et al., "Reliability and validity of the Italian eating assessment tool," Annals of Otology, Rhinology & Laryngology, vol. 122, no. 11, pp. 717-724, 2013. [35] Y. Yoshimatsu, "Predictive roles of the repetitive saliva swallowing test (RSST) in aspiration pneumonia and other respiratory diseases: does the RSST have a predictive role in aspiration pneumonia and other respiratory diseases?," Aspiration Pneumonia: The Current Clinical Giant for Respiratory Physicians, pp. 131-141, 2020. [36] K. Swan, R. Cordier, T. Brown, and R. Speyer, "Psychometric properties of visuoperceptual measures of videofluoroscopic and fibre-endoscopic evaluations of swallowing: a systematic review," Dysphagia, vol. 34, pp. 2-33, 2019. [37] K. Oguchi, E. Saitoh, M. Mizuno, M. BaBa, M. Okui, and M. Suzuki, "The repetitive saliva swallowing test (RSST) as a screening test of functional dysphagia (1) normal values of RSST," The Japanese Journal of Rehabilitation Medicine, vol. 37, no. 6, pp. 375-382, 2000. [38] P. Singer. "THE LARYNX." Planet Singer, April, 2019. https://www.planetsinger.net/the-larynx/. [39] Y. J. Kang et al., "Soft skin-interfaced mechano-acoustic sensors for real-time monitoring and patient feedback on respiratory and swallowing biomechanics," NPJ digital Medicine, vol. 5, no. 1, p. 147, 2022. [40] W.-Y. Shieh, C.-M. Wang, and C.-S. Chang, "Development of a portable non-invasive swallowing and respiration assessment device," Sensors, vol. 15, no. 6, pp. 12428-12453, 2015. [41] Q. Li et al., "Coordination in oro-pharyngeal biomechanics during human swallowing," Physiology & Behavior, vol. 147, pp. 300-305, 2015. [42] 王奕勛, "以壓電吞嚥感測貼布擷取人體吞嚥行為之演算法開發與實驗驗證," 碩士論文, 應用力學研究所, 國立臺灣大學, 2022. [43] 石家豪, "吞嚥感應貼布黏貼方式之開發與驗證及其於重複唾液吞嚥測試之演算法開發," 碩士論文, 應用力學研究所, 國立臺灣大學, 2023. [44] A. Jbaily and R. W. Yeung, "Piezoelectric devices for ocean energy: a brief survey," Journal of Ocean Engineering and Marine Energy, vol. 1, pp. 101-118, 2015. [45] S. M. Kargar and G. Hao, "An atlas of piezoelectric energy harvesters in oceanic applications," Sensors, vol. 22, no. 5, p. 1949, 2022. [46] J. F. Tressler, S. Alkoy, and R. E. Newnham, "Piezoelectric sensors and sensor materials," Journal of electroceramics, vol. 2, pp. 257-272, 1998. [47] R. S. Sabry and A. D. Hussein, "Nanogenerator based on nanocomposites PVDF/ZnO with different concentrations," Materials Research Express, vol. 6, no. 10, p. 105549, 2019. [48] K. Asadi, M. Li, P. W. Blom, M. Kemerink, and D. M. De Leeuw, "Organic ferroelectric opto-electronic memories," Materials Today, vol. 14, no. 12, pp. 592-599, 2011. [49] M.-m. Tao, F. Liu, B.-r. Ma, and L.-x. Xue, "Effect of solvent power on PVDF membrane polymorphism during phase inversion," Desalination, vol. 316, pp. 137-145, 2013. [50] E. Kabir, M. Khatun, L. Nasrin, M. J. Raihan, and M. Rahman, "Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites," Journal of Physics D: Applied Physics, vol. 50, no. 16, p. 163002, 2017. [51] Y. Higashihata, J. Sako, and T. Yagi, "Piezoelectricity of vinylidene fluoride-trifluoroethylene copolymers," Ferroelectrics, vol. 32, no. 1, pp. 85-92, 1981. [52] H. S. Nalwa, Ferroelectric polymers: chemistry: physics, and applications. CRC Press, 1995. [53] R. I. Mahdi, W. C. Gan, W. H. Abd Majid, N. I. Mukri, and T. Furukawa, "Ferroelectric polarization and pyroelectric activity of functionalized P (VDF-TrFE) thin film lead free nanocomposites," Polymer, vol. 141, pp. 184-193, 2018. [54] J. Nunes-Pereira et al., "Poly (vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications," Polymer Testing, vol. 44, pp. 234-241, 2015. [55] J. Xue, J. Xie, W. Liu, and Y. Xia, "Electrospun nanofibers: new concepts, materials, and applications," Accounts of chemical research, vol. 50, no. 8, pp. 1976-1987, 2017. [56] J. Xue, T. Wu, Y. Dai, and Y. Xia, "Electrospinning and electrospun nanofibers: Methods, materials, and applications," Chemical reviews, vol. 119, no. 8, pp. 5298-5415, 2019. [57] D. Li and Y. Xia, "Electrospinning of nanofibers: reinventing the wheel?," Advanced materials, vol. 16, no. 14, pp. 1151-1170, 2004. [58] B. Sun et al., "Advances in three-dimensional nanofibrous macrostructures via electrospinning," Progress in Polymer Science, vol. 39, no. 5, pp. 862-890, 2014. [59] Y. Liao, C.-H. Loh, M. Tian, R. Wang, and A. G. Fane, "Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications," Progress in Polymer Science, vol. 77, pp. 69-94, 2018. [60] F. Topuz and T. Uyar, "Electrospinning of cyclodextrin nanofibers: The effect of process parameters," Journal of Nanomaterials, vol. 2020, pp. 1-10, 2020. [61] G. I. Taylor, "Disintegration of water drops in an electric field," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 280, no. 1382, pp. 383-397, 1964. [62] R. Finn, "Capillary surface interfaces," Notices of the AMS, vol. 46, no. 7, pp. 770-781, 1999. [63] T. Young, "III. An essay on the cohesion of fluids," Philosophical transactions of the royal society of London, no. 95, pp. 65-87, 1805. [64] G. I. Taylor, "Electrically driven jets," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 313, no. 1515, pp. 453-475, 1969. [65] D. H. Reneker and H. Fong, "Polymeric nanofibers: introduction," ACS Publications, 2006. [66] D. H. Reneker and A. L. Yarin, "Electrospinning jets and polymer nanofibers," Polymer, vol. 49, no. 10, pp. 2387-2425, 2008. [67] M. E. Helgeson, K. N. Grammatikos, J. M. Deitzel, and N. J. Wagner, "Theory and kinematic measurements of the mechanics of stable electrospun polymer jets," Polymer, vol. 49, no. 12, pp. 2924-2936, 2008. [68] A. M. Gañán-Calvo, "Cone-jet analytical extension of Taylor's electrostatic solution and the asymptotic universal scaling laws in electrospraying," Physical review letters, vol. 79, no. 2, p. 217, 1997. [69] S. V. Fridrikh, J. H. Yu, M. P. Brenner, and G. C. Rutledge, "Controlling the fiber diameter during electrospinning," Physical review letters, vol. 90, no. 14, p. 144502, 2003. [70] G. Collins, J. Federici, Y. Imura, and L. H. Catalani, "Charge generation, charge transport, and residual charge in the electrospinning of polymers: A review of issues and complications," Journal of Applied Physics, vol. 111, no. 4, 2012. [71] T. Han, D. H. Reneker, and A. L. Yarin, "Pendulum-like motion of straight electrified jets," Polymer, vol. 49, no. 8, pp. 2160-2169, 2008. [72] W. E. Teo and S. Ramakrishna, "A review on electrospinning design and nanofibre assemblies," Nanotechnology, vol. 17, no. 14, p. R89, 2006. [73] A. J. Robinson, A. Pérez-Nava, S. C. Ali, J. B. González-Campos, J. L. Holloway, and E. M. Cosgriff-Hernandez, "Comparative analysis of fiber alignment methods in electrospinning," Matter, vol. 4, no. 3, pp. 821-844, 2021. [74] J.-J. Ng and P. Supaphol, "Rotating-disk electrospinning: needleless electrospinning of poly (caprolactone), poly (lactic acid) and poly (vinyl alcohol) nanofiber mats with controlled morphology," Journal of Polymer Research, vol. 25, pp. 1-9, 2018. [75] A. Haider, S. Haider, and I.-K. Kang, "A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology," Arabian Journal of Chemistry, vol. 11, no. 8, pp. 1165-1188, 2018. [76] H. Ohigashi and K. Koga, "Ferroelectric copolymers of vinylidenefluoride and trifluoroethylene with a large electromechanical coupling factor," Japanese journal of applied physics, vol. 21, no. 8A, p. L455, 1982. [77] 朱信融, "以靜電紡絲研製高排列性聚 (偏氟乙烯-三氟乙烯) 薄膜及相關複合膜應用之研究," 碩士論文, 應用力學研究所, 國立臺灣大學, 2016. [78] 黃聖文, "可觀測吞嚥行為之壓電纖維感測器開發," 碩士論文, 應用力學研究所, 國立臺灣大學, 2021. [79] A. Kalra, A. Lowe, and A. M. Al-Jumaily, "Mechanical behaviour of skin: a review," J. Mater. Sci. Eng, vol. 5, no. 4, p. 1000254, 2016. [80] S. J. M. Yazdi and J. Baqersad, "Mechanical modeling and characterization of human skin: A review," Journal of biomechanics, vol. 130, p. 110864, 2022. [81] K. OGUCHI, E. SAITOH, M. BABA, S. KUSUDO, T. TANAKA, and K. ONOGI, "The repetitive saliva swallowing test (RSST) as a screening test of functional dysphagia (2) validity of RSST," The Japanese Journal of Rehabilitation Medicine, vol. 37, no. 6, pp. 383-388, 2000 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95489 | - |
| dc.description.abstract | 目前使用於喉部的穿戴裝置,已顯示可監測到吞嚥的訊號,但多數研究僅是示範性質,並未深入研究訊號與實際吞嚥過程之間的相關性。本研究目標是使用具高度可撓性、柔軟性的吞嚥感應貼布,作為吞嚥監測的非侵入式穿戴感測器,並結合呼吸感測器量測的呼吸訊號,開發可觀察吞嚥生理訊號的穿戴型體外監測裝置。本研究亦開發一套資料擷取分析系統,用以研究呼吸、舌骨及甲狀軟骨之特徵波形,並建立呼吸結合吞嚥之分析演算法,為吞嚥評估之標準。本研究首先對吞嚥感應貼布進行性能測試,以抗拉伸實驗驗證吞嚥感應貼布具高柔性的特性,平均楊氏模數達1.7324 MPa,這代表其貼在皮膚表面時,不會限制吞嚥時所造成的皮膚自然運動。重複性實驗結果顯示,吞嚥感應貼布在長時間使用中能維持穩定的壓電輸出特性。本研究以擬喉部裝置模擬吞嚥行為驗證吞嚥感應貼布與實際人體吞嚥行為的相關性。本研究亦將此裝置進行人體實驗驗證,並以即時喉部吞嚥影像來驗證吞嚥感應貼布量測訊號的準確性。實驗結果顯示,吞嚥感應貼布能準確捕捉個人吞嚥動作的不同波形,並識別特徵時間點,成功比出較年輕與年長健康受試者的訊號差異,分析出舌骨及甲狀軟骨移動至最大位移的時間點在呼吸暫停區間內的比例分別為 年輕男性93.33%及80%、年輕女性80%及93.33%、年長男性為80.56%及97.22%、年長女性為95.56%及97.78%。本研究亦針對重複唾液吞嚥實驗開發演算法,其準確率在年輕與年長健康男女性受試者中監測吞嚥次數的誤差在+/-1次以內皆可達到100%。同時,本研究的實驗結果亦顯示每位受試者皆都有其特徵的吞嚥表現波型,這將可對臨床上的分析提供了重要的依據。總結,本研究開發一種可監測吞嚥行為的穿戴裝置,並開發演算法可將吞嚥行為進行量化分析,並以實驗驗證此裝置具有作為即時監測吞嚥的個人化穿戴式裝置。 | zh_TW |
| dc.description.abstract | Current studies on wearable devices have demonstrated that swallow activities can be detected by attaching physical sensors to the larynx area. However, most studies only do demonstrations and have not conducted in-depth studies on the correlation between the signals and the actual swallowing process. The aim of this study is to use a highly flexible and compliant swallow patch sensor (SPS) for non-invasive swallowing sensing. A respiratory sensor also is integrated to serve as a bio-feedback sensor. Using this swallowing sensing system, a data acquisition and analysis system also are developed to study the characteristic waveforms of respiration, and movements of hyoid bone and thyroid cartilage during the swallowing process. The combination of this swallowing monitoring system can become a standard method to assess the swallowing process. The compliance of the SPS is verified by measuring its average Young's modulus, and it was 1.7324 MPa. The experimental results also demonstrated that the SPS has good repeatability and can be used for an extended period of time. These results suggest that the SPS does not restrict the swallow-induced skin surface, and it can monitor swallow activities for long-term usage. Furthermore, a 3D-printed thyroid cartilage is used to study the signal correlation with the movement of the thyroid cartilage, and it is applied to human studies. Our studies demonstrate that the SPS can accurately capture the different waveforms of each individual’s swallowing movements. The signal differences between young and senior healthy subjects can be distinguished. The time for the hyoid bone and thyroid cartilage moved to the farthest point can be compared with the apnea period, which is 93.33% and 80% for young men, 80% and 93.33% for young women, 80.56% and 97.22% for senior men, and 95.56% and 97.78% for senior women. This study also developed an algorithm for repeated saliva-swallowing experiments. Its accuracy can reach 100% +/- 1 error. Finally, the experimental results of this study also show that each subject has his own characteristic swallowing performance wave pattern, which will provide an important basis for clinical analysis. In summary, this study developed a wearable device and an algorithm to quantitatively analyze swallowing behavior for the application of a personalized wearable device. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-10T16:20:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-10T16:20:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
致謝 ii 摘要 iii ABSTRACT iv 目次 vi 圖次 x 表次 xvi 第1章 緒論 1 1.1 研究背景 1 1.1.1 吞嚥困難 5 1.1.2 吞嚥功能和呼吸之間的協調性 7 1.1.3 吞嚥困難檢測及篩選方法 9 1.2 文獻回顧 12 1.3 研究動機 17 1.4 研究目標 18 1.4.1 吞嚥感應貼布性能測試 19 1.4.2 模擬吞嚥實驗 19 1.4.3 人體吞嚥實驗 19 1.4.4 吞嚥感應貼布之資料擷取及參數分析 20 1.5 論文架構 21 第2章 壓電絲線原理與開發 22 2.1 壓電效應 22 2.1.1 正壓電效應 22 2.1.2 逆壓電效應 23 2.2 壓電材料 24 2.3 P(VDF-TrFE)高分子壓電材料 25 2.4 靜電紡絲原理 27 2.4.1 帶電液滴形成泰勒錐 28 2.4.2 帶電射流的鞭動效應 30 2.4.3 絲線沉積 31 2.5 滾筒式靜電紡絲收集器 32 第3章 感測器與訊號分析演算法開發 34 3.1 吞嚥感應貼布製程 34 3.1.1 P(VDF-TrFE)溶液製備 34 3.1.2 滾筒式靜電紡絲機架設與參數 34 3.1.3 靜電紡絲後處理 36 3.1.4 吞嚥感應貼布封裝 37 3.2 便攜式夾扣呼吸感測器 38 3.2.1 FSM-X-AR050-H04 流量計 38 3.2.2 呼吸感測器之外殼設計 40 3.2.3 呼吸流量計之工作電壓及訊號傳輸 42 3.3 量測機制及開發訊號分析演算法 43 3.3.1 四點彎曲理論分析 43 3.3.2 吞嚥生理訊號分析 45 3.3.3 呼吸生理訊號分析 50 3.4 呼吸結合吞嚥訊號之分析 53 3.4.1 呼吸結合吞嚥之生理反應 53 3.4.2 呼吸結合吞嚥之參數 56 3.4.3 吞嚥瞬間的時間界定標準 59 第4章 研究方法與實驗架設 61 4.1 吞嚥感應貼布性質測試 61 4.1.1 吞嚥感應貼布抗拉性測試 61 4.1.2 吞嚥感應貼布線性度、重複性測試 62 4.2 資料擷取系統 64 4.2.1 前端數據採集 64 4.2.2 後端數據分析 68 4.2.3 資料擷取系統操作介面 71 4.3 擬喉部吞嚥裝置之實驗架設 72 4.3.1 連桿滑軌機構 73 4.3.2 仿喉部結構設計 74 4.4 呼吸結合吞嚥行為之人體實驗架設及流程圖 76 4.4.1 固定吞嚥感應貼布之肌肉貼布選用 76 4.4.2 吞嚥感應貼布架設 76 4.4.3 呼吸感測器架設 77 4.4.4 數據收集與同步 77 4.4.5 吞嚥感應貼布結合影像之架設 79 4.4.6 人體實驗流程圖 79 第5章 實驗結果與討論 81 5.1 吞嚥感應貼布性質 81 5.1.1 吞嚥感應貼布抗拉性 81 5.1.2 吞嚥感應貼布線性度、重複性 82 5.2 擬喉部吞嚥裝置之量測結果 85 5.2.1 影像數據結果 85 5.2.2 模擬吞嚥與實際人體吞嚥之訊號比較結果 93 5.3 呼吸結合吞嚥行為之人體實驗結果 94 5.3.1 吞嚥感應貼布結合影像之驗證結果 94 5.3.2 年輕與年長健康受試者之單次吞嚥差異 100 5.3.3 健康受試者之吞嚥瞬間的時間界定標準結果 107 5.3.4 健康受試者三次單次吞嚥結果差異分析 119 5.3.5 吞嚥困難受試者單次吞嚥結果差異分析 121 5.3.6 判斷重複唾液吞嚥實驗之吞嚥次數結果 124 第6章 結論與未來展望 134 6.1 結論 134 6.2 未來展望 135 REFERENCES 136 附錄1 142 附錄2 147 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 吞嚥感應貼布 | zh_TW |
| dc.subject | 非侵入式穿戴 | zh_TW |
| dc.subject | 吞嚥評估演算法 | zh_TW |
| dc.subject | 吞嚥影像 | zh_TW |
| dc.subject | 呼吸感測器 | zh_TW |
| dc.subject | Swallow Patch Sensor | en |
| dc.subject | Breath sensor | en |
| dc.subject | Non-invasive wearable | en |
| dc.subject | Swallowing imaging | en |
| dc.subject | Swallowing assessment algorithm | en |
| dc.title | 以吞嚥及呼吸感測器偵測吞嚥時之咽部上提與吞嚥行為演算法開發 | zh_TW |
| dc.title | Detection of Pharyngeal Lift Using Swallowing and Breathing Sensors and Algorithm Development for Swallowing Process | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王亭貴;蕭名彥;林哲宇 | zh_TW |
| dc.contributor.oralexamcommittee | Tyng-Guey Wang ;Ming-Yen Hsiao ;Che-Yu Lin | en |
| dc.subject.keyword | 吞嚥感應貼布,呼吸感測器,非侵入式穿戴,吞嚥影像,吞嚥評估演算法, | zh_TW |
| dc.subject.keyword | Swallow Patch Sensor,Breath sensor,Non-invasive wearable,Swallowing imaging,Swallowing assessment algorithm, | en |
| dc.relation.page | 176 | - |
| dc.identifier.doi | 10.6342/NTU202403691 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2029-08-06 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-08-06 | 21.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
