請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95486
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳明汝 | zh_TW |
dc.contributor.advisor | Ming-Ju Chen | en |
dc.contributor.author | 陳昶安 | zh_TW |
dc.contributor.author | Chang-An Chen | en |
dc.date.accessioned | 2024-09-10T16:19:17Z | - |
dc.date.available | 2024-09-11 | - |
dc.date.copyright | 2024-09-10 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-07 | - |
dc.identifier.citation | 黃筱雯 (2023)。結合多體學探討複合乳酸菌應用於預防及治療慢性腎臟病之研究[博士論文,國立台灣大學]。doi: 10.6342/NTU202301723
Ali, B. H., S. Al-Salam, M. Al Za'abi, M. I. Waly, A. Ramkumar, S. Beegam, I. Al-Lawati, S. A. Adham, and A. Nemmar. 2013. New model for adenine-induced chronic renal failure in mice, and the effect of gum acacia treatment thereon: comparison with rats. J. Pharmacol. Toxicol. Methods. 68:384–393. doi: 10.1016/j.vascn.2013.05.001 Aronov, P. A., F. J. Luo, N. S. Plummer, Z. Quan, S. Holmes, T. H. Hostetter, and T. W. Meyer. 2011. Colonic contribution to uremic solutes. J. Am. Soc. Nephrol. 22:1769–1776. doi: 10.1681/ASN.2010121220 Bain, M. A., R. Faull, G. Fornasini, R. W. Milne, and A. M. Evans. 2006. Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol. Dial. Transplant. 21:1300–1304. doi: 10.1093/ndt/gfk056 Bartges, J. W. 2012. Chronic kidney disease in dogs and cats. Vet. Clin. North Am. Small Anim. Pract. 42:669–692. doi: 10.1016/j.cvsm.2012.04.008 Bartges, J. W., and D. J. Polzin. 2011. Nephrology and urology of small animals. Blackwell Publishing Ltd., Hoboken, NJ. Bartochowski, P., N. Gayrard, S. Bornes, C. Druart, A. Argiles, M. Cordaillat-Simmons, and F. Duranton. 2022. Gut-kidney axis investigations in animal models of chronic kidney disease. Toxins 14:626. doi: 10.3390/toxins14090626 Benato, L., P. Hastie, P. O'Shaughnessy, J. A. Murray, and A. Meredith. 2014. Effects of probiotic Enterococcus faecium and Saccharomyces cerevisiae on the faecal microflora of pet rabbits. J. Small Anim. Pract. 55:442–446. doi: 10.1111/jsap.12242 Bermingham, E. N., W. Young, C. F. Butowski, C. D. Moon, P. H. Maclean, D. Rosendale, N. J. Cave, and D. G. Thomas. 2018. The fecal microbiota in the domestic cat (Felis catus) is influenced by interactions between age and diet; a five year longitudinal study. Front. Microbiol. 9:1231. doi: 10.3389/fmicb.2018.01231 Betjes, M. G. 2013. Immune cell dysfunction and inflammation in end-stage renal disease. Nat. Rev. Nephrol. 9:255–265. doi: 10.1038/nrneph.2013.44 Biasibetti, E., E. Martello, M. Bigliati, I. Biasato, T. Cocca, N. Bruni, and M. T. Capucchio. 2018. A long term feed supplementation based on phosphate binders in feline chronic kidney disease. Vet. Res, Commun. 42:161–167. doi: 10.1007/s11259-018-9719-z Boyd, L. M., C. Langston, K. Thompson, K. Zivin, and M. Imanishi. 2008. Survival in cats with naturally occurring chronic kidney disease (2000–2002). J. Vet. Intern. Med. 22:1111–1117. doi: 10.1111/j.1939-1676.2008.0163.x Braff, J., E. Obare, M. Yerramilli, J. Elliott, and M. Yerramilli. 2014. Relationship between serum symmetric dimethylarginine concentration and glomerular filtration rate in cats. J. Vet. Intern. Med. 28:1699–1701. doi: 10.1111/jvim.12446 Browne, H. P., S. C. Forster, B. O. Anonye, N. Kumar, B. A. Neville, M. D. Stares, D. Goulding, and T. D. Lawley. 2016. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 533:543–546. doi: 10.1038/nature17645 Cabral, L. D. S., and P. J. Weimer. 2024. Megasphaera elsdenii: its role in ruminant nutrition and its potential industrial application for organic acid biosynthesis. Microorganisms 12:219. doi: 10.3390/microorganisms12010219 Cai, Y. Y., F. Q. Huang, X. Lao, Y. Lu, X. Gao, R. N. Alolga, K. Yin, X. Zhou, Y. Wang, B. Liu, J. Shang, L. W. Qi, and J. Li. 2022. Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis. NPJ Biofilms Microbiomes 8:11. doi: 10.1038/s41522-022-00273-4 Cani, P. D., C. Depommier, M. Derrien, A. Everard, and W. M. de Vos. 2022. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat. Rev. Gastroenterol. Hepatol. 19:625–637. doi: 10.1038/s41575-022-00631-9 Castro-Bravo, N., J. M. Wells, A. Margolles, and P. Ruas-Madiedo. 2018. Interactions of surface exopolysaccharides from Bifidobacterium and Lactobacillus within the intestinal environment. Front. Microbiol. 9:2426. doi: 10.3389/fmicb.2018.02426 Chan, W. N., D. R. Ho, Y. C. Huang, J. H. Lin, Y. L. Liu, M. J. Chen, and C. S. Chen. 2023. A pilot study of nephrogenic probiotics to further improve an already stabilized graft function after kidney transplantation. Transplant. Proc. 55:2090–2094. doi: 10.1016/j.transproceed.2023.08.011 Chen, Y. Y., D. Q. Chen, L. Chen, J. R. Liu, N. D. Vaziri, Y. Guo, and Y. Y. Zhao. 2019. Microbiome-metabolome reveals the contribution of gut-kidney axis on kidney disease. J. Transl. Med. 17:5. doi: 10.1186/s12967-018-1756-4 Correa, S., J. K. Pena-Esparragoza, K. M. Scovner, S. S. Waikar, and F. R. Mc Causland. 2020. Myeloperoxidase and the risk of CKD progression, cardiovascular disease, and death in the chronic renal insufficiency cohort (CRIC) study. Am. J. Kidney. Dis. 76:32–41. doi: 10.1053/j.ajkd.2019.09.006 Corte, V., A. C. Andrade, P. Diaz-Bulnes, N. S. Garzo, J. J. Bande, J. E. Sanchez-Alvarez, C. Diaz-Corte, C. Lopez-Larrea, and B. Suarez-Alvarez. 2020. Microbiota derived short chain fatty acids, propionate and butyrate, contribute to modulate the inflammatory response in chronic kidney disease. Nephrol. Dial. Transplant. 35:gfaa140.MO046. doi: 10.1093/ndt/gfaa140 Crost, E. H., E. Coletto, A. Bell, and N. Juge. 2023. Ruminococcus gnavus: friend or foe for human health. FEMS Microbiol. Rev. 47:fuad014. doi: 10.1093/femsre/fuad014 Dao, M. C., A. Everard, J. Aron-Wisnewsky, N. Sokolovska, E. Prifti, E. O. Verger, B. D. Kayser, F. Levenez, J. Chilloux, L. Hoyles, M. I.-O. Consortium, M. E. Dumas, S. W. Rizkalla, J. Dore, P. D. Cani, and K. Clement. 2016. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65:426–436. doi: 10.1136/gutjnl-2014-308778 De Filippo, C., D. Cavalieri, M. Di Paola, M. Ramazzotti, J. B. Poullet, S. Massart, S. Collini, G. Pieraccini, and P. Lionetti. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. U.S.A. 107:14691–14696. doi: 10.1073/pnas.1005963107 Deng, P., and K. S. Swanson. 2015. Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges. Br. J. Nutr. 113 Suppl:S6–17. doi: 10.1017/S0007114514002943 Depommier, C., A. Everard, C. Druart, H. Plovier, M. Van Hul, S. Vieira-Silva, G. Falony, J. Raes, D. Maiter, N. M. Delzenne, M. de Barsy, A. Loumaye, M. P. Hermans, J. P. Thissen, W. M. de Vos, and P. D. Cani. 2019. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25:1096–1103. doi: 10.1038/s41591-019-0495-2 Dixon, J. J., K. Lane, R. N. Dalton, I. A. MacPhee, and B. J. Philips. 2013. Symmetrical dimethylarginine is a more sensitive biomarker of renal dysfunction than creatinine. Crit. Care. 17:P423. doi: 10.1186/cc11939 Duffield, J. S., M. Lupher, V. J. Thannickal, and T. A. Wynn. 2013. Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. 8:241–276. doi: 10.1146/annurev-pathol-020712-163930 Durand, G. A., J. C. Lagier, S. Khelaifia, N. Armstrong, C. Robert, J. Rathored, P. E. Fournier, and D. Raoult. 2016. Drancourtella massiliensis gen. nov., sp. nov. isolated from fresh healthy human faecal sample from South France. New Microbes New Infect. 11:34–42. doi: 10.1016/j.nmni.2016.02.002 Duranton, F., G. Cohen, R. De Smet, M. Rodriguez, J. Jankowski, R. Vanholder, A. Argiles, and G. European Uremic Toxin Work. 2012. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 23:1258–1270. doi: 10.1681/ASN.2011121175 Eidi, F., F. Poor-Reza Gholi, A. Ostadrahimi, N. Dalili, F. Samadian, and A. Barzegari. 2018. Effect of Lactobacillus Rhamnosus on serum uremic toxins (phenol and p-cresol) in hemodialysis patients: a double blind randomized clinical trial. Clin. Nutr. ESPEN 28:158–164. doi: 10.1016/j.clnesp.2018.08.010 El-Sayed, A., L. Aleya, and M. Kamel. 2021. Microbiota's role in health and diseases. Environ. Sci. Pollut. Res. Int. 28:36967–36983. doi: 10.1007/s11356-021-14593-z Ephraim, E., C. Y. Cochrane, and D. E. Jewell. 2020. Varying protein levels influence metabolomics and the gut microbiome in healthy adult dogs. Toxins 12:517–533. doi: 10.3390/toxins12080517 Favero, C., S. Carriazo, L. Cuarental, R. Fernandez-Prado, E. Goma-Garces, M. V. Perez-Gomez, A. Ortiz, B. Fernandez-Fernandez, and M. D. Sanchez-Nino. 2021. Phosphate, microbiota and CKD. Nutrients 13:1273. doi: 10.3390/nu13041273 Finch, N. 2014. Measurement of glomerular filtration rate in cats: methods and advantages over routine markers of renal function. J. Feline. Med. Surg. 16:736–748. doi: 10.1177/1098612X14545274 Fritsch, D. A., D. E. Jewell, P. S. Leventhal, J. Brejda, N. W. Ahle, H. M. Schiefelbein, and S. D. Forrester. 2015. Acceptance and effects of a therapeutic renal food in pet cats with chronic kidney disease. Vet. Rec. Open 2:e000128. doi: 10.1136/vetreco-2015-000128 Fujimoto, T., H. Imaeda, K. Takahashi, E. Kasumi, S. Bamba, Y. Fujiyama, and A. Andoh. 2013. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn's disease. J. Gastroenterol. Hepatol. 28:613–619. doi: 10.1111/jgh.12073 Ganz, H. H., G. Jospin, C. A. Rojas, A. L. Martin, K. Dahlhausen, D. D. Kingsbury, C. X. Osborne, Z. Entrolezo, S. Redner, B. Ramirez, J. A. Eisen, M. Leahy, C. Keaton, J. Wong, J. Gardy, and J. K. Jarett. 2022. The kitty microbiome project: defining the healthy fecal "core microbiome" in pet domestic cats. Vet. Sci. 9:635. doi: 10.3390/vetsci9110635 Gibson, G. R., R. Hutkins, M. E. Sanders, S. L. Prescott, R. A. Reimer, S. J. Salminen, K. Scott, C. Stanton, K. S. Swanson, P. D. Cani, K. Verbeke, and G. Reid. 2017. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14:491–502. doi: 10.1038/nrgastro.2017.75 Gomez-Arango, L. F., H. L. Barrett, S. A. Wilkinson, L. K. Callaway, H. D. McIntyre, M. Morrison, and M. Dekker Nitert. 2018. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes 9:189–201. doi: 10.1080/19490976.2017.1406584 Greene, J. P., S. L. Lefebvre, M. Wang, M. Yang, E. M. Lund, and D. J. Polzin. 2014. Risk factors associated with the development of chronic kidney disease in cats evaluated at primary care veterinary hospitals. J. Am. Vet. Med. Assoc. 244:320–327. doi: 10.2460/javma.244.3.320 Guirong, Y. E., Z. Minjie, Y. U. Lixin, Y. E. Junsheng, Y. Lin, and S. Lisha. 2018. Gut microbiota in renal transplant recipients, patients with chronic kidney disease and healthy subjects. Nan Fang Yi Ke Da Xue Xue Bao 38:1401–1408. doi: 10.12122/j.issn.1673-4254.2018.12.01 Guo, P., K. Zhang, X. Ma, and P. He. 2020. Clostridium species as probiotics: potentials and challenges. J. Anim. Sci. Biotechnol. 11:24. doi: 10.1186/s40104-019-0402-1 Haas, K. N., and J. L. Blanchard. 2020. Reclassification of the Clostridium clostridioforme and Clostridium sphenoides clades as Enterocloster gen. nov. and Lacrimispora gen. nov., including reclassification of 15 taxa. Int. J. Syst. Evol. Microbiol. 70:23–34. doi: 10.1099/ijsem.0.003698 Hall, J. A., D. E. Jewell, and E. Ephraim. 2022. Feeding cats with chronic kidney disease food supplemented with betaine and prebiotics increases total body mass and reduces uremic toxins. PLoS One 17:e0268624. doi: 10.1371/journal.pone.0268624 Hayeeawaema, F., P. Muangnil, J. Jiangsakul, C. Tipbunjong, N. Huipao, and P. Khuituan. 2023. A novel model of adenine-induced chronic kidney disease-associated gastrointestinal dysfunction in mice: The gut-kidney axis. Saudi. J. Biol. Sci. 30:103660. doi: 10.1016/j.sjbs.2023.103660 He, M., W. Wei, Y. Zhang, Z. Xiang, D. Peng, A. Kasimumali, and S. Rong. 2024. Gut microbial metabolites SCFAs and chronic kidney disease. J. Transl. Med. 22:172. doi: 10.1186/s12967-024-04974-6 He, Z., P. Li, J. Zhu, B. Cui, L. Xu, J. Xiang, T. Zhang, C. Long, G. Huang, G. Ji, Y. Nie, K. Wu, D. Fan, and F. Zhang. 2017. Multiple fresh fecal microbiota transplants induces and maintains clinical remission in Crohn's disease complicated with inflammatory mass. Sci. Rep. 7:4753. doi: 10.1038/s41598-017-04984-z Heeney, D. D., M. G. Gareau, and M. L. Marco. 2018. Intestinal Lactobacillus in health and disease, a driver or just along for the ride? Curr. Opin. Biotechnol. 49:140–147. doi: 10.1016/j.copbio.2017.08.004 Hida, M., Y. Aiba, S. Sawamura, N. Suzuki, T. Satoh, and Y. Koga. 1996. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin®, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 74:349–355. doi: 10.1159/000189334. Hill, C., F. Guarner, G. Reid, G. R. Gibson, D. J. Merenstein, B. Pot, L. Morelli, R. B. Canani, H. J. Flint, S. Salminen, P. C. Calder, and M. E. Sanders. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11:506–514. doi: 10.1038/nrgastro.2014.66 Hooper, L. V., D. R. Littman, and A. J. Macpherson. 2012. Interactions between the microbiota and the immune system. Science 336:1268–1273. doi: 10.1126/science.1223490 Hsu, C. K., S. C. Su, L. C. Chang, K. J. Yang, C. C. Lee, H. J. Hsu, Y. T. Chen, C. Y. Sun, and I. W. Wu. 2022. Oral absorbent AST-120 is associated with compositional and functional adaptations of gut microbiota and modification of serum short and medium-chain fatty acids in advanced CKD patients. Biomedicines 10:2234. doi: 10.3390/biomedicines10092234 Hsu, C. N., G. P. Chang-Chien, S. Lin, C. Y. Hou, P. C. Lu, and Y. L. Tain. 2020. Association of trimethylamine, trimethylamine N-oxide, and dimethylamine with cardiovascular risk in children with chronic kidney disease. J. Clin. Med. 9:336. doi: 10.3390/jcm9020336 Huang, H.-W., T.-C. Kuo, Y.-J. Lee, and M.-J. Chen. 2023. Multi-omics reveal that two probiotic strains associated with the gut microbiome and host metabolome contribute to the efficacy of Lactobacillus intervention in alleviating feline chronic kidney disease. Research Square doi: 10.21203/rs.3.rs-3688172/v1 Huang, H. W., K. Y. Li, Y. J. Lee, and M. J. Chen. 2021. Preventive effects of Lactobacillus mixture against chronic kidney disease progression through enhancement of beneficial bacteria and downregulation of gut-derived uremic toxins. J. Agric. Food. Chem. 69:7353–7366. doi: 10.1021/acs.jafc.1c01547 Huang, W. H., A. T. Liao, P. Y. Chu, I. F. Yen, and C. H. Liu. 2017. A real-time reporting system of causes of death or reasons for euthanasia: a model for monitoring mortality in domesticated cats in Taiwan. Prev. Vet. Med. 137:59–68. doi: 10.1016/j.prevetmed.2016.12.011 Huang, Y., C. X. Wu, L. Guo, X. X. Zhang, and D. Z. Xia. 2022. Effects of polysaccharides-riched Prunus mume fruit juice concentrate on uric acid excretion and gut microbiota in mice with adenine-induced chronic kidney disease. Curr. Res. Food Sci. 5:2135–2145. doi: 10.1016/j.crfs.2022.10.028 Huang, Y., J. Zhou, S. Wang, J. Xiong, Y. Chen, Y. Liu, T. Xiao, Y. Li, T. He, Y. Li, X. Bi, K. Yang, W. Han, Y. Qiao, Y. Yu, and J. Zhao. 2020. Indoxyl sulfate induces intestinal barrier injury through IRF1-DRP1 axis-mediated mitophagy impairment. Theranostics 10:7384–7400. doi: 10.7150/thno.45455 Kanemitsu, Y., E. Mishima, M. Maekawa, Y. Matsumoto, D. Saigusa, H. Yamaguchi, J. Ogura, H. Tsukamoto, Y. Tomioka, T. Abe, and N. Mano. 2019. Comprehensive and semi-quantitative analysis of carboxyl-containing metabolites related to gut microbiota on chronic kidney disease using 2-picolylamine isotopic labeling LC-MS/MS. Sci. Rep. 9:19075. doi: 10.1038/s41598-019-55600-1 Klinkhammer, B. M., S. Djudjaj, U. Kunter, R. Palsson, V. O. Edvardsson, T. Wiech, M. Thorsteinsdottir, S. Hardarson, O. Foresto-Neto, S. R. Mulay, M. J. Moeller, W. Jahnen-Dechent, J. Floege, H. J. Anders, and P. Boor. 2020. Cellular and molecular mechanisms of kidney injury in 2,8-dihydroxyadenine nephropathy. J. Am. Soc. Nephrol. 31:799–816. doi: 10.1681/ASN.2019080827 Kongtasai, T., D. Paepe, E. Meyer, F. Mortier, S. Marynissen, L. Stammeleer, P. Defauw, and S. Daminet. 2022. Renal biomarkers in cats: A review of the current status in chronic kidney disease. J. Vet. Intern. Med. 36:379–396. doi: 10.1111/jvim.16377 Kumari, R., V. Ahuja, and J. Paul. 2013. Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of north India. World J. Gastroenterol. 19:3404–3414. doi: 10.3748/wjg.v19.i22.3404 Kuskunov, T., E. Tilkiyan, D. Doykov, K. Boyanov, A. Bivolarska, and B. Hristov. 2023. The effect of synbiotic supplementation on uremic toxins, oxidative stress, and inflammation in hemodialysis patients-results of an uncontrolled prospective single-arm study. Medicina 59:1383. doi: 10.3390/medicina59081383 Ladiges, W. 2021. The unrecognized potential of pet cats for studying aging and age-related diseases. Aging Pathobiol. Ther. 3:134–135. doi: 10.31491/apt.2021.12.069 Lai, S., A. Molfino, M. Testorio, A. M. Perrotta, A. Currado, G. Pintus, D. Pietrucci, V. Unida, D. La Rocca, S. Biocca, and A. Desideri. 2019. Effect of low-protein diet and inulin on microbiota and clinical parameters in patients with chronic kidney disease. Nutrients 11:3006. doi: 10.3390/nu11123006 Lau, W. L., and N. D. Vaziri. 2017. The leaky gut and altered microbiome in chronic kidney disease. J. Ren. Nutr. 27:458–461. doi: 10.1053/j.jrn.2017.02.010 Lawson, P. A., H. L. Greetham, G. R. Gibson, C. Giffard, E. Falsen, and M. D. Collins. 2005. Slackia faecicanis sp. nov., isolated from canine faeces. Int. J. Syst. Evol. Microbiol. 55:1243–1246. doi: 10.1099/ijs.0.63531-0 Li, F., M. Wang, J. Wang, R. Li, and Y. Zhang. 2019. Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Front. Cell. Infect. Microbiol. 9:206. doi: 10.3389/fcimb.2019.00206 Li, H., S. Liu, H. Chen, L. Zhou, B. Chen, M. Wang, D. Zhang, T. L. Han, and H. Zhang. 2024. Gut dysbiosis contributes to SCFAs reduction-associated adipose tissue macrophage polarization in gestational diabetes mellitus. Life Sci. 350:122744. doi: 10.1016/j.lfs.2024.122744 Li, H. B., M. L. Xu, X. D. Xu, Y. Y. Tang, H. L. Jiang, L. Li, W. J. Xia, N. Cui, J. Bai, Z. M. Dai, B. Han, Y. Li, B. Peng, Y. Y. Dong, S. Aryal, I. Manandhar, M. A. Eladawi, R. Shukla, Y. M. Kang, B. Joe, and T. Yang. 2022. Faecalibacterium prausnitzii attenuates CKD via butyrate-renal GPR43 axis. Circ. Res. 131:e120–e134. doi: 10.1161/CIRCRESAHA.122.320184 Li, J., J. Butcher, D. Mack, and A. Stintzi. 2015. Functional impacts of the intestinal microbiome in the pathogenesis of inflammatory bowel disease. Inflamm. Bowel Dis. 21:139–153. doi: 10.1097/MIB.0000000000000215 Li, J., S. Feng, Z. Wang, J. He, Z. Zhang, H. Zou, Z. Wu, X. Liu, H. Wei, and S. Tao. 2023. Limosilactobacillus mucosae-derived extracellular vesicles modulates macrophage phenotype and orchestrates gut homeostasis in a diarrheal piglet model. NPJ Biofilms Microbiomes 9:33. doi: 10.1038/s41522-023-00403-6 Lim, Y. J., N. A. Sidor, N. C. Tonial, A. Che, and B. L. Urquhart. 2021. Uremic toxins in the progression of chronic kidney disease and cardiovascular disease: mechanisms and therapeutic targets. Toxins 13:142. doi: 10.3390/toxins13020142 Liu, X., M. Zhang, X. Wang, P. Liu, L. Wang, Y. Li, X. Wang, and F. Ren. 2022. Fecal microbiota transplantation restores normal fecal composition and delays malignant development of mild chronic kidney disease in rats. Front. Microbiol. 13:1037257. doi: 10.3389/fmicb.2022.1037257 Lopez-Giacoman, S., and M. Madero. 2015. Biomarkers in chronic kidney disease, from kidney function to kidney damage. World J. Nephrol. 4:57–73. doi: 10.5527/wjn.v4.i1.57 Lun, H., W. Yang, S. Zhao, M. Jiang, M. Xu, F. Liu, and Y. Wang. 2019. Altered gut microbiota and microbial biomarkers associated with chronic kidney disease. MicrobiologyOpen 8:e00678. doi: 10.1002/mbo3.678 Lund, E. M., P. J. Armstrong, C. A. Kirk, L. M. Kolar, and J. S. Klausner. 1999. Health status and population characteristics of dogs and cats examined at private veterinary practices in the United States. J. Am. Vet. Med. Assoc. 214:1336. doi: 10.2460/javma.1999.214.09.1336 Ma, T., X. Shen, X. Shi, H. A. Sakandar, K. Quan, Y. Li, H. Jin, L.-Y. Kwok, H. Zhang, and Z. Sun. 2023. Targeting gut microbiota and metabolism as the major probiotic mechanism - An evidence-based review. Trends Food Sci. Technol. 138:178–198. doi: 10.1016/j.tifs.2023.06.013 Ma, X., E. Brinker, E. C. Graff, W. Cao, A. L. Gross, A. K. Johnson, C. Zhang, D. R. Martin, and X. Wang. 2022. Whole-genome shotgun metagenomic sequencing reveals distinct gut microbiome signatures of obese cats. American society for microbiology 10:e00837–00822. doi: 10.1128/spectrum.00837-22 Macfarlane, S., and G. T. Macfarlane. 2003. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62:67–72. doi: 10.1079/PNS2002207 Machiels, K., M. Joossens, J. Sabino, V. De Preter, I. Arijs, V. Eeckhaut, V. Ballet, K. Claes, F. Van Immerseel, K. Verbeke, M. Ferrante, J. Verhaegen, P. Rutgeerts, and S. Vermeire. 2014. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63:1275–1283. doi: 10.1136/gutjnl-2013-304833 Macia, L., J. Tan, A. T. Vieira, K. Leach, D. Stanley, S. Luong, M. Maruya, C. Ian McKenzie, A. Hijikata, C. Wong, L. Binge, A. N. Thorburn, N. Chevalier, C. Ang, E. Marino, R. Robert, S. Offermanns, M. M. Teixeira, R. J. Moore, R. A. Flavell, S. Fagarasan, and C. R. Mackay. 2015. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6:6734. doi: 10.1038/ncomms7734 Madero, M., K. B. Cano, I. Campos, X. Tao, V. Maheshwari, J. Brown, B. Cornejo, G. Handelman, S. Thijssen, and P. Kotanko. 2019. Removal of protein-bound uremic toxins during hemodialysis using a binding competitor. Clin. J. Am. Soc. Nephrol. 14:394–402. doi: 10.2215/CJN.05240418 Magliocca, G., P. Mone, B. R. Di Iorio, A. Heidland, and S. Marzocco. 2022. Short-chain fatty acids in chronic kidney disease: Focus on inflammation and oxidative stress regulation. Int. J. Mol. Sci. 23:5354. doi: 10.3390/ijms23105354 Marino, C. L., B. D. Lascelles, S. L. Vaden, M. E. Gruen, and S. L. Marks. 2014. Prevalence and classification of chronic kidney disease in cats randomly selected from four age groups and in cats recruited for degenerative joint disease studies. J. Feline Med. Surg. 16:465–472. doi: 10.1177/1098612X13511446 Martin-Gallausiaux, C., L. Marinelli, H. M. Blottiere, P. Larraufie, and N. Lapaque. 2021. SCFA: mechanisms and functional importance in the gut. Proc. Nutr. Soc. 80:37–49. doi: 10.1017/S0029665120006916 Martin, R., F. Chain, S. Miquel, J. Lu, J. J. Gratadoux, H. Sokol, E. F. Verdu, P. Bercik, L. G. Bermudez-Humaran, and P. Langella. 2014. The commensal bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm. Bowel Dis. 20:417–430. doi: 10.1097/01.MIB.0000440815.76627.64 Martin, R., and P. Langella. 2019. Emerging health concepts in the probiotics field: streamlining the definitions. Front. Microbiol. 10:1047. doi: 10.3389/fmicb.2019.01047 Martino, C., A. H. Dilmore, Z. M. Burcham, J. L. Metcalf, D. Jeste, and R. Knight. 2022. Microbiota succession throughout life from the cradle to the grave. Nat. Rev. Microbiol. 20:707–720. doi: 10.1038/s41579-022-00768-z Marzocco, S., G. Fazeli, L. Di Micco, G. Autore, S. Adesso, F. Dal Piaz, A. Heidland, and B. Di Iorio. 2018. Supplementation of short-chain fatty acid, sodium propionate, in patients on maintenance hemodialysis: beneficial effects on inflammatory parameters and gut-derived uremic toxins, a pilot study (plan study). J. Clin. Med. 7:315. doi: 10.3390/jcm7100315 Matsuda, K., H. Tsuji, T. Asahara, Y. Kado, and K. Nomoto. 2007. Sensitive quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR. Appl. Environ. Microbiol. 73:32–39. doi: 10.1128/AEM.01224-06 McFarlane, C., C. I. Ramos, D. W. Johnson, and K. L. Campbell. 2019. Prebiotic, probiotic, and synbiotic supplementation in chronic kidney disease: a systematic review and meta-analysis. J. Ren. Nutrition. 29:209–220. doi: 10.1053/j.jrn.2018.08.008 Mehdizadeh Gohari, I., A. N. M, J. Li, A. Shrestha, F. Uzal, and A. M. B. 2021. Pathogenicity and virulence of Clostridium perfringens. Virulence 12:723–753. doi: 10.1080/21505594.2021.1886777 Meyer, T. W., and T. H. Hostetter. 2007. Uremia. N. Engl. J. Med. 357:1316–1325. doi: 10.1056/NEJMra071313 Monteagudo-Mera, A., R. A. Rastall, G. R. Gibson, D. Charalampopoulos, and A. Chatzifragkou. 2019. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 103:6463–6472. doi: 10.1007/s00253-019-09978-7 Morgan, X. C., T. L. Tickle, H. Sokol, D. Gevers, K. L. Devaney, D. V. Ward, J. A. Reyes, S. A. Shah, N. LeLeiko, S. B. Snapper, A. Bousvaros, J. Korzenik, B. E. Sands, R. J. Xavier, and C. Huttenhower. 2012. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13:R79. doi: 10.1186/gb-2012-13-9-r79 Nood, E. V., A. Vrieze, M. Nieuwdorp, S. Fuentes, E. G. Zoetendal, W. M. de Vos, C. E. Visser, E. J. Kuijper, J. F. Bartelsman, J. G. Tijssen, P. Speelman, M. G. Dijkgraaf, and J. J. Keller. 2013. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368:407–415. doi: 10.1056/NEJMoa1205037 Notting, F., W. Pirovano, W. Sybesma, and R. Kort. 2023. The butyrate-producing and spore-forming bacterial genus Coprococcus as a potential biomarker for neurological disorders. Gut Microbiome 4:e16. doi: 10.1017/gmb.2023.14 O'Neill, D. G., D. B. Church, P. D. McGreevy, P. C. Thomson, and D. C. Brodbelt. 2015. Longevity and mortality of cats attending primary care veterinary practices in England. J. Feline Med. Surg. 17:125–133. doi: 10.1177/1098612X14536176 Onderdonk, A. B., R. L. Cisneros, and R. T. Bronson. 1983. Enhancement of experimental-ulcerative colitis by immunization-with bacteroides vulgatus. Infect. Immun. 42:783–788. doi: 10.1128/iai.42.2.783-788.1983. Pak, H. H., N. E. Cummings, C. L. Green, J. A. Brinkman, D. Yu, J. L. Tomasiewicz, S. E. Yang, C. Boyle, E. N. Konon, I. M. Ong, and D. W. Lamming. 2019. The metabolic response to a low amino acid diet is independent of diet-induced shifts in the composition of the gut microbiome. Sci. Rep. 9:67. doi: 10.1038/s41598-018-37177-3 Panditrao Lahane, G., and A. Dhar. 2024. Renoprotective effect of Nesfatin-1 in adenine-induced chronic kidney disease: An in vitro and in vivo study. Biochem. Pharmacol. 225:116284. doi: 10.1016/j.bcp.2024.116284 Parker, V. J. 2021. Nutritional management for dogs and cats with chronic kidney disease. Vet. Clin. North Am. Small Anim. Pract. 51:685–710. doi: 10.1016/j.cvsm.2021.01.007 Parsaei, M., N. Sarafraz, S. Y. Moaddab, and H. Ebrahimzadeh Leylabadlo. 2021. The importance of Faecalibacterium prausnitzii in human health and diseases. New Microbes New Infect. 43:100928. doi: 10.1016/j.nmni.2021.100928 Pei, T., R. Hu, F. Wang, S. Yang, H. Feng, Q. Li, J. Zhang, S. Yan, L. Ju, Z. He, Z. Han, A. Yang, W. Xiao, Y. Ma, and M. Wang. 2023. Akkermansia muciniphila ameliorates chronic kidney disease interstitial fibrosis via the gut-renal axis. Microb. Pathog. 174:105891. doi: 10.1016/j.micpath.2022.105891 Polzin, D. J. 2011a. Chronic kidney disease. In: J. Bartges and D. J. Polzin, editors, Nephrology and urology of small animals. Blackwell Publishing Ltd., Hoboken, NJ. p. 431–471. Polzin, D. J. 2011b. Chronic kidney disease in small animals. Vet. Clin. North Am. Small Anim. Pract. 41:15–30. doi: 10.1016/j.cvsm.2010.09.004 Pourafshar, S., B. Sharma, J. Allen, M. Hoang, H. Lee, H. Dressman, C. C. Tyson, I. Mallawaarachchi, P. Kumar, J. Z. Ma, P. H. Lin, and J. J. Scialla. 2024. Longitudinal pilot evaluation of the gut microbiota comparing patients with and without chronic kidney disease. J. Ren. Nutr.:1–11. doi: 10.1053/j.jrn.2024.01.003 Quimby, J. M. 2015. Searching for biomarkers in feline chronic kidney disease: a new frontier. Vet. J. 206:3–4. doi: 10.1016/j.tvjl.2015.05.005 Quimby, J. M., W. T. Brock, K. Moses, D. Bolotin, and K. Patricelli. 2015. Chronic use of maropitant for the management of vomiting and inappetence in cats with chronic kidney disease: a blinded, placebo-controlled clinical trial. J. Feline Med. Surg. 17:692–697. doi: 10.1177/1098612X14555441 Ramezani, A., Z. A. Massy, B. Meijers, P. Evenepoel, R. Vanholder, and D. S. Raj. 2016. Role of the gut microbiome in uremia: a potential therapeutic target. Am. J. Kidney Dis. 67:483–498. doi: 10.1053/j.ajkd.2015.09.027 Ranganathan, N., P. Ranganathan, E. A. Friedman, A. Joseph, B. Delano, D. S. Goldfarb, P. Tam, A. V. Rao, E. Anteyi, and C. G. Musso. 2010. Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv. Ther. 27:634–647. doi: 10.1007/s12325-010-0059-9 Rath, H. C., K. H. Wilson, and R. B. Sartor. 1999. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect. Immun. 67:2969–2974. doi: 10.1128/iai.67.6.2969-2974.1999 Reininghaus, E. Z., M. Platzer, A. Kohlhammer-Dohr, C. Hamm, S. Morkl, S. A. Bengesser, F. T. Fellendorf, T. Lahousen-Luxenberger, B. Leitner-Afschar, H. Schoggl, D. Amberger-Otti, W. Wurm, R. Queissner, A. Birner, V. S. Falzberger, A. Painold, W. Fitz, J. Wagner-Skacel, M. Brunnmayr, A. Rieger, A. Maget, R. Unterweger, K. Schwalsberger, B. Reininghaus, M. Lenger, T. F. S. Bastiaanssen, and N. Dalkner. 2020. PROVIT: supplementary probiotic treatment and vitamin B7 in depression-a randomized controlled trial. Nutrients 12:3422. doi: 10.3390/nu12113422 Ren, Z., Y. Fan, A. Li, Q. Shen, J. Wu, L. Ren, H. Lu, S. Ding, H. Ren, C. Liu, W. Liu, D. Gao, Z. Wu, S. Guo, G. Wu, Z. Liu, Z. Yu, and L. Li. 2020. Alterations of the human gut microbiome in chronic kidney disease. Adv. Sci. 7:2001936. doi: 10.1002/advs.202001936 Reynolds, B. S., and H. P. Lefebvre. 2013. Feline CKD: pathophysiology and risk factors--what do we know? J. Feline Med. Surg. 15:3–14. doi: 10.1177/1098612X13495234 Rinttilä, T., A. Kassinen, E. Malinen, L. Krogius, and A. Palva. 2004. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol. 97:1166–1177. doi: 10.1111/j.1365-2672.2004.02409.x Rossi, M., D. W. Johnson, M. Morrison, E. M. Pascoe, J. S. Coombes, J. M. Forbes, C. C. Szeto, B. C. McWhinney, J. P. Ungerer, and K. L. Campbell. 2016. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin. J. Am. Soc. Nephrol. 11:223–231. doi: 10.2215/CJN.05240515 Roubalová, R., P. Prochazkova, T. Kovarova, J. Jezkova, T. Hrncir, H. Tlaskalova-Hogenova, and H. Papezova. 2024. Influence of the gut microbiome on appetite-regulating neuropeptides in the hypothalamus: Insight from conventional, antibiotic-treated, and germ-free mouse models of anorexia nervosa. Neurobiol. Dis. 193:106460. doi: 10.1016/j.nbd.2024.106460 Rukavina Mikusic, N. L., N. M. Kouyoumdzian, and M. R. Choi. 2020. Gut microbiota and chronic kidney disease: evidences and mechanisms that mediate a new communication in the gastrointestinal-renal axis. Pflugers. Arch. 472:303–320. doi: 10.1007/s00424-020-02352-x Sanders, M. E. 2011. Impact of probiotics on colonizing microbiota of the gut. J. Clin. Gastroenterol. 45:S115–S119. doi: 10.1097/MCG.0b013e318227414a Sanders, M. E. 2016. Probiotics and microbiota composition. BMC Med. 14:82. doi: 10.1186/s12916-016-0629-z Schlechte, J., A. Z. Zucoloto, I. L. Yu, C. J. Doig, M. J. Dunbar, K. D. McCoy, and B. McDonald. 2023. Dysbiosis of a microbiota-immune metasystem in critical illness is associated with nosocomial infections. Nat. Med. 29:1017–1027. doi: 10.1038/s41591-023-02243-5 Shackelford, C., G. Long, J. Wolf, C. Okerberg, and R. Herbert. 2002. Qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies. Toxicol. pathol. 30:93–96. doi: 10.1080/01926230252824761 Shimizu, J., T. Kubota, E. Takada, K. Takai, N. Fujiwara, N. Arimitsu, Y. Ueda, S. Wakisaka, T. Suzuki, and N. Suzuki. 2016. Bifidobacteria abundance-featured gut microbiota compositional change in patients with Behcet's disease. PLoS One 11:e0153746. doi: 10.1371/journal.pone.0153746 Singh, V., G. Lee, H. Son, H. Koh, E. S. Kim, T. Unno, and J. H. Shin. 2022. Butyrate producers, "The Sentinel of Gut": Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front. Microbiol. 13:1103836. doi: 10.3389/fmicb.2022.1103836 Singhal, R., H. Donde, S. Ghare, K. Stocke, J. Zhang, M. Vadhanam, S. Reddy, L. Gobejishvili, P. Chilton, S. Joshi-Barve, W. Feng, C. McClain, K. Hoffman, J. Petrosino, M. Vital, and S. Barve. 2021. Decrease in acetyl-CoA pathway utilizing butyrate-producing bacteria is a key pathogenic feature of alcohol-induced functional gut microbial dysbiosis and development of liver disease in mice. Gut Microbes 13:1946367. doi: 10.1080/19490976.2021.1946367 Song, Y. L., N. Kato, C. X. Liu, M. Y., H. Kato, and K. Watanabe. 2000. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA. FEMS Microbiol. Lett. 187:167–173. doi: 10.1111/j.1574-6968.2000.tb09155.x Sugiyama, S., T. Sasaki, H. Tanaka, H. Yan, T. Ikegami, H. Kanki, K. Nishiyama, G. Beck, Y. Gon, S. Okazaki, K. Todo, A. Tamura, S. Tsukita, and H. Mochizuki. 2023. The tight junction protein occludin modulates blood-brain barrier integrity and neurological function after ischemic stroke in mice. Sci. Rep. 13:2892. doi: 10.1038/s41598-023-29894-1 Summers, S. C., J. M. Quimby, A. Isaiah, J. S. Suchodolski, P. J. Lunghofer, and D. L. Gustafson. 2019. The fecal microbiome and serum concentrations of indoxyl sulfate and p-cresol sulfate in cats with chronic kidney disease. J. Vet. Intern. Med. 33:662–669. doi: 10.1111/jvim.15389 Takahashi, K., A. Nishida, T. Fujimoto, M. Fujii, M. Shioya, H. Imaeda, O. Inatomi, S. Bamba, M. Sugimoto, and A. Andoh. 2016. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn's disease. Digestion 93:59–65. doi: 10.1159/000441768 Tang, W. H., Z. Wang, D. J. Kennedy, Y. Wu, J. A. Buffa, B. Agatisa-Boyle, X. S. Li, B. S. Levison, and S. L. Hazen. 2015. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 116:448–455. doi: 10.1161/CIRCRESAHA.116.305360 Tanno, H., S. Maeno, S. Salminen, M. Gueimonde, and A. Endo. 2022. 16S rRNA gene sequence diversity in Faecalibacterium prausnitzii-complex taxa has marked impacts on quantitative analysis. FEMS Microbiol. Ecol. 98:fiac004. doi: 10.1093/femsec/fiac004 Tian, X., Y. Zeng, Q. Tu, Y. Jiao, S. Yao, Y. Chen, L. Sun, Q. Xia, Y. Luo, L. Yuan, and Q. Jiang. 2023. Butyrate alleviates renal fibrosis in CKD by regulating NLRP3-mediated pyroptosis via the STING/NF-kappaB/p65 pathway. Int. Immunopharmacol. 124:111010. doi: 10.1016/j.intimp.2023.111010 Tong, J., C. Liu, P. Summanen, H. Xu, and S. M. Finegold. 2011. Application of quantitative real-time PCR for rapid identification of Bacteroides fragilis group and related organisms in human wound samples. Anaerobe 17:64–68. doi: 10.1016/j.anaerobe.2011.03.004 Torii, T., K. Kanemitsu, T. Wada, S. Itoh, K. Kinugawa, and A. Hagiwara. 2010. Measurement of short-chain fatty acids in human faeces using high-performance liquid chromatography: specimen stability. Annals of Clinical Biochemistry: International Journal of Laboratory Medicine 47:447–452. doi: 10.1258/acb.2010.010047 Torriani, S., G. E. Felis, and F. Dellaglio. 2001. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol. 67:3450–3454. doi: 10.1128/AEM.67.8.3450-3454.2001 Trischler, R., A. Poehlein, R. Daniel, and V. Muller. 2023. Ethanologenesis from glycerol by the gut acetogen Blautia schinkii. Environ. Microbiol. 25:3577–3591. doi: 10.1111/1462-2920.16517 Tsai, C. W., H. W. Huang, Y. J. Lee, and M. J. Chen. 2024. Investigating the efficacy of kidney-protective Lactobacillus mixture-containing pet treats in feline chronic kidney disease and its possible mechanism. Animals 14:630. doi: 10.3390/ani14040630 Tully, B. J., S. E. Finkel, and C. H. Corzett. 2023. Benchmarking a novel quantitative PCR-based microbiome profiling platform against sequencing-based methods. Cold Spring Harb. Laboratory doi: 10.1101/2023.12.27.573468 Ueki, A., Y. Ohtaki, N. Kaku, and K. Ueki. 2016. Descriptions of Anaerotaenia torta gen. nov., sp. nov. and Anaerocolumna cellulosilytica gen. nov., sp. nov. isolated from a methanogenic reactor of cattle waste and reclassification of Clostridium aminovalericum, Clostridium jejuense and Clostridium xylanovorans as Anaerocolumna species. Int. J. Syst. Evol. Microbiol. 66:2936–2943. doi: 10.1099/ijsem.0.001123 Vaziri, N. D., J. Wong, M. Pahl, Y. M. Piceno, J. Yuan, T. Z. DeSantis, Z. Ni, T. H. Nguyen, and G. L. Andersen. 2013. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 83:308–315. doi: 10.1038/ki.2012.345 Veiga, P., J. Suez, M. Derrien, and E. Elinav. 2020. Moving from probiotic to precision probiotic. Nat. Microbiol. 5:878–880. doi: 10.1038/s41564-020-0721-1 Wang, F., H. Jiang, K. Shi, Y. Ren, P. Zhang, and S. Cheng. 2012. Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrol. 17:733–738. doi: 10.1111/j.1440-1797.2012.01647.x Wang, H., A. Ainiwaer, Y. Song, L. Qin, A. Peng, H. Bao, and H. Qin. 2023. Perturbed gut microbiome and fecal and serum metabolomes are associated with chronic kidney disease severity. Microbiome 11:3. doi: 10.1186/s40168-022-01443-4 Wang, I. K., T. H. Yen, P. S. Hsieh, H. H. Ho, Y. W. Kuo, Y. Y. Huang, Y. L. Kuo, C. Y. Li, H. C. Lin, and J. Y. Wang. 2021. Effect of a probiotic combination in an experimental mouse model and clinical patients with chronic kidney disease: a pilot study. Front. Nutr. 8:661794. doi: 10.3389/fnut.2021.661794 Wang, W., L. Chen, R. Zhou, X. Wang, L. Song, S. Huang, G. Wang, and B. Xia. 2014. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J. Clin. Microbiol. 52:398–406. doi: 10.1128/JCM.01500-13 Wang, X., S. Yang, S. Li, L. Zhao, Y. Hao, J. Qin, L. Zhang, C. Zhang, W. Bian, L. Zuo, X. Gao, B. Zhu, X. G. Lei, Z. Gu, W. Cui, X. Xu, Z. Li, B. Zhu, Y. Li, S. Chen, H. Guo, H. Zhang, J. Sun, M. Zhang, Y. Hui, X. Zhang, X. Liu, B. Sun, L. Wang, Q. Qiu, Y. Zhang, X. Li, W. Liu, R. Xue, H. Wu, D. Shao, J. Li, Y. Zhou, S. Li, R. Yang, O. B. Pedersen, Z. Yu, S. D. Ehrlich, and F. Ren. 2020. Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut 69:2131–2142. doi: 10.1136/gutjnl-2019-319766 Wehedy, E., I. F. Shatat, and S. Al Khodor. 2021. The human microbiome in chronic kidney disease: a double-edged sword. Front. Med. 8:790783. doi: 10.3389/fmed.2021.790783 White, J. D., J. M. Norris, R. M. Baral, and R. Malik. 2006. Naturally-occurring chronic renal disease in Australian cats: a prospective study of 184 cases. Aust. Vet. J. 84:188–194. doi: 10.1111/j.1751-0813.2006.tb12796.x Wong, J., Y. M. Piceno, T. Z. DeSantis, M. Pahl, G. L. Andersen, and N. D. Vaziri. 2014. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am. J. Nephrol. 39:230–237. doi: 10.1159/000360010 Wu, I. W., C. C. Lee, H. J. Hsu, C. Y. Sun, Y. C. Chen, K. J. Yang, C. W. Yang, W. H. Chung, H. C. Lai, L. C. Chang, and S. C. Su. 2020a. Compositional and functional adaptations of intestinal microbiota and related metabolites in CKD patients receiving dietary protein restriction. Nutrients 12:2799. doi: 10.3390/nu12092799 Wu, I. W., C. Y. Lin, L. C. Chang, C. C. Lee, C. Y. Chiu, H. J. Hsu, C. Y. Sun, Y. C. Chen, Y. L. Kuo, C. W. Yang, S. S. Gao, W. P. Hsieh, W. H. Chung, H. C. Lai, and S. C. Su. 2020b. Gut microbiota as diagnostic tools for mirroring disease progression and circulating nephrotoxin levels in chronic kidney disease: discovery and validation study. Int. J. Biol. Sci. 16:420–434. doi: 10.7150/ijbs.37421 Xia, Y., Y. Chen, G. Wang, Y. Yang, X. Song, Z. Xiong, H. Zhang, P. Lai, S. Wang, and L. Ai. 2020. Lactobacillus plantarum AR113 alleviates DSS-induced colitis by regulating the TLR4/MyD88/NF-κB pathway and gut microbiota composition. J. Funct. Foods 67:103854. doi: 10.1016/j.jff.2020.103854 Yang, J., Q. Li, S. M. Henning, J. Zhong, M. Hsu, R. Lee, J. Long, B. Chan, G. T. Nagami, D. Heber, and Z. Li. 2018a. Effects of prebiotic fiber xylooligosaccharide in adenine-induced nephropathy in mice. Mol. Nutr. Food Res. 62:e1800014. doi: 10.1002/mnfr.201800014 Yang, Q., S. Su, N. Luo, and G. Cao. 2024. Adenine-induced animal model of chronic kidney disease: current applications and future perspectives. Ren. Fail. 46:2336128. doi: 10.1080/0886022X.2024.2336128 Yang, T., E. M. Richards, C. J. Pepine, and M. K. Raizada. 2018b. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat. Rev. Nephrol. 14:442–456. doi: 10.1038/s41581-018-0018-2 Yoshifuji, A., S. Wakino, J. Irie, T. Tajima, K. Hasegawa, T. Kanda, H. Tokuyama, K. Hayashi, and H. Itoh. 2016. Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats. Nephrol. Dial. Transplant. 31:401–412. doi: 10.1093/ndt/gfv353 Zhang, H., Y. Duan, F. Cai, D. Cao, L. Wang, Z. Qiao, Q. Hong, N. Li, Y. Zheng, M. Su, Z. Liu, and B. Zhu. 2022. Next-generation probiotics: microflora intervention to human diseases. Biomed. Res. Int. 2022:5633403. doi: 10.1155/2022/5633403 Zhang, P., X. Wang, S. Li, X. Cao, J. Zou, Y. Fang, Y. Shi, F. Xiang, B. Shen, Y. Li, B. Fang, Y. Zhang, R. Guo, Q. Lv, L. Zhang, Y. Lu, Y. Wang, J. Yu, Y. Xie, R. Wang, X. Chen, J. Yu, Z. Zhang, J. He, J. Zhan, W. Lv, Y. Nie, J. Cai, X. Xu, J. Hu, Q. Zhang, T. Gao, X. Jiang, X. Tan, N. Xue, Y. Wang, Y. Ren, L. Wang, H. Zhang, Y. Ning, J. Chen, L. Zhang, S. Jin, F. Ren, S. D. Ehrlich, L. Zhao, and X. Ding. 2023. Metagenome-wide analysis uncovers gut microbial signatures and implicates taxon-specific functions in end-stage renal disease. Genome. Biol. 24:226. doi: 10.1186/s13059-023-03056-y Zhang, Y., W. Zhong, W. Liu, X. Wang, G. Lin, J. Lin, J. Fang, X. Mou, S. Jiang, J. Huang, W. Zhao, and Z. Zheng. 2024. Uncovering specific taxonomic and functional alteration of gut microbiota in chronic kidney disease through 16S rRNA data. Front. Cell. Infect. Microbiol. 14:1363276. doi: 10.3389/fcimb.2024.1363276 Zheng, J., S. Wittouck, E. Salvetti, C. Franz, H. M. B. Harris, P. Mattarelli, P. W. O'Toole, B. Pot, P. Vandamme, J. Walter, K. Watanabe, S. Wuyts, G. E. Felis, M. G. Ganzle, and S. Lebeer. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70:2782–2858. doi: 10.1099/ijsem.0.004107 Zhernakova, A., A. Kurilshikov, M. J. Bonder, E. F. Tigchelaar, M. Schirmer, T. Vatanen, Z. Mujagic, A. V. Vila, G. Falony, S. Vieira-Silva, J. Wang, F. Imhann, E. Brandsma, S. A. Jankipersadsing, M. Joossens, M. C. Cenit, P. Deelen, M. A. Swertz, s. LifeLines cohort, R. K. Weersma, E. J. Feskens, M. G. Netea, D. Gevers, D. Jonkers, L. Franke, Y. S. Aulchenko, C. Huttenhower, J. Raes, M. H. Hofker, R. J. Xavier, C. Wijmenga, and J. Fu. 2016. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352:565–569. doi: 10.1126/science.aad3369 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95486 | - |
dc.description.abstract | 慢性腎臟病 (Chronic Kidney Disease, CKD) 是人類和寵物中最常見的腎臟疾病之一。CKD在年齡較大的貓隻中更為普遍,15歲以上的老年貓隻盛行率可達80%,並且是高齡貓隻的主要死因之一。目前尚無治療可以完全恢復腎臟功能,而CKD的管理重點在於延緩病程發展與改善病患的生活品質。因此,發展新型輔助療法仍是不可或缺的。近年研究顯示CKD與腸道菌相失衡有關,使得腸-腎軸的研究成為新型疾病預防或治療策略的重要方向。透過益生菌和益生質等非藥物輔助療法調節腸道菌相,有望成為CKD治療的新途徑。隨著基因體定序技術的發展,我們可以更全面的了解疾病與腸道菌相之間的關係,精準找到對於疾病進展的關鍵物種,進而改善疾病的發展。因此,本研究目的為建立次世代益生菌的篩選方法,透過第三代定序技術從健康與慢性腎臟病貓隻中篩選出候選菌株,並藉由絕對定量技術即時聚合酶鏈鎖反應進行驗證,進一步在慢性腎臟病動物模型中評估潛力益生菌改善慢性腎臟病的能力,以及其潛在作用機制。
菌相分析的結果顯示,慢性腎臟病貓隻的菌相組成嚴重失衡,不論是豐富度、均勻度和總物種數均顯著低於健康貓隻。此外,慢性腎臟病貓隻菌相中發現多種丁酸生成菌的相對豐度顯著低於健康貓隻,而丁酸的生成對於動物的腸道完整性與腸道環境穩定具有重要的調節作用,推測丁酸生成菌的減少對於疾病的發展具有重要意義。因此挑選其中Faecalibacterium prausnitzii,又稱為普拉梭菌作為候選菌株並透過即時定量聚合酶鏈鎖反應證實其含量在健康貓隻顯著高於慢性腎臟病貓隻,並以腺嘌呤誘導小鼠慢性腎臟病動物模型,探討其作為次世代益生菌的潛力。研究結果顯示,F. prausnitzii可恢復慢性腎臟病引起的菌相失調,提升丁酸生成菌的含量,增加腸道中丁酸的含量,緩解慢性腎臟病引起的腸滲漏,進而改善小鼠的飲食與體重變化。此外,F. prausnitzii雖然無法有效改善腺嘌呤誘導的慢性腎臟病損傷,但是可以降低腎損傷指標的濃度、纖維化前驅因子、發炎相關因子和氧化壓力指標的表現,顯示其具有緩解疾病的能力。同樣重要的是,給予小鼠F. prausnitzii不會對其健康造成任何負面影響,更突顯其作為益生菌的潛力。總結來說,透過基因體分析技術篩選出的F. prausnitzii可以改善腸道菌相失衡進而改善慢性腎臟病,提供以調節腸道菌相為基礎的治療策略一個新的研究方向,並促進慢性腎臟病新型輔助療法的發展。 | zh_TW |
dc.description.abstract | Chronic Kidney Disease (CKD) is one of the most prevalent kidney diseases in human and pets. CKD is particularly common in older feline, with a prevalence rate reaching up to 80% in feline over 15 years old, making it one of the leading causes of death in aging feline. Currently, no treatment can fully restore kidney function, so CKD management focuses on slowing disease progression and improving the quality of life for patients. Therefore, developing novel adjuvant therapies is crucial. Recent studies have shown that CKD is associated with gut microbiota dysbiosis, highlighting the importance of the gut-kidney axis as a potential direction for disease or treatment strategies. Regulating gut microbiota through non-pharmacological adjuvant therapies, such as probiotics and prebiotics, offers a promising approach for CKD treatment. With advenced genomic sequencing technology, we can better understand the relationship between diseases and gut microbiota, identify key species involved in disease progression, and thereby improve disease outcomes.
This study aims to establish a screening method for next-generation probiotics. Using third-generation sequencing technology, we identified candidate strains from healthy and CKD feline and validated them using absolute quantification techniques, real-time quantitative polymerame chain reaction (PCR). Furthermore, we evaluated the potential of the probiotics to improve CKD in animal model and investigated the underlying mechanisms. Microbiota analysis revealed that the gut microbiota composition in CKD feline is severely imbalanced, with significantly lower richness, evenness, and total observed species count compared to healthy feline. Additionally, the relative abundance of several butyrate-producing bacteria was significantly lower in CKD feline, and butyrate plays a crucial role in regulating intestinal integrity and stability. This suggests that the reduction of butyrate-producing bacteria is significant for disease progression. We selected Faecalibacterium prausnitzii as a candidate strain and confirmed through absolute quantification that its abundance is significantly higher in healthy feline than in CKD feline. Using an adenine-induced CKD mouse model, we investigated its potential as a next-generation probiotic. The results showed that F. prausnitzii could restore the gut microbiota imbalance caused by CKD, increase the abundance of butyrate-producing bacteria, elevate butyrate levels in the gut, and improve intestinal permeability associated with CKD, thereby enhancing the mice's diet, water intake, and body weight. Although F. prausnitzii could not effectively improve adenine-induced kidney damage, it reduced the concentrations of renal injury markers, fibrosis precursors, inflammation-related factors, and oxidative stress indicators, demonstrating its potential to mitigate the disease. Importantly, administering F. prausnitzii to mice did not cause any adverse health effects, further highlighting its potential as a probiotic. In summary, F. prausnitzii, identified through genomic analysis, can improve gut microbiota imbalance and CKD, providing a direction for developing microbiota-regulating therapeutic strategies and promoting the development of new adjuvant therapies for CKD. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-10T16:19:17Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-10T16:19:17Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract v 目 次 vii 圖 次 x 表 次 xiii 壹、文獻探討 1 一、家貓之慢性腎臟病 1 1.慢性腎臟病的介紹與概況 1 2.診斷與分期 2 3.控制、治療與預防 6 二、腸道菌相與慢性腎臟病 8 1.腸–腎軸 (gut-kidney axis) 8 2.尿毒素 15 3.調節腸道菌相的治療策略 19 貳、研究動機與目的 28 參、材料與方法 29 第一節、以top-down方法篩選出具腎臟保護潛力的菌株 29 一、試驗設計 29 二、研究材料 30 三、研究方法 32 第二節、以qPCR驗證Lm益生菌組合干預前與後腎貓之腸道菌相 45 一、試驗設計 45 二、研究材料 46 三、研究方法 47 第三節、以CKD小鼠模型評估潛力菌株之腎臟保護效果 52 一、試驗設計 52 二、研究材料 53 三、研究方法 54 肆、研究結果 62 第一節、以top-down方法篩選出具腎臟保護潛力的菌株 62 一、受試貓隻招募結果 62 二、受試貓隻腸道菌相分析 75 第二節、以qPCR驗證Lm益生菌組合干預前與後腎貓之腸道菌相 103 一、Lm介入對於腎貓腸道菌相的影響 103 二、以qPCR精準定量驗證TGS的結果 110 第三節、以CKD小鼠模型評估潛力菌株之腎臟保護效果 113 一、體重與採食量 113 二、F. prausnitzii對於CKD小鼠腎臟功能與病徵之影響 116 三、F. prausnitzii對於CKD小鼠免疫系統之影響 125 四、F. prausnitzii對於CKD腸道菌相和短鏈脂肪酸之影響 128 伍、討論 132 第一節、以top-down方法篩選出具腎臟保護潛力的菌株 132 一、受試貓隻招募結果 132 二、慢性腎臟病伴隨腸道菌相失衡改變貓隻的核心菌群與代謝功能 133 三、TGS分析具高度準確性 136 四、小結 136 第二節、以qPCR驗證Lm益生菌組合干預前與後腎貓之腸道菌相 138 一、補充複合乳酸桿菌Lm可以調節CKD貓隻的腸道菌相 138 二、Lm可以提升CKD貓隻中F. prausnitzii的含量 139 三、小結 140 第三節、以CKD小鼠模型評估潛力菌株之腎臟保護效果 141 一、F. prausnitzii可以促進食慾恢復並降低飲水量 141 二、F. prausnitzii可以改善CKD功能指標,但對腎臟損傷效果有限 141 三、F. prausnitzii可以抑制TLR4和MPO蛋白表現,但對發炎相關細胞激素影響有限 142 四、F. prausnitzii可以調節腸道菌相組成並改善腸道通透性 142 五、小結 143 陸、結論 144 柒、參考文獻 146 捌、附錄 172 | - |
dc.language.iso | zh_TW | - |
dc.title | 應用基因體學於慢性腎臟病貓篩選次世代益生菌及其腎臟保護功效之探討 | zh_TW |
dc.title | Exploring the renal-protection potential of next-generation probiotics identified via genomics in feline chronic kidney disease | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 廖啓成;楊三連;李雅珍;賴俊夫 | zh_TW |
dc.contributor.oralexamcommittee | Chii-Cherng Liao;San-Land Young;Ya-Jane Lee;Chun-Fu Lai | en |
dc.subject.keyword | 普拉梭菌,腸道菌相,慢性腎臟病,貓,第三代定序,即時定量聚合酶鏈鎖反應, | zh_TW |
dc.subject.keyword | Faecalibacterium prausnitzii,gut microbiota,chronic kidney disease (CKD),feline,third-generation sequencing,real-time quantitative PCR, | en |
dc.relation.page | 172 | - |
dc.identifier.doi | 10.6342/NTU202402872 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-10 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 動物科學技術學系 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 9.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。