Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95474
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂明璋zh_TW
dc.contributor.advisorMing-Chang Luen
dc.contributor.author范舜凱zh_TW
dc.contributor.authorShun-Kai Fanen
dc.date.accessioned2024-09-10T16:15:39Z-
dc.date.available2024-09-11-
dc.date.copyright2024-09-10-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citation1. Huo, Y., et al., Investigation of power battery thermal management by using mini-channel cold plate. Energy Conversion and Management, 2015. 89: p. 387-395.
2. Ramakrishnan, B., et al., CPU overclocking: A performance assessment of air, cold plates, and two-phase immersion cooling. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021. 11(10): p. 1703-1715.
3. Schrage, R.W. A Theoretical Study of Interphase Mass Transfer. 1953, New York Chichester, West Sussex: Columbia University Press.
4. Mudawar, I., Assessment of high-heat-flux thermal management schemes. IEEE transactions on components and packaging technologies, 2001. 24(2): p. 122-141.
5. Wang, Z., et al., Experimental Investigation of the Transient Pool Boiling Heat Transfer on the Quenching of Vertical Rodlet in Water. Journal of Nuclear Engineering and Radiation Science, 2022. 8(2): p. 021403.
6. Ramakrishnan, B., et al. Effect of system and operational parameters on the performance of an immersion-cooled multichip module for high performance computing. in 2014 Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM). 2014. IEEE.
7. Mohammadi, N., et al., Effects of surface wettability on pool boiling of water using super-polished silicon surfaces. International Journal of Heat and Mass Transfer, 2018. 127: p. 1128-1137.
8. Ranjan, A., et al., Enhancement of critical heat flux (CHF) in pool boiling with anodized copper surfaces. International Journal of Thermal Sciences, 2022. 172: p. 107338.
9. Hsu, C.-C. and P.-H. Chen, Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings. International Journal of Heat and Mass Transfer, 2012. 55(13-14): p. 3713-3719.
10. Forrest, E., et al., Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. International Journal of Heat and Mass Transfer, 2010. 53(1-3): p. 58-67.
11. Chen, R., et al., Nanowires for enhanced boiling heat transfer. Nano letters, 2009. 9(2): p. 548-553.
12. Lu, M.-C., et al., Critical heat flux of pool boiling on Si nanowire array-coated surfaces. International Journal of Heat and Mass Transfer, 2011. 54(25-26): p. 5359-5367.
13. Gouda, R.K., M. Pathak, and M.K. Khan, Pool boiling heat transfer enhancement with segmented finned microchannels structured surface. International Journal of Heat and Mass Transfer, 2018. 127: p. 39-50.
14. Cooke, D. and S.G. Kandlikar, Effect of open microchannel geometry on pool boiling enhancement. International Journal of Heat and Mass Transfer, 2012. 55(4): p. 1004-1013.
15. Gheitaghy, A.M., A. Samimi, and H. Saffari, Surface structuring with inclined minichannels for pool boiling improvement. Applied Thermal Engineering, 2017. 126: p. 892-902.
16. Nirgude, V.V. and S.K. Sahu, Enhancement of nucleate boiling heat transfer using structured surfaces. Chemical Engineering and Processing: Process Intensification, 2017. 122: p. 222-234.
17. Li, J., et al., Ultrascalable three-tier hierarchical nanoengineered surfaces for optimized boiling. ACS nano, 2019. 13(12): p. 14080-14093.
18. Jaikumar, A. and S.G. Kandlikar, Ultra-high pool boiling performance and effect of channel width with selectively coated open microchannels. International Journal of Heat and Mass Transfer, 2016. 95: p. 795-805.
19. Li, Q., et al., Experimental investigation of pool boiling heat transfer on pillar-structured surfaces with different wettability patterns. Applied Thermal Engineering, 2022. 215: p. 118924.
20. 詹偉新, 三維複合微米柱陣列表面之池沸騰臨界熱通量. 臺灣大學機械工程系所學位論文, 2022. 2022: p. 1-70.
21. 許瑋倫, 應用三維微米柱陣列表面增強池沸騰熱傳. 交通大學機械工程系所學位論文, 2019. 2019: p. 1-84.
22. Kibushi, R., et al., Enhancement of the critical heat flux of saturated pool boiling by the breathing phenomenon induced by lotus copper in combination with a grooved heat transfer surface. International Journal of Heat and Mass Transfer, 2021. 179: p. 121663.
23. Sun, X., et al., Enhanced pool boiling on microstructured surfaces with spatially-controlled mixed wettability. International Journal of Heat and Mass Transfer, 2022. 183: p. 122164.
24. Nukiyama, S., The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. International Journal of Heat and Mass Transfer, 1966. 9(12): p. 1419-1433.
25. Rohsenow, W.M., A method of correlating heat-transfer data for surface boiling of liquids. Transactions of the American Society of Mechanical Engineers, 1952. 74(6): p. 969-975.
26. Cengel, Y.A. and A.J. Ghajar, Heat and mass transfer. Penerbit McGraw-Hill Education, New York, 2015.
27. Fritz, W., Berechnung des maximalvolumes von dampfblasen. Physik. Zeitschr, 1935. 36: p. 379-384.
28. Zuber, N., Hydrodynamic aspects of boiling heat transfer. 1959: United States Atomic Energy Commission, Technical Information Service.
29. 沸騰熱傳與雙相流. 2001: 俊傑書局股份有限公司.
30. Taylor, G.I., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1950. 201(1065): p. 192-196.
31. Kutateladze, S., On the transition to film boiling under natural convection. Kotloturbostroenie, 1948. 3: p. 10.
32. Linehard, J. and V.K. Dhir, Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes. 1973, NASA.
33. Carey, V.P., Liquid-vapor phase-change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. 2020: CRC Press.
34. Li, L., et al., Water-only hydrothermal method: a generalized route for environmentally-benign and cost-effective construction of superhydrophilic surfaces with biomimetic micronanostructures on metals and alloys. Chemical Communications, 2014. 50(56): p. 7416-7419.
35. Lin, P.-C., H.-C. Cheng, and P.-H. Chen, Effects of wide-range copper surface wettability on spray cooling heat transfer. Experimental Thermal and Fluid Science, 2023. 143: p. 110834.
36. Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial & engineering chemistry, 1936. 28(8): p. 988-994.
37. Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, 1944. 40: p. 546-551.
38. Coleman, H.W. and W.G. Steele, Experimentation, validation, and uncertainty analysis for engineers. 2018: John Wiley & Sons.
39. Vachon, R., G. Nix, and G. Tanger, Evaluation of constants for the Rohsenow pool-boiling correlation. 1968.
40. Chen, G. and C.H. Li, Combined effects of liquid wicking and hydrodynamic instability on pool boiling critical heat flux by two-tier copper structures of nanowires and microgrooves. International Journal of Heat and Mass Transfer, 2019. 129: p. 1222-1231.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95474-
dc.description.abstract以往之池沸騰研究中,多受限於臨界熱通量,導致沸騰過程受到阻礙;抑或是高熱傳系數,但卻導致臨界熱通量的提早發生,本研究利用三維親疏水混合微米銅柱結構,研究為了解決臨界熱通量及熱傳係數無法同時提高的問題,本研究利用三維親疏水混合微米銅柱,研究出了高效的池沸騰性能。於文獻回顧中可以發現,能有效提升沸騰效能的方法有兩種,第一種為改變樣品表面的濕潤性,使樣品能夠有更強的吸水力或是改變氣泡動態機制;第二種為利用微結構,使樣品有更多的散熱面積,同時藉由微結構提升毛細力,本研究之三維親疏水混合微米銅柱結構就基於以上兩點的機制而設計,利用微米柱結構搭配親水改質,最大化的提升臨界熱通量,再於親水微米柱結構上局部塗覆疏水結構,製造出三維親疏水混合結構,從而有更好得氣泡成核、脫離特性,以提昇熱傳係數。本研究使用銅塊加熱樣品,再利用安裝於銅塊上的熱電偶,量測溫差計算熱通量以及表面溫度,同時使用高速攝影機拍攝氣泡動態,再利用影像分析成核點密度、氣泡脫離頻率及氣泡脫離直徑。經實驗結果顯示,微結構搭配親水層能大幅提升臨界熱通量。其中,臨界熱通量以HP-1.0mmPA的提升效果最大,其臨界熱通量為374.17 ± 3.68 W/cm²,HP-1.0mmPA相對於Plain Cu能夠提升250%。再來是複合親疏結構的影響,本研究將疏水材料局部塗覆於柱頂,由實驗結果表明,複合親疏結構與全親水結構的臨界熱通量保持一致,但熱傳係數卻有顯著的提升,實驗結果顯示,Hybrid-1.0mmPA之臨界熱通量及熱傳係數分別為368.19 ± 5.86 W/cm²及28.02 ± 3.24W/cm2-K,熱傳係數相對於HP-1.0mmPA提升了197%;相對於Plain Cu則能提升456%。其中熱傳係數又以Hybrid-1.5mmPA的提升效果最佳,其臨界熱通量及熱傳係數分別為343.95 ± 0.38 W/cm²及31.34 ± 0.76 W/cm2-K,熱傳係數相對於Plain Cu提升了522%。由實驗結果能夠發現,單純的親水表面改質,雖然能夠對臨界熱通量帶來不錯的提升效果,但於熱傳係數的表現中卻不佳,因此本研究的主要目標在於,利用兩種不同的改質方法於單一材料中,於結果表明,此方法能夠大幅提升臨界熱通量以及熱傳係數,其親水改質對於延緩臨界熱通量的主要機制在於,可以增強材料表面的濕潤性,使液體能夠在高熱通量時,吸入更多液體潤濕表面,然而,親水表面因有較大的表面能,這導致氣泡需要在更高的表面溫度下才能夠產生成核現象,這使親水結構於低熱通量時有較低的熱傳係數,而本研究利用複合親疏水結構克服這項問題,於柱頂的疏水結構因低的表面能,能夠於低表面溫度下就開始成核反應,使熱傳係數相對於親水結構有大幅得提升。由研究結果能夠得知微結構搭配親水改質能夠大幅提升臨界熱通量,於親水結構的基礎上再加入疏水塗覆能夠改善親水結構低熱傳係數的問題,並達到氣、液分流的效果。zh_TW
dc.description.abstractIn previous studies on pool boiling, critical heat flux (CHF) has often been a limiting factor, hindering the boiling process. Alternatively, achieving a high heat transfer coefficient (HTC) has often led to an early CHF. This study employs three-dimensional hybrid hydrophilic and hydrophobic copper micropillars to address the challenge of simultaneously enhancing CHF and HTC. The goal is to achieve efficient pool boiling performance.
The literature review identifies two main methods for effectively enhancing boiling performance. The first method involves altering the wettability of the sample surface to increase its water absorption capability or improve bubble dynamics. The second method utilizes microstructures to provide a larger heat dissipation area and enhance capillary forces. The objective of this study is to combine these two approaches in pool boiling research. The three-dimensional mixed hydrophilic and hydrophobic copper micropillar structure is designed based on these two mechanisms. By combining micropillar structures with hydrophilic modifications, the study aims to maximize the critical heat flux. Additionally, by partially coating the hydrophilic micropillar structures with hydrophobic materials, a three-dimensional mixed hydrophilic-hydrophobic structure is created. This design enhances bubble nucleation and departure characteristics, thereby improving the heat transfer coefficient. Consequently, this approach is expected to enhance both the CHF and HTC.
A copper block is used to heat the samples, with thermocouples mounted on the copper block to calculate heat flux and surface temperature. A high-speed camera captures bubble dynamics, and image analysis is employed to determine nucleation site density, bubble departure frequency, and bubble departure diameter. Experimental results show that microstructures combined with hydrophilic layers significantly enhance CHF. The HP-1.0mmPA sample achieved the highest CHF of 374.17 ± 3.68 W/cm², representing a 250% increase compared to plain copper (Plain Cu).
For the impact of composite hydrophilic-hydrophobic structures, hydrophobic material was partially coated on the tops of the pillars. The results indicate that while the CHF of the composite structure is comparable to that of the fully hydrophilic structure, the HTC is significantly improved. Specifically, the Hybrid-1.0mmPA sample exhibited a CHF of 368.19 ± 5.86 W/cm² and a HTC of 28.02 ± 3.24 W/cm²-K, which is a 197% increase compared to HP-1.0mmPA and a 456% increase compared to Plain Cu. The Hybrid-1.5mmPA sample achieved the best enhancement in the HTC, with a CHF of 343.95 ± 0.38 W/cm² and a HTC of 31.34 ± 0.76 W/cm²-K, representing a 522% increase compared to Plain Cu.
The results indicate that while purely hydrophilic surface modifications can significantly enhance CHF, they do not substantially improve the HTC. Therefore, the primary objective of this study is to use two different modification methods on a single material. The results show that this approach can significantly enhance both CHF and the HTC. The main mechanism by which hydrophilic modification delays CHF is by enhancing the wettability of the material surface, allowing more liquid to wet the surface at high heat flux. However, the high surface energy of hydrophilic surfaces requires higher surface temperatures for bubble nucleation, resulting in a lower HTC at low heat fluxes. This study overcomes this issue by using composite hydrophilic-hydrophobic structures. The low surface energy of the hydrophobic structures on the pillar tops allows nucleation at lower surface temperatures, significantly enhancing the HTC compared to purely hydrophilic structures.
The study concludes that microstructures combined with hydrophilic modifications can significantly enhance CHF. Adding hydrophobic coatings to hydrophilic structures can address the low HTC issue and achieving liquid-vapor separation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-10T16:15:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-10T16:15:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iv
目次 vii
圖次 ix
表次 xii
符號表 xiii
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究目標 5
1.4 論文編排 6
第二章 沸騰理論 15
2.1 沸騰曲線 15
2.2 理論模型 16
2.2.1 微對流模型 16
2.2.2 流體不穩定性模型 18
2.2.3 微結構毛細限 21
第三章 實驗樣品 25
3.1 樣品設計 25
3.2 樣品製程 25
3.3 樣品命名 27
3.4 樣品分析 27
第四章 實驗系統與方法 42
4.1 實驗系統與架設 42
4.2 實驗方法與量測 43
4.2.1 實驗量測 44
4.2.2 誤差傳播分析 46
4.2.3 實驗熱損失分析 48
第五章 結果與討論 54
5.1 臨界熱通量 54
5.2 熱傳係數 56
5.3 氣泡動態 57
第六章 結論與未來工作 84
6.1 結論 84
6.2 未來工作 86
參考文獻 87
附錄 90
-
dc.language.isozh_TW-
dc.title三維親疏水混合微米銅柱陣列之池沸騰熱傳zh_TW
dc.titleEnhanced Pool Boiling Heat Transfer on the Three-Dimensional Hybrid Copper Micropillar Arraysen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李明蒼;羅景文zh_TW
dc.contributor.oralexamcommitteeMing-Tsang Lee;Ching-Wen Loen
dc.subject.keyword相變熱傳,浸沒式冷卻,池沸騰,銅柱陣列,複合濕潤性,臨界熱通量,熱傳係數,zh_TW
dc.subject.keywordPhase change heat transfer,Immersion cooling,Pool boiling,Copper pillar arrays,Hybrid wettability,Critical heat flux,Heat transfer coefficient,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202402535-
dc.rights.note未授權-
dc.date.accepted2024-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
4.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved