Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95481
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江運金zh_TW
dc.contributor.advisorYun-Jin Jiangen
dc.contributor.author王辰瑜zh_TW
dc.contributor.authorChen-Yu Wangen
dc.date.accessioned2024-09-10T16:17:46Z-
dc.date.available2024-09-11-
dc.date.copyright2024-09-10-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citationAnthon, C., Corsi, G.I., and Gorodkin, J. (2022). CRISPRon/off: CRISPR/Cas9 on- and off-target gRNA design. Bioinformatics 38, 5437-5439. 10.1093/bioinformatics/btac697.
Bradford, Y.M., Van Slyke, C.E., Ruzicka, L., Singer, A., Eagle, A., Fashena, D., Howe, D.G., Frazer, K., Martin, R., Paddock, H., et al. (2022). Zebrafish information network, the knowledgebase for Danio rerio research. Genetics 220. 10.1093/genetics/iyac016.
Blumenthal, T. (2004). Operons in eukaryotes. Brief Funct Genomic Proteomic 3, 199-211. 10.1093/bfgp/3.3.199.
Bonetti, B., Fu, L.W., Moon, J., and Bedwell, D.M. (1995). The Efficiency of Translation Termination Is Determined by a Synergistic Interplay between Upstream and Downstream Sequences in Saccharomyces-Cerevisiae. J Mol Biol 251, 334-345. DOI 10.1006/jmbi.1995.0438.
Bosch, D., Voorhout, W., and Tommassen, J. (1988). Export and localization of N-terminally truncated derivatives of Escherichia coli K-12 outer membrane protein PhoE. J Biol Chem 263, 9952-9957.
Brezgin, S., Kostyusheva, A., Kostyushev, D., and Chulanov, V. (2019). Dead Cas Systems: Types, Principles, and Applications. Int J Mol Sci 20. 10.3390/ijms20236041.
Brogna, S., and Ashburner, M. (1997). The Adh-related gene of Drosophila melanogaster is expressed as a functional dicistronic messenger RNA: Multigenic transcription in higher organisms. Embo J 16, 2023-2031. DOI 10.1093/emboj/16.8.2023.
Charbit, A.R., Akerman, S., Holland, P.R., and Goadsby, P.J. (2009). Neurons of the Dopaminergic/Calcitonin Gene-Related Peptide A11 Cell Group Modulate Neuronal Firing in the Trigeminocervical Complex: An Electrophysiological and Immunohistochemical Study. J Neurosci 29, 12532-12541. 10.1523/Jneurosci.2887-09.2009.
Chen, P.K., Fuh, J.L., Chen, S.P., and Wang, S.J. (2010). Association between restless legs syndrome and migraine. J Neurol Neurosurg Psychiatry 81, 524-528. 10.1136/jnnp.2009.191684.
Chen, P.K., Fuh, J.L., and Wang, S.J. (2016). Bidirectional triggering association between migraine and restless legs syndrome: A diary study. Cephalalgia 36, 431-436. 10.1177/0333102415596444.
Chittum, H.S., Lane, W.S., Carlson, B.A., Roller, P.P., Lung, F.D., Lee, B.J., and Hatfield, D.L. (1998). Rabbit β-globin is extended beyond its UGA stop codon by multiple suppressions and translational reading gaps. Biochemistry-Us 37, 10866-10870. DOI 10.1021/bi981042r.
Dabrowski, M., Bukowy-Bieryllo, Z., and Zietkiewicz, E. (2015). Translational readthrough potential of natural termination codons in eucaryotes--The impact of RNA sequence. RNA Biol 12, 950-958. 10.1080/15476286.2015.1068497.
Earley, C.J., Connor, J., Garcia-Borreguero, D., Jenner, P., Winkelman, J., Zee, P.C., and Allen, R. (2014). Altered brain iron homeostasis and dopaminergic function in Restless Legs Syndrome (Willis-Ekbom Disease). Sleep Med 15, 1288-1301. 10.1016/j.sleep.2014.05.009.
El-Brolosy, M.A., Kontarakis, Z., Rossi, A., Kuenne, C., Gunther, S., Fukuda, N., Kikhi, K., Boezio, G.L.M., Takacs, C.M., Lai, S.L., et al. (2019). Genetic compensation triggered by mutant mRNA degradation. Nature 568, 193-197. 10.1038/s41586-019-1064-z.
El-Brolosy, M.A., and Stainier, D.Y.R. (2017). Genetic compensation: A phenomenon in search of mechanisms. PLoS Genet 13, e1006780. 10.1371/journal.pgen.1006780.
Engel, K., Schultz, H., Martin, F., Kotlyarov, A., Plath, K., Hahn, M., Heinemann, U., and Gaestel, M. (1995). Constitutive activation of mitogen-activated protein kinase-activated protein kinase 2 by mutation of phosphorylation sites and an A-helix motif. J Biol Chem 270, 27213-27221. 10.1074/jbc.270.45.27213.
Eren-Koçak, E., and Dalkara, T. (2021). Ion Channel Dysfunction and Neuroinflammation in Migraine and Depression. Front Pharmacol 12, 777607. 10.3389/fphar.2021.777607.
Firth, A.E., and Brierley, I. (2012). Non-canonical translation in RNA viruses. J Gen Virol 93, 1385-1409. 10.1099/vir.0.042499-0.
Goicoechea de Jorge, E., Harris, C.L., Esparza-Gordillo, J., Carreras, L., Arranz, E.A., Garrido, C.A., Lopez-Trascasa, M., Sanchez-Corral, P., Morgan, B.P., and Rodriguez de Cordoba, S. (2007). Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci U S A 104, 240-245. 10.1073/pnas.0603420103.
Iwao, K., Nakamori, S., Kameyama, M., Imaoka, S., Kinoshita, M., Fukui, T., Ishiguro, S., Nakamura, Y., and Miyoshi, Y. (1998). Activation of the β-catenin gene by interstitial deletions involving exon 3 in primary colorectal carcinomas without adenomatous polyposis coli mutations. Cancer Res 58, 1021-1026.
Jiang, Y.J., Fann, C.S., Fuh, J.L., Chung, M.Y., Huang, H.Y., Chu, K.C., Wang, Y.F., Hsu, C.L., Kao, L.S., Chen, S.P., and Wang, S.J. (2022). Genome-wide analysis identified novel susceptible genes of restless legs syndrome in migraineurs. J Headache Pain 23, 39. 10.1186/s10194-022-01409-9.
Jung, C., Gene, G.G., Tomas, M., Plata, C., Selent, J., Pastor, M., Fandos, C., Senti, M., Lucas, G., Elosua, R., and Valverde, M.A. (2011). A gain-of-function SNP in TRPC4 cation channel protects against myocardial infarction. Cardiovasc Res 91, 465-471. 10.1093/cvr/cvr083.
Jungreis, I., Lin, M.F., Spokony, R., Chan, C.S., Negre, N., Victorsen, A., White, K.P., and Kellis, M. (2011). Evidence of abundant stop codon readthrough in and other metazoa. Genome Research 21, 2096-2113. 10.1101/gr.119974.110.
Kanamori, Y., Hayakawa, Y., Matsumoto, H., Yasukochi, Y., Shimura, S., Nakahara, Y., Kiuchi, M., and Kamimura, M. (2010). A Eukaryotic (Insect) Tricistronic mRNA Encodes Three Proteins Selected by Context-dependent Scanning. Journal of Biological Chemistry 285, 36933-36944. 10.1074/jbc.M110.180398.
Kochetov, A.V. (2008). Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. Bioessays 30, 683-691. 10.1002/bies.20771.
Kok, F.O., Shin, M., Ni, C.W., Gupta, A., Grosse, A.S., van Impel, A., Kirchmaier, B.C., Peterson-Maduro, J., Kourkoulis, G., Male, I., et al. (2015). Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell 32, 97-108. 10.1016/j.devcel.2014.11.018.
Lee, P.J., Soares, A.R., Sun, Y., Fai, C., Picciotto, M.R., and Guo, J.U. (2024). Alternative translation initiation produces synaptic organizer proteoforms with distinct localization and functions. bioRxiv. 10.1101/2024.02.16.580719.
Lekven, A.C., Thorpe, C.J., Waxman, J.S., and Moon, R.T. (2001). Zebrafish encodes two wnt8 proteins on a bicistronic transcript and is required for mesoderm and neurectoderm patterning. Developmental Cell 1, 103-114. Doi 10.1016/S1534-5807(01)00007-7.
Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550. 10.1186/s13059-014-0550-8.
Marchler-Bauer, A., and Bryant, S.H. (2004). CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32, W327-331. 10.1093/nar/gkh454.
Ma, Z., Zhu, P., Shi, H., Guo, L., Zhang, Q., Chen, Y., Chen, S., Zhang, Z., Peng, J., and Chen, J. (2019). PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature 568, 259-263. 10.1038/s41586-019-1057-y.
Mou, H., Smith, J.L., Peng, L., Yin, H., Moore, J., Zhang, X.O., Song, C.Q., Sheel, A., Wu, Q., Ozata, D.M., et al. (2017). CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol 18, 108. 10.1186/s13059-017-1237-8.
Pescador Ruschel, M.A., and De Jesus, O. (2024). Migraine Headache. In StatPearls.
Rossi, A., Kontarakis, Z., Gerri, C., Nolte, H., Holper, S., Kruger, M., and Stainier, D.Y. (2015). Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524, 230-233. 10.1038/nature14580.
Schurks, M., Winter, A., Berger, K., and Kurth, T. (2014). Migraine and restless legs syndrome: a systematic review. Cephalalgia 34, 777-794. 10.1177/0333102414537725.
Schwedt, T.J., and Dodick, D.W. (2009). Advanced neuroimaging of migraine. Lancet Neurol 8, 560-568. Doi 10.1016/S1474-4422(09)70107-3.
Serobyan, V., Kontarakis, Z., El-Brolosy, M.A., Welker, J.M., Tolstenkov, O., Saadeldein, A.M., Retzer, N., Gottschalk, A., Wehman, A.M., and Stainier, D.Y. (2020). Transcriptional adaptation in Caenorhabditis elegans. Elife 9. 10.7554/eLife.50014.
Suzuki, K., Suzuki, S., Haruyama, Y., Kobashi, G., Shiina, T., and Hirata, K. (2019). Restless legs syndrome is associated with headache-related disabilities in patients with migraine: a prospective 7-year follow-up study. European Journal of Neurology 26, 238-245. 10.1111/ene.13796.
Suzuki, K., Suzuki, S., Miyamoto, M., Miyamoto, T., Numao, A., Watanabe, Y., Takashima, R., and Hirata, K. (2013). Does Pramipexole Treatment Improve Headache in Patients with Concomitant Migraine and Restless Legs Syndrome? Tremor and Other Hyperkinetic Movements. 10.5334/tohm.137.
Trulley, P., Snieckute, G., Bekker-Jensen, D., Menon, M.B., Freund, R., Kotlyarov, A., Olsen, J.V., Diaz-Munoz, M.D., Turner, M., Bekker-Jensen, S., et al. (2019). Alternative Translation Initiation Generates a Functionally Distinct Isoform of the Stress-Activated Protein Kinase MK2. Cell Rep 27, 2859-2870 e2856. 10.1016/j.celrep.2019.05.024.
van Oosterhout, W.P., van Someren, E.J., Louter, M.A., Schoonman, G.G., Lammers, G.J., Rijsman, R.M., Ferrari, M.D., and Terwindt, G.M. (2016). Restless legs syndrome in migraine patients: prevalence and severity. Eur J Neurol 23, 1110-1116. 10.1111/ene.12993.
Wagner, G.P., Kin, K., and Lynch, V.J. (2012). Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131, 281-285. 10.1007/s12064-012-0162-3.
Wang, J., Chitsaz, F., Derbyshire, M.K., Gonzales, N.R., Gwadz, M., Lu, S., Marchler, G.H., Song, J.S., Thanki, N., Yamashita, R.A., et al. (2023). The conserved domain database in 2023. Nucleic Acids Res 51, D384-D388. 10.1093/nar/gkac1096.
Yamashita, Y., Miyazato, A., Ohya, K., Ikeda, U., Shimada, K., Miura, Y., Ozawa, K., and Mano, H. (1996). Deletion of Src homology 3 domain results in constitutive activation of Tec protein-tyrosine kinase. Jpn J Cancer Res 87, 1106-1110. DOI 10.1111/j.1349-7006.1996.tb03118.x.
Yang, X., Liu, B., Yang, B., Li, S., Wang, F., Li, K., Hu, F., Ren, H., and Xu, Z. (2018). Prevalence of restless legs syndrome in individuals with migraine: a systematic review and meta-analysis of observational studies. Neurol Sci 39, 1927-1934. 10.1007/s10072-018-3527-7.
Zhao, S.R., Ye, Z., and Stanton, R. (2020). Misuse of RPKM or TPM normalization when comparing across samples and sequencing protocols. Rna 26, 903-909. 10.1261/rna.074922.120.
Zid, B.M., and O'Shea, E.K. (2014). Promoter sequences direct cytoplasmic localization and translation of mRNAs during starvation in yeast. Nature 514, 117-121. 10.1038/nature13578.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95481-
dc.description.abstract為了研究基因功能以及與疾病的關聯性,我們會使用許多方法來使基因喪失功能,但生物體常常能夠演化出需多不同的機制,來調適基因功能的缺失並達成所謂的遺傳穩健性。
在我們實驗室先前所做過的研究中,我們使用斑馬魚作為模式動物來模擬偏頭痛(migraine)並且具有不寧腿症候群(Restless legs syndrome)共病的病人。我們實驗室使用不同方法降低/去除ccdc141與vstm2l之基因表現,有利用嗎啉基(morpholino)影響蛋白質生成或產物改變、利用失活的常間回文重複序列叢集關聯蛋白(CRISPR/dCas9)系統進行轉錄阻礙,並且利用注射CRISPR/Cas9的4天大幼魚三種方式進行分析,均觀察到類似的性狀表現,包含有表現酪胺酸羥化酶(tyrosine hydroxylase)之視網膜無長突細胞(amacrine cell)的數目減少,以及胸鰭(pectoral fin)擺動頻率上升。然而,在使用CRISPR/Cas9創造的單一位點基因敲除突變種中,卻沒有發現上述性狀表現。回顧文獻後發現先前已經有許多機制被發表,包含遺傳補償效應(genetic compensation)/轉錄適應(transcriptional adaptation)、外顯子跳躍(exon skipping)、替代性轉譯起始(alternative translation initiation)等等。
首先,經由雙基因突變種(double mutant line)的創造,我們排除了ccdc141和vstm2l間可能具有遺傳冗餘性(genetic redundancy)。在vstm2lnn2608-/- 中,在3’端的基因表現/擴增子(amplicon)量遠低於5’端,顯示可能在此同型合子突變種中可能發生由3’端往5’端的信使核糖核酸降解; 此外,在注射upf3a嗎啉基進入突變種後,表現酪胺酸羥化酶之視網膜無長突細胞的數目下降。綜合以上結果,我們認為轉錄適應為最有可能的基因功能補償機轉,在使用核糖核酸定序(RNA-seq)進行基因表現量分析後,發現三個在突變種中表現量上升但在嗎啉基注射之幼魚中表現量無改變的基因,而這些基因表現的上升是否可以彌補vstm2l的失能還需要後續研究再證實。在ccdc141nn2704-/-中,透過將互補去氧核醣核酸克隆至載體中並進行定序,確認了此突變種未經歷外顯子跳躍,並且透過利用人類胚腎細胞株HEK293T,確認表現ccdc141nn2704-/-序列的蛋白是一種缺少N端約104個胺基酸的胜肽,並且可能是透過在提前終止密碼子(pre-mature stop codon)下游之替代性轉譯起始點開始轉譯出蛋白。為了確認真正基因被失活後的突變株之表現性狀,我創造了以無信使核糖核酸表現為目標的幾個基因敲除突變種,但發現這些突變種仍有用一些未知機制表現信使核糖核酸,並且也未看到相似於先前研究中的性狀,而這些原因仍待之後的研究來進行釐清。
總結上述內容,此研究的結果支持ccdc141與vstm2l分別以不同的方法來減低基因被突變所造成的影響。並且未來仍有些項目可繼續進行,如研究出真正彌補vstm2l功能的基因與機轉,以及測試在細胞株中所證實的機轉是否可以運用在ccdc141斑馬魚突變種中,還有解決大片段基因敲除魚的問題並創造真正具有基因失活特性的突變種等。
zh_TW
dc.description.abstractLots of loss-of-function strategies were used to study the function of genes, whereas biological systems may adapt the genomic defect through different mechanisms. In previous study, we found similar results in our zebrafish model for migraine patients with RLS (morphants, transcriptional knockdown larvae, and crispants of ccdc141 and vstm2l), which displayed a lower number of tyrosine hydroxylase-expressing amacrine cells, and some of them also displayed hyperkinetic pectoral fin movements. However, in the CRISPR/KO mutant lines of these two genes, showed neither decreased amacrine cell number nor hyperkinetic pectoral fin movements. Literatures had shown some genetic compensation mechanisms in different model organisms, such as transcriptional adaptation, exon skipping, alternative translation initiation, and so on. We would like to find out whether these mechanisms could happen in our zebrafish larvae.
Through creating the double mutant line, we demonstrated that these two genes do not play a redundant role of each other. In vstm2lnn2608-/-, the mRNA amplicon level at 3’ end is much lower than that at 5’ end, implicating a degradation event. Moreover, upf3a MO injection caused decreased amacrine cell number. Combing these two results, transcriptional adaptation was concluded as the possible mechanism to compensate genomic defect. RNA-sequencing results found that some genes were up-regulated in mutants but not morphants, and the compensatory effect needs to be verified further. In ccdc141nn2704-/-, we excluded exon skipping mechanism through cDNA cloning, and demonstrated an alternative peptide would be translated from downstream AUG using HEK293T cell lines. Some large fragment deletion lines were created to validate the phenotypes in null allele mutants. However, we failed to create mRNA-less mutants, and the reason should be discussed further.
In conclusion, the results suggested that these two mutant lines in our lab may exploit different mechanisms to reduce the impact of mutations. We should verify the compensatory role in vstm2l mutants, and test the alternative translation initiation mechanism in ccdc141 larvae. Moreover, solve the problems in large fragment deletion lines in the future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-10T16:17:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-10T16:17:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要……………………………………………………………..………………..... i
Abstract...……………………………………………………………………………... iii
Table of Contents ...…………………………………………………………...………...v
Index of Figures …………………………………………………………….……….... vi
Index of Tables ...…………………………………………………………………....... vii
Index of Supplementary Figures ...………………………………………………….. vii
Index of Supplementary Table ......………………………………………………….. vii
Chapter 1. Introductions ...…………………………………………………………… 1
1.1 Introduction to genetic robustness and gene compensation ………...………… 1
1.2 Introduction to migraine and restless legs syndrome and their risky genes identified in our lab ……………………………...…………………………... 2
1.3 Introduction to loss-of-function methods and their molecular effects in this study ………………...………………………………………….……………... 3
1.4 Previous works, hypotheses and aims …………………………….…………... 4
Chapter 2. Materials and Methods ...………………………………….……………... 8
2.1 Maintenance of zebrafish …………………….……...………………………... 8
2.2 Information and identification of mutant lines …………...……….…………... 8
2.3 Whole mount in situ hybridization (WISH) .…………………….…………... 12
2.4 Analysis of pectoral fin flapping frequency …………………….………….... 13
2.5 Quantitative reverse transcription PCR (qRT-PCR) .……………..……..…... 13
2.6 Morpholino knockdown …………………….……...……………….……….. 15
2.7 Large fragment deletion knockout .……………….……...……………….….. 16
2.8 cDNA cloning (transcript screening) …………………….……....….……….. 17
2.9 myc fusion clone expression in HEK293T cell lines ………….…….……….. 18
2.10 Mass spectrometry ……………..………….……....……………….……….. 20
2.11 RNA sequencing (RNA-seq) ……………..………….….…....…………….. 21
Chapter 3. Results ...……………………………………………………….…………. 23
3.1 Tyrosine hydroxylase expressing cell number and pectoral fin flapping frequency in mutant lines ..…………………………………………..………. 23
3.2 ccdc141 and vstm2l may not be the redundant genes in RLS pathogenesis 23
3.3 Relative mRNA expression level in mutant lines (ccdc141 & vstm2l) …....… 24
3.4 Transcripts clones exclude the possibility that exon skipping events happened in mutant lines ..….………………………………………………..……………. 25
3.5 upf3a MO injection partially restores the phenotype in vstm2lnn2608 homozygous larvae ……………….…………………………………………..……………. 26
3.6 Screening up-regulating genes in vstm2lnn2608 mutants through RNA-Seq ….. 27
3.7 ccdc141 mutant clone can translate in-frame peptide in HEK293T cells ….. 27
3.8 ccdc141 mutant clone can translate in-frame peptide from downstream alternative translation initiation site ……………..…..….….….…....……….. 28
3.9 Phenotypes and molecular effects of large fragment deletion ….………….. 29
3.10 5’-RACE of ccdc141 promoter-less knockout line (ccdc141nn2700) …...…… 30
Chapter 4. Discussions ....………………….……………………………………….... 46
4.1 How to choose proper crRNA target site for loss-of-function model ……...… 46
4.2 Alternative translation initiation usage, and efficiency …..……….……….. 47
4.3 Implications of RNA-seq data from vstm2l morphant and mutant …..…….. 49
4.4 Loss-of-function or gain-of-function effects from pathogenic association (SNP) of patients …...….………………………………………………………….. 49
4.5 Prospection of drug selection model using morphants, or crispants ……….… 50
References ....…………………………………………………………………………. 56
List of Abbreviations ....………….…………………………………………………... 65

Index of Figures
Figure A. Information of ccdc141 mutant lines ……..…….…………………………... 10
Figure B. Information of vstm2l mutant lines ……..…….…...………………………... 10
Figure 1. Tyrosine hydroxylase-expressing amacrine cell number in 5 single site mutant lines ……………………………………………………………………………… 31
Figure 2. Pectoral fin flapping frequency in single site mutant lines ……….………… 32
Figure 3. Double knockout line does not display phenotypes like morphants ……… 33
Figure 4. Extremely lower amplicons level at 3’ end of mRNA implicates the degradation of transcript in vtsm2lnn2608-/-.………….………………………………………….. 34
Figure 5. Transcripts cloning exclude the possibility that exon skipping events happened in ccdc141nn2704-/- andvstm2lnn2608-/- ……………………………………………… 35
Figure 6. th+ amacrine cell number were decreased after upf3a MO injection in vstm2lnn2608-/- mutants …………………………………………………………... 36
Figure 7. RNA sequencing results reveals differential expression level in vstm2lnn2608-/-compared with vstm2lnn2608+/+ ………………………...…………………………. 37
Figure 8. ccdc141nn2704 mutant clone could translate in-frame peptide with shorter length than wild type clone ……………………….………...…………...………………. 39
Figure 9. Mass spectrometry confirm the sequence identity of mutant protein is similar with wild type protein .…………………………………………………………… 40
Figure 10. Homozygote clone could not translate proper peptide after mutating the alternative translation start site at 105th amino acid …………………………… 41
Figure 11. Large deletion of genomic region of ccdc141 and amacrine cell phenotype 42
Figure 12. Large Deletion of genomic region of vstm2l and amacrine cell phenotype .. 44

Index of Tables
Table 1. Genotyping methods and primer sequences of mutant lines ……….………... 11
Table 2. qRT-PCR primers ……….……………………………….…………………... 14
Table 3. Information and phenotype observation of morpholinos …………………… 15

Index of Supplementary Figures
Supplementary Figure 1. ccdc141 crRNA activity test and efficiency of genomic deletionin injected embryos …………………………….…….….……………………….. 52
Supplementary Figure 2. vstm2l crRNA activity test and efficiency of genomic deletion in injected embryos ……………………………….….………………………….. 53
Supplementary Figure 3. Translation initiation in ccdc141 mutant was affected when injecting AUG morpholino …………………………………………………...….. 54

Index of Supplementary Tables
Supplementary Table 1. Top 20 annotated GO terms (categorized by molecular function) …………………….…………………………………..............................….. 55
Supplementary Table 2. Top 20 annotated GO terms (categorized by cellular component) …….…………………………………………………..........................….. 55
-
dc.language.isoen-
dc.subject替代性轉譯起始zh_TW
dc.subject遺傳穩健性zh_TW
dc.subject斑馬魚zh_TW
dc.subjectvstm2lzh_TW
dc.subject遺傳補償效應zh_TW
dc.subjectccdc141zh_TW
dc.subjectalternative translation initiationen
dc.subjectzebrafishen
dc.subjectgenetic robustnessen
dc.subjectccdc141en
dc.subjectvstm2len
dc.subjecttranscriptional adaptationen
dc.title斑馬魚變異種以不同的方式達成遺傳穩健性zh_TW
dc.titleGenetic Robustness of Zebrafish ccdc141 and vstm2l Mutants in Different Waysen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳俊豪;賴時磊zh_TW
dc.contributor.oralexamcommitteeChun-Hao Chen;Shih-Lei Laien
dc.subject.keyword斑馬魚,遺傳穩健性,替代性轉譯起始,遺傳補償效應,ccdc141,vstm2l,zh_TW
dc.subject.keywordzebrafish,genetic robustness,ccdc141,vstm2l,transcriptional adaptation,alternative translation initiation,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202401763-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-09-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept分子與細胞生物學研究所-
dc.date.embargo-lift2027-08-31-
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved