請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95444完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳嘉文 | zh_TW |
| dc.contributor.advisor | Kevin C.-W. Wu | en |
| dc.contributor.author | 余祐陞 | zh_TW |
| dc.contributor.author | Yu-Sheng Yu | en |
| dc.date.accessioned | 2024-09-09T16:11:18Z | - |
| dc.date.available | 2024-09-10 | - |
| dc.date.copyright | 2024-09-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | Babarao, R., Rubio-Martinez, M., Hill, M.R., Thornton, A.W., 2016. Interpenetrated Zirconium–Organic Frameworks: Small Cavities versus Functionalization for CO2 Capture. J. Phys. Chem. C 120, 13013-13023. https://doi.org/10.1021/acs.jpcc.6b01484.
Chen, X., Li, Y., Fu, Q., Qin, H., Lv, J., Yang, K., Zhang, Q., Zhang, H., Wang, M., 2022. An efficient modulated synthesis of zirconium metal–organic framework UiO-66. RSC Adv. 12, 6083-6092. https://doi.org/10.1039/D1RA07848H. Cinque, G., Grilli, A., Cibin, G., Raco, A., Patelli, A., Mattarello, V., Marcelli, A., Rigato, V., 2007. Preliminary synchrotron radiation characterization of first multilayer mirrors for the soft X-ray water window. Spectrochim. Acta B: At. Spectrosc. 62, 586-592. https://doi.org/10.1016/j.sab.2007.03.028. deKrafft, K.E., Boyle, W.S., Burk, L.M., Zhou, O.Z., Lin, W., 2012. Zr- and Hf-based nanoscale metal–organic frameworks as contrast agents for computed tomography. J. Mater. Chem. 22, 18139-18144. https://doi.org/10.1039/C2JM32299D. Doan, T.L., Nguyen, H.L., Pham, H.Q., Pham-Tran, N.N., Le, T.N., Cordova, K.E., 2015. Tailoring the Optical Absorption of Water-Stable Zr(IV)- and Hf(IV)-Based Metal-Organic Framework Photocatalysts. Chem. Asian J. 10, 2660-2668. https://doi.org/10.1002/asia.201500641. Doonan, C.J., Sumby, C.J., 2017. Metal–organic framework catalysis. CrystEngComm 19, 4044-4048. https://doi.org/10.1039/C7CE90106B. Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M., Yaghi, O.M., 2002. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469-472. https://doi.org/10.1126/science.1067208. Farha, O.K., Eryazici, I., Jeong, N.C., Hauser, B.G., Wilmer, C.E., Sarjeant, A.A., Snurr, R.Q., Nguyen, S.T., Yazaydın, A., Hupp, J.T., 2012. Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134, 15016-15021. https://doi.org/10.1021/ja3055639. Farha, O.K., Özgür Yazaydın, A., Eryazici, I., Malliakas, C.D., Hauser, B.G., Kanatzidis, M.G., Nguyen, S.T., Snurr, R.Q., Hupp, J.T., 2010. De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2, 944-948. https://doi.org/10.1038/nchem.834. Forgan, R.S., 2020. Modulated self-assembly of metal–organic frameworks. Chem. Sci. 11, 4546-4562. https://doi.org/10.1039/D0SC01356K. Furukawa, H., Cordova, K.E., O'Keeffe, M., Yaghi, O.M., 2013. The chemistry and applications of metal-organic frameworks. Science 341, 1230444. https://doi.org/10.1126/science.1230444. Gong, T., Li, Y., Lv, B., Wang, H., Liu, Y., Yang, W., Wu, Y., Jiang, X., Gao, H., Zheng, X., Bu, W., 2020. Full-Process Radiosensitization Based on Nanoscale Metal–Organic Frameworks. ACS Nano 14, 3032-3040. https://doi.org/10.1021/acsnano.9b07898. Gupta, M., Vittal, J.J., 2021. Control of interpenetration and structural transformations in the interpenetrated MOFs. Coord. Chem. Rev. 435, 213789. https://doi.org/10.1016/j.ccr.2021.213789. Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., Eubank, J.F., Heurtaux, D., Clayette, P., Kreuz, C., Chang, J.S., Hwang, Y.K., Marsaud, V., Bories, P.N., Cynober, L., Gil, S., Férey, G., Couvreur, P., Gref, R., 2010. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172-178. https://doi.org/10.1038/nmat2608. Hou, S.-L., Dong, J., Jiang, X.-L., Jiao, Z.-H., Zhao, B., 2019. A Noble-Metal-Free Metal–Organic Framework (MOF) Catalyst for the Highly Efficient Conversion of CO2 with Propargylic Alcohols. Angew. Chem., Int. Ed. Engl. 58, 577-581. https://doi.org/10.1002/anie.201811506. Hsieh, C.-C., Lin, Z.-J., Lai, L.-J., 2023. Construction of low humidity biosafety level-2 laboratory for cryo-sample environment for soft x-ray tomography imaging at Taiwan photon source. AIP Conf. Proc. 2990. https://doi.org/10.1063/5.0168153. Jian, M., Liu, B., Liu, R., Qu, J., Wang, H., Zhang, X., 2015. Water-based synthesis of zeolitic imidazolate framework-8 with high morphology level at room temperature. RSC Adv. 5, 48433-48441. https://doi.org/10.1039/C5RA04033G. Jiang, D., Huang, C., Zhu, J., Wang, P., Liu, Z., Fang, D., 2021a. Classification and role of modulators on crystal engineering of metal organic frameworks (MOFs). Coordination Chemistry Reviews 444, 214064. https://doi.org/10.1016/j.ccr.2021.214064. Jiang, Y., Yu, Y., Zhang, X., Weinert, M., Song, X., Ai, J., Han, L., Fei, H., 2021b. N-Heterocyclic Carbene-Stabilized Ultrasmall Gold Nanoclusters in a Metal-Organic Framework for Photocatalytic CO2 Reduction. Angewandte Chemie International Edition 60, 17388-17393. https://doi.org/10.1002/anie.202105420. Kalmutzki, M.J., Diercks, C.S., Yaghi, O.M., 2018. Metal–Organic Frameworks for Water Harvesting from Air. Adv. Mater. 30, 1704304. https://doi.org/10.1002/adma.201704304. Karagiaridi, O., Bury, W., Tylianakis, E., Sarjeant, A.A., Hupp, J.T., Farha, O.K., 2013. Opening Metal–Organic Frameworks Vol. 2: Inserting Longer Pillars into Pillared-Paddlewheel Structures through Solvent-Assisted Linker Exchange. Chem. Mater. 25, 3499-3503. https://doi.org/10.1021/cm401724v. Lázaro, I.A., Haddad, S., Sacca, S., Orellana-Tavra, C., Fairen-Jimenez, D., Forgan, R.S., 2017. Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Delivery. Chem 2, 561-578. https://doi.org/10.1016/j.chempr.2017.02.005. Le, H.V., Le Doan, T.H., Tran, B.Q., Thi Nguyen, H.H., Co, T.T., Nguyen, H.T., Le Huynh, N.T., Thi Nguyen, L.P., Van Tran, M., 2019. Selective incorporation of Pd nanoparticles into the pores of an alkyne-containing metal-organic framework VNU1 for enhanced electrocatalytic hydrogen evolution reaction at near neutral pH. Materials Chemistry and Physics 233, 16-20. https://doi.org/10.1016/j.matchemphys.2019.05.032. Lee, J., Farha, O.K., Roberts, J., Scheidt, K.A., Nguyen, S.T., Hupp, J.T., 2009. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450-1459. https://doi.org/10.1039/B807080F. Liang, K., Ricco, R., Doherty, C.M., Styles, M.J., Bell, S., Kirby, N., Mudie, S., Haylock, D., Hill, A.J., Doonan, C.J., Falcaro, P., 2015. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 6, 7240. https://doi.org/10.1038/ncomms8240. Lippke, J., Brosent, B., von Zons, T., Virmani, E., Lilienthal, S., Preuße, T., Hülsmann, M., Schneider, A.M., Wuttke, S., Behrens, P., Godt, A., 2017. Expanding the Group of Porous Interpenetrated Zr-Organic Frameworks (PIZOFs) with Linkers of Different Lengths. Inorg. Chem. 56, 748-761. https://doi.org/10.1021/acs.inorgchem.6b01814. Loconte, V., Singla, J., Li, A., Chen, J.-H., Ekman, A., McDermott, G., Sali, A., Le Gros, M., White, K.L., Larabell, C.A., 2022. Soft X-ray tomography to map and quantify organelle interactions at the mesoscale. Structure 30, 510-521. e513. https://doi.org/10.1016/j.str.2022.01.006. Loconte, V., White, K.L., 2022. The use of soft X-ray tomography to explore mitochondrial structure and function. Mol. Metab. 57, 101421. https://doi.org/10.1016/j.molmet.2021.101421. Luz, I., Llabrés i Xamena, F.X., Corma, A., 2010. Bridging homogeneous and heterogeneous catalysis with MOFs: “Click” reactions with Cu-MOF catalysts. J. Catal. 276, 134-140. https://doi.org/10.1016/j.jcat.2010.09.010. Marill, J., Anesary, N.M., Zhang, P., Vivet, S., Borghi, E., Levy, L., Pottier, A., 2014. Hafnium oxide nanoparticles: toward an in vitropredictive biological effect? Radiat. Oncol. 9, 150. https://doi.org/10.1186/1748-717X-9-150. Marshall, R.J., Griffin, S.L., Wilson, C., Forgan, R.S., 2016a. Stereoselective Halogenation of Integral Unsaturated C-C Bonds in Chemically and Mechanically Robust Zr and Hf MOFs. Chem. Eur. J. 22, 4870-4877. https://doi.org/10.1002/chem.201505185. Marshall, R.J., Hobday, C.L., Murphie, C.F., Griffin, S.L., Morrison, C.A., Moggach, S.A., Forgan, R.S., 2016b. Amino acids as highly efficient modulators for single crystals of zirconium and hafnium metal–organic frameworks. J. Mater. Chem. A 4, 6955-6963. https://doi.org/10.1039/C5TA10401G. Marshall, R.J., Kalinovskyy, Y., Griffin, S.L., Wilson, C., Blight, B.A., Forgan, R.S., 2017. Functional Versatility of a Series of Zr Metal–Organic Frameworks Probed by Solid-State Photoluminescence Spectroscopy. J. Am. Chem. Soc. 139, 6253-6260. https://doi.org/10.1021/jacs.7b02184. McDermott, G., Le Gros, M.A., Knoechel, C.G., Uchida, M., Larabell, C.A., 2009. Soft X-ray tomography and cryogenic light microscopy: the cool combination in cellular imaging. Trends Cell Biol. 19, 587-595. https://doi.org/10.1016/j.tcb.2009.08.005. Meng, X., Gao, J., Sun, Y., Duan, F., Chen, B., Lv, G., Li, H., Jiang, X., Wu, Y., Zhang, J., Fang, X., Yao, Z., Zuo, C., Bu, W., 2023. Fusing Positive and Negative CT Contrast Nanoagent for the Sensitive Detection of Hepatoma. Advanced Science 10, 2304668. https://doi.org/10.1002/advs.202304668. Morris, W., Wang, S., Cho, D., Auyeung, E., Li, P., Farha, O.K., Mirkin, C.A., 2017. Role of Modulators in Controlling the Colloidal Stability and Polydispersity of the UiO-66 Metal–Organic Framework. ACS Appl. Mater. Interfaces 9, 33413-33418. https://doi.org/10.1021/acsami.7b01040. Ni, K., Lan, G., Chan, C., Quigley, B., Lu, K., Aung, T., Guo, N., La Riviere, P., Weichselbaum, R.R., Lin, W., 2018. Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat. Commun. 9, 2351. https://doi.org/10.1038/s41467-018-04703-w. Osterrieth, J.W.M., Rampersad, J., Madden, D., Rampal, N., Skoric, L., Connolly, B., Allendorf, M.D., Stavila, V., Snider, J.L., Ameloot, R., Marreiros, J., Ania, C., Azevedo, D., Vilarrasa-Garcia, E., Santos, B.F., Bu, X.H., Chang, Z., Bunzen, H., Champness, N.R., Griffin, S.L., Chen, B., Lin, R.B., Coasne, B., Cohen, S., Moreton, J.C., Colón, Y.J., Chen, L., Clowes, R., Coudert, F.X., Cui, Y., Hou, B., D'Alessandro, D.M., Doheny, P.W., Dincă, M., Sun, C., Doonan, C., Huxley, M.T., Evans, J.D., Falcaro, P., Ricco, R., Farha, O., Idrees, K.B., Islamoglu, T., Feng, P., Yang, H., Forgan, R.S., Bara, D., Furukawa, S., Sanchez, E., Gascon, J., Telalović, S., Ghosh, S.K., Mukherjee, S., Hill, M.R., Sadiq, M.M., Horcajada, P., Salcedo-Abraira, P., Kaneko, K., Kukobat, R., Kenvin, J., Keskin, S., Kitagawa, S., Otake, K.I., Lively, R.P., DeWitt, S.J.A., Llewellyn, P., Lotsch, B.V., Emmerling, S.T., Pütz, A.M., Martí-Gastaldo, C., Padial, N.M., García-Martínez, J., Linares, N., Maspoch, D., Suárez Del Pino, J.A., Moghadam, P., Oktavian, R., Morris, R.E., Wheatley, P.S., Navarro, J., Petit, C., Danaci, D., Rosseinsky, M.J., Katsoulidis, A.P., Schröder, M., Han, X., Yang, S., Serre, C., Mouchaham, G., Sholl, D.S., Thyagarajan, R., Siderius, D., Snurr, R.Q., Goncalves, R.B., Telfer, S., Lee, S.J., Ting, V.P., Rowlandson, J.L., Uemura, T., Iiyuka, T., van der Veen, M.A., Rega, D., Van Speybroeck, V., Rogge, S.M.J., Lamaire, A., Walton, K.S., Bingel, L.W., Wuttke, S., Andreo, J., Yaghi, O., Zhang, B., Yavuz, C.T., Nguyen, T.S., Zamora, F., Montoro, C., Zhou, H., Kirchon, A., Fairen-Jimenez, D., 2022. How Reproducible are Surface Areas Calculated from the BET Equation? Adv. Mater. 34, e2201502. https://doi.org/10.1002/adma.202201502. Qian, Q., Asinger, P.A., Lee, M.J., Han, G., Mizrahi Rodriguez, K., Lin, S., Benedetti, F.M., Wu, A.X., Chi, W.S., Smith, Z.P., 2020. MOF-Based Membranes for Gas Separations. Chem. Rev. 120, 8161-8266. https://doi.org/10.1021/acs.chemrev.0c00119. Ricco, R., Wied, P., Nidetzky, B., Amenitsch, H., Falcaro, P., 2020. Magnetically responsive horseradish peroxidase@ ZIF-8 for biocatalysis. ChemComm 56, 5775-5778. https://doi.org/10.1039/C9CC09358C. Ru, J., Wang, X., Wang, F., Cui, X., Du, X., Lu, X., 2021. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism. Ecotoxicol. Environ. Saf. 208, 111577. https://doi.org/10.1016/j.ecoenv.2020.111577. Schaate, A., Roy, P., Godt, A., Lippke, J., Waltz, F., Wiebcke, M., Behrens, P., 2011a. Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. Chemistry 17, 6643-6651. https://doi.org/10.1002/chem.201003211. Schaate, A., Roy, P., Preuße, T., Lohmeier, S.J., Godt, A., Behrens, P., 2011b. Porous Interpenetrated Zirconium–Organic Frameworks (PIZOFs): A Chemically Versatile Family of Metal–Organic Frameworks. Chem. - Eur. J. 17, 9320-9325. https://doi.org/10.1002/chem.201101015. Scherrer, P., 1918. Bestimmung der Grosse und inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nach. Ges. Wiss. Gottingen 2, 8-100. Schneider, G., Guttmann, P., Heim, S., Rehbein, S., Mueller, F., Nagashima, K., Heymann, J.B., Müller, W.G., McNally, J.G., 2010. Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat. Methods 7, 985-987. https://doi.org/10.1038/nmeth.1533. Shieh, F.-K., Wang, S.-C., Leo, S.-Y., Wu, K.C.-W., 2013. Water-Based Synthesis of Zeolitic Imidazolate Framework-90 (ZIF-90) with a Controllable Particle Size. Chem. - Eur. J. 19, 11139-11142. https://doi.org/10.1002/chem.201301560. Shieh, F.-K., Wang, S.-C., Yen, C.-I., Wu, C.-C., Dutta, S., Chou, L.-Y., Morabito, J.V., Hu, P., Hsu, M.-H., Wu, K.C.-W., 2015. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal–organic framework microcrystals. J. Am. Chem. Soc. 137, 4276-4279. https://doi.org/10.1021/ja513058h. Singco, B., Liu, L.-H., Chen, Y.-T., Shih, Y.-H., Huang, H.-Y., Lin, C.-H., 2016. Approaches to drug delivery: Confinement of aspirin in MIL-100(Fe) and aspirin in the de novo synthesis of metal–organic frameworks. Micropor. Mesopor. Mat. 223, 254-260. https://doi.org/10.1016/j.micromeso.2015.08.017. Taheri, M., Ashok, D., Sen, T., Enge, T.G., Verma, N.K., Tricoli, A., Lowe, A., Nisbet, D.R., Tsuzuki, T., 2021. Stability of ZIF-8 nanopowders in bacterial culture media and its implication for antibacterial properties. Chem. Eng. J. 413, 127511. https://doi.org/10.1016/j.cej.2020.127511. Uchida, M., Sun, Y., McDermott, G., Knoechel, C., Le Gros, M.A., Parkinson, D., Drubin, D.G., Larabell, C.A., 2011. Quantitative analysis of yeast internal architecture using soft X‐ray tomography. Yeast 28, 227-236. https://doi.org/10.1002/yea.1834. Vakili, R., Xu, S., Al-Janabi, N., Gorgojo, P., Holmes, S.M., Fan, X., 2018. Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): Optimization and gas adsorption. Microporous and Mesoporous Materials 260, 45-53. https://doi.org/10.1016/j.micromeso.2017.10.028. Wang, S., Morris, W., Liu, Y., McGuirk, C.M., Zhou, Y., Hupp, J.T., Farha, O.K., Mirkin, C.A., 2015. Surface-Specific Functionalization of Nanoscale Metal–Organic Frameworks. Angewandte Chemie International Edition 54, 14738-14742. https://doi.org/10.1002/anie.201506888. Wu, M., Zhang, Q., Zhang, Q., Wang, H., Wang, F., Liu, J., Guo, L., Song, K., 2022. Research progress of UiO-66-based electrochemical biosensors. Front. Chem. 10, 842894. https://doi.org/10.3389/fchem.2022.842894. Xu, J., Liu, J., Li, Z., Wang, X., Xu, Y., Chen, S., Wang, Z., 2019. Optimized synthesis of Zr(iv) metal organic frameworks (MOFs-808) for efficient hydrogen storage. New J. Chem. 43, 4092-4099.https://doi.org/10.1039/C8NJ06362A. Yu, Y.-S., Liang, Y.-Y., Hsieh, C.-C., Lin, Z.-J., Cheng, P.-H., Cheng, C.-C., Chen, S.-P., Lai, L.-J., Wu, K.C.W., 2024. Downsizing and soft X-ray tomography for cellular uptake of interpenetrated metal–organic frameworks. Journal of Materials Chemistry B 12, 6079-6090. https://doi.org/10.1039/D4TB00329B. Yurdakal, S., Garlisi, C., Özcan, L., Bellardita, M., Palmisano, G., 2019. (Photo) catalyst characterization techniques: adsorption isotherms and BET, SEM, FTIR, UV–Vis, photoluminescence, and electrochemical characterizations, Heterogeneous photocatalysis. Elsevier, pp. 87-152. https://doi.org/10.1016/B978-0-444-64015-4.00004-3. Zhang, Y., Li, T.-T., Shiu, B.-C., Lin, J.-H., Lou, C.-W., 2022. Two methods for constructing ZIF-8 nanomaterials with good bio compatibility and robust antibacterial applied to biomedical. J. Biomater. Appl. 36, 1042-1054. https://doi.org/10.1177/08853282211033682. Zhao, Z., Ma, X., Kasik, A., Li, Z., Lin, Y.S., 2013. Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes. Ind. Eng. Chem. Res. 52, 1102-1108. https://doi.org/10.1021/ie202777q. Zheng, T., Li, W., Guan, Y., Song, X., Xiong, Y., Liu, G., Tian, Y., 2012. Quantitative 3D imaging of yeast by hard X‐ray tomography. Microsc. Res. Tech. 75, 662-666. https://doi.org/10.1002/jemt.21108. Zhou, W., Liu, Z., Wang, N., Chen, X., Sun, X., Cheng, Y., 2022. Hafnium-based metal–organic framework nanoparticles as a radiosensitizer to improve radiotherapy efficacy in esophageal cancer. ACS Omega 7, 12021-12029. https://doi.org/10.1021/acsomega.2c00223. Ali, M.R.K., Ibrahim, I.M., Ali, H.R., Selim, S.A., El-Sayed, M.A., 2016. Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis. Int. J. Nanomedicine 11, 4849-4863.https://doi.org/10.2147/ijn.S109470. Au, K.M., Satterlee, A., Min, Y., Tian, X., Kim, Y.S., Caster, J.M., Zhang, L., Zhang, T., Huang, L., Wang, A.Z., 2016. Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic. Biomaterials 82, 178-193. https://doi.org/10.1016/j.biomaterials.2015.12.018. Boeckman, H.J., Trego, K.S., Turchi, J.J., 2005. Cisplatin sensitizes cancer cells to ionizing radiation via inhibition of nonhomologous end joining. Mol. Cancer Res. 3, 277-285.https://doi.org/10.1158/1541-7786.Mcr-04-0032. Bonvalot, S., Le Pechoux, C., De Baere, T., Buy, X., Italiano, A., Stockle, E., Terrier, P., Lassau, N., Le Cesne, A., Sargos, P., Antoine, M., Lezghed, N., Azzouz, F., Goberna, A., Levy, L., Elsa, B., Dimitriu, M., Soria, J.C., Deutsch, E., 2014. Phase I study of NBTXR3 nanoparticles, in patients with advanced soft tissue sarcoma (STS). J. Clin. Oncol. 32.https://doi.org/10.1200/jco.2014.32.15_suppl.10563. Bonvalot, S., Le Pechoux, C., De Baere, T., Kantor, G., Buy, X., Stoeckle, E., Terrier, P., Sargos, P., Coindre, J.M., Lassau, N., Sarkouh, R.A., Dimitriu, M., Borghi, E., Levy, L., Deutsch, E., Soria, J.C., 2017. First-in-human study testing a new radioenhancer using nanoparticles (NBTXR3) activated by radiation therapy in patients with locally advanced soft tissue sarcomas. Clin. Cancer Res. 23, 908-917. https://doi.org/10.1158/1078-0432.Ccr-16-1297. Bonvalot, S., Rutkowski, P.L., Thariat, J., Carrere, S., Ducassou, A., Sunyach, M.P., Agoston, P., Hong, A., Mervoyer, A., Rastrelli, M., Moreno, V., Li, R.K., Tiangco, B., Herraez, A.C., Gronchi, A., Mangel, L., Sy-Ortin, T., Hohenberger, P., de Baere, T., Le Cesne, A., Helfre, S., Saada-Bouzid, E., Borkowska, A., Anghel, R., Co, A., Gebhart, M., Kantor, G., Montero, A., Loong, H.H., Verges, R., Lapeire, L., Dema, S., Kacso, G., Austen, L., Moureau-Zabotto, L., Servois, V., Wardelmann, E., Terrier, P., Lazar, A.J., Bovee, J., Le Pechoux, C., Papi, Z., 2019. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act. In. Sarc): a multicentre, phase 2-3, randomised, controlled trial. Lancet Oncol. 20, 1148-1159.https://doi.org/10.1016/s1470-2045(19)30326-2. Chen, M.H., Hanagata, N., Ikoma, T., Huang, J.Y., Li, K.Y., Lin, C.P., Lin, F.H., 2016. Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment. Acta Biomater. 37, 165-173. https://doi.org/10.1016/j.actbio.2016.04.004. Chen, S.S., Hu, C.C., Liu, C.H., Chen, Y.H., Ahamad, T., Alshehri, S.M., Huang, P.H., Wu, K.C.W., 2020a. De Novo synthesis of platinum-nanoparticle-encapsulated UiO-66-NH2 for photocatalytic thin film fabrication with enhanced performance of phenol degradation. J. Hazard. Mater. 397, 122431. https://doi.org/10.1016/j.jhazmat.2020.122431. Chen, Y., Yang, J., Fu, S.Z., Wu, J.B., 2020b. Gold nanoparticles as radiosensitizers in cancer radiotherapy. Int. J. Nanomedicine 15, 9407-9430. https://doi.org/10.2147/ijn.S272902. Chien, W.C., Cheng, P.H., Cheng, X.J., Chuang, C.C., Huang, Y.T., Anilkumar, T.S., Liu, C.H., Lu, Y.J., Wu, K.C.W., 2021. MCP-1-functionalized, core-shell gold nanorod@iron-based metal-organic framework (MCP-1/GNR@MIL-100(Fe)) for photothermal therapy. ACS Appl. Mater. Interfaces 13, 52092-52105. https://doi.org/10.1021/acsami.1c09518. Choi, J., Kim, G., Cho, S.B., Im, H.J., 2020. Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. J. Nanobiotechnology 18. https://doi.org/10.1186/s12951-020-00684-5. Couck, S., Denayer, J.F.M., Baron, G.V., Remy, T., Gascon, J., Kapteijn, F., 2009. An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. J. Am. Chem. Soc. 131, 6326. https://doi.org/10.1021/ja900555r. De Marchi, S., Nunez-Sanchez, S., Bodelon, G., Perez-Juste, J., Pastoriza-Santos, I., 2020. Pd nanoparticles as a plasmonic material: synthesis, optical properties and applications. Nanoscale 12, 23424-23443. https://doi.org/10.1039/d0nr06270g. Dhakshinamoorthy, A., Asiri, A.M., Garcia, H., 2020. Metal-organic frameworks as multifunctional solid catalysts. Trends Chem. 2, 454-466. https://doi.org/10.1016/j.trechm.2020.02.004. Doan, T.L.H., Nguyen, H.L., Pham, H.Q., Pham-Tran, N.N., Le, T.N., Cordova, K.E., 2015. Tailoring the optical absorption of water-stable Zr-IV- and Hf-IV- based metal-organic framework photocatalysts. Chem. Asian J. 10, 2659-2667. https://doi.org/10.1002/asia.201500641. Franckena, M., Lutgens, L.C., Koper, P.C., Kleynen, C.E., van der Steen-Banasik, E.M., Jobsen, J.J., Leer, J.W., Creutzberg, C.L., Dielwart, M.F., van Norden, Y., Canters, R.A.M., van Rhoon, G.C., van der Zee, J., 2009. Radiotherapy and hyperthermia for treatment of primary locally advanced cervix cancer: Results in 378 Patients. Int. J. Radiat. Oncol. Biol. Phys. 73, 242-250. https://doi.org/10.1016/j.ijrobp.2008.03.072. Franken, N.A.P., Rodermond, H.M., Stap, J., Haveman, J., van Bree, C., 2006. Clonogenic assay of cells in vitro. Nat. Protoc. 1, 2315-2319. https://doi.org/10.1038/nprot.2006.339. Furukawa, H., Cordova, K.E., O'Keeffe, M., Yaghi, O.M., 2013. The chemistry and applications of metal-organic frameworks. Science 341, 974. https://doi.org/10.1126/science.1230444. Gole, B., Sanyal, U., Banerjee, R., Mukherjee, P.S., 2016. High loading of Pd nanoparticles by interior functionalization of MOFs for heterogeneous catalysis. Inorg. Chem. 55, 2345-2354.https://doi.org/10.1021/acs.inorgchem.5b02739. Gong, T., Li, Y.L., Lv, B., Wang, H., Liu, Y.Y., Yang, W., Wu, Y.L., Jiang, X.W., Gao, H.B., Zheng, X.P., Bu, W.B., 2020. Full-process radiosensitization based on nanoscale metal-organic frameworks. Acs Nano 14, 3032-3040. https://doi.org/10.1021/acsnano.9b07898. Hsieh, C.-C., Lin, Z.-J., Lai, L.-J., 2023. Construction of low humidity biosafety level-2 laboratory for cryo-sample environment for soft x-ray tomography imaging at Taiwan photon source. AIP Conf. Proc. 2990. https://doi.org/10.1063/5.0168153. Huang, L.P., Li, Y.N., Du, Y.N., Zhang, Y.Y., Wang, X.X., Ding, Y., Yang, X.L., Meng, F.L., Tu, J.S., Luo, L., Sun, C.M., 2019a. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy. Nat. Commun. 10. https://doi.org/10.1038/s41467-019-12771-9. Huang, Y.Y., Konnerth, H., Yeh, J.Y., Prechtl, M.H.G., Wen, C.Y., Wu, K.C.W., 2019b. De novo synthesis of Cr-embedded MOF-199 and derived porous CuO/CuCr2O4 composites for enhanced phenol hydroxylation. Green Chem. 21, 1889-1894. https://doi.org/10.1039/c8gc03348j. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z= 1 to 92 and 48 additional substances of dosimetric interest.http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html (accessed 17 July 2024). Jaque, D., Maestro, L.M., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J.L., Rodriguez, E.M., Sole, J.G., 2014. Nanoparticles for photothermal therapies. Nanoscale 6, 9494-9530. https://doi.org/10.1039/c4nr00708e. Jayabal, S., Pandikumar, A., Lim, H.N., Ramaraj, R., Sun, T., Huang, N.M., 2015. A gold nanorod-based localized surface plasmon resonance platform for the detection of environmentally toxic metal ions. Analyst 140, 2540-2555. https://doi.org/10.1039/c4an02330g. Jiang, Z.J., Li, T.Y., Cheng, H., Zhang, F., Yang, X.Y., Wang, S.H., Zhou, J.P., Ding, Y., 2021. Nanomedicine potentiates mild photothermal therapy for tumor ablation. Asian J. Pharm. Sci. 16, 738-761. https://doi.org/10.1016/j.ajps.2021.10.001. Khan, M.K., Khan, N., Almasan, A., Macklis, R., 2011. Future of radiation therapy for malignant melanoma in an era of newer, more effective biological agents. Onco Targets Ther. 4, 137-148. https://doi.org/10.2147/ott.S20257. Kung, C.W., Mondloch, J.E., Wang, T.C., Bury, W., Hoffeditz, W., Klahr, B.M., Klet, R.C., Pellin, M.J., Farha, O.K., Hupp, J.T., 2015. Metal-organic framework thin films as platforms for atomic layer deposition of cobalt ions to enable electrocatalytic water oxidation. ACS Appl. Mater. Interfaces 7, 28223-28230. https://doi.org/10.1021/acsami.5b06901. Kwatra, D., Venugopal, A., Anant, S., 2013. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl. Cancer Res. 2, 330-342. https://doi.org/10.3978/j.issn.2218-676X.2013.08.06. Le, H.V., Doan, T.H.L., Tran, B.Q., Nguyen, H.H.T., Co, T.T., Nguyen, H.T., Huynh, N.T.L., Nguyen, L.P.T., Tran, M.V., 2019. Selective incorporation of Pd nanoparticles into the pores of an alkyne-containing metal-organic framework VNU1 for enhanced electrocatalytic hydrogen evolution reaction at near neutral pH. Mater. Chem. Phys. 233, 16-20. https://doi.org/10.1016/j.matchemphys.2019.05.032. Le Tourneau, C., Calugaru, V., Jouffroy, T., Rodriguez, J., Hoffmann, C., Dodger, B., Moreno, V., Calvo, E., 2017. A phase 1 trial of NBTXR3 nanoparticles activated by intensity-modulated radiation therapy (IMRT) in the treatment of advanced-stage head and neck squamous cell carcinoma (HNSCC). J. Clin. Oncol. 35. https://doi.org/10.1200/JCO.2017.35.15_suppl.6080. Lele, B.S., Kulkarni, M.G., 1998. Single step room temperature oxidation of poly(ethylene glycol) to poly(oxyethylene)-dicarboxylic acid. J. Appl. Polym. Sci. 70, 883-890. https://doi.org/10.1002/(sici)1097-4628(19981031)70:5<883::Aid-app7>3.3.Co;2-a. Li, P., Shi, Y.W., Li, B.X., Xu, W.C., Shi, Z.L., Zhou, C.Q., Fu, S., 2015a. Photo-thermal effect enhances the efficiency of radiotherapy using Arg-Gly-Asp peptides-conjugated gold nanorods that target alpha v beta 3 in melanoma cancer cells. J. Nanobiotechnology 13. https://doi.org/10.1186/s12951-015-0113-5. Li, Y., Yan, Y.C., Li, Y.H., Zhang, H., Li, D.S., Yang, D.R., 2015b. Size-controlled synthesis of Pd nanosheets for tunable plasmonic properties. CrystEngComm 17, 1833-1838. https://doi.org/10.1039/c4ce02062f. Liauw, S.L., Connell, P.P., Weichselbaum, R.R., 2013. New paradigms and future challenges in radiation oncology: an update of biological targets and technology. Sci. Transl. Med. 5. https://doi.org/10.1126/scitranslmed.3005148. Liu, J.J., Yang, Y., Zhu, W.W., Yi, X., Dong, Z.L., Xu, X.N., Chen, M.W., Yang, K., Lu, G., Jiang, L.X., Liu, Z., 2016. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials 97, 1-9. https://doi.org/10.1016/j.biomaterials.2016.04.034. Liu, Y., Zhang, P.C., Li, F.F., Jin, X.D., Li, J., Chen, W.Q., Li, Q., 2018. Metal-based nanoenhancers for future radiotherapy: radiosensitizing and synergistic effects on tumor cells. Theranostics 8, 1824-1849. https://doi.org/10.7150/thno.22172. Liu, Y.C., Li, J.C., Chen, M., Chen, X.L., Zheng, N.F., 2020. Palladium-based nanomaterials for cancer imaging and therapy. Theranostics 10, 10057-10077. https://doi.org/10.7150/thno.45990. Maggiorella, L., Barouch, G., Devaux, C., Pottier, A., Deutsch, E., Bourhis, J., Borghi, E., Levy, L., 2012. Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol. 8, 1167-1181. https://doi.org/10.2217/fon.12.96. Marshall, R.J., Griffin, S.L., Wilson, C., Forgan, R.S., 2016. Stereoselective halogenation of integral unsaturated C-C bonds in chemically and mechanically robust Zr and Hf MOFs. Chem. Eur. J. 22, 4870-4877. https://doi.org/10.1002/chem.201505185. McGinnity, T.L., Dominguez, O., Curtis, T.E., Nallathamby, P.D., Hoffman, A.J., Roeder, R.K., 2016. Hafnia (HfO2) nanoparticles as an X-ray contrast agent and mid-infrared biosensor. Nanoscale 8, 13627-13637. https://doi.org/10.1039/c6nr03217f. Min, Y.H., Wang, Y., 2020. Manipulating bimetallic nanostructures with tunable localized surface plasmon resonance and their applications for sensing. Front. Chem. 8. https://doi.org/10.3389/fchem.2020.00411. Neufeld, M.J., Lutzke, A., Pratx, G., Sun, C., 2021. High-z metal-organic frameworks for X-ray radiation-based cancer theranostics. Chem. Eur. J. 27, 3229-3237. https://doi.org/10.1002/chem.202003523. Ni, K.Y., Lan, G.X., Chan, C., Quigley, B., Lu, K.D., Aung, T., Guo, N.N., La Riviere, P., Weichselbaum, R.R., Lin, W.B., 2018. Nanoscale metal-organic frameworks enhance radiotherapy to potentiate checkpoint blockade immunotherapy. Nat. Commun. 9, 2351. https://doi.org/10.1038/s41467-018-04703-w. Nicol, J.R., Harrison, E., O'Neill, S.M., Dixon, D., McCarthy, H.O., Coulter, J.A., 2018. Unraveling the cell-type dependent radiosensitizing effects of gold through the development of a multifunctional gold nanoparticle. Nanomed.: Nanotechnol. Biol. Med. 14, 439-449. https://doi.org/10.1016/j.nano.2017.11.019. Olive, P.L., Banath, J.P., 2006. The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc. 1, 23-29. https://doi.org/10.1038/nprot.2006.5. Pak, B.J., Lee, J., Thai, B.L., Fuchs, S.Y., Shaked, Y., Ronai, Z., Kerbel, R.S., Ben-David, Y., 2004. Radiation resistance of human melanoma analysed by retroviral insertional mutagenesis reveals a possible role for dopachrome tautomerase. Oncogene 23, 30-38. https://doi.org/10.1038/sj.onc.1207007. Pellas, V., Hu, D.V., Mazouzi, Y., Mimoun, Y., Blanchard, J., Guibert, C., Salmain, M., Boujday, S., 2020. Gold nanorods for LSPR biosensing: synthesis, coating by silica, and bioanalytical applications. Biosensors-Basel 10. https://doi.org/10.3390/bios10100146. Pottier, A., Borghi, E., Levy, L., 2014. New use of metals as nanosized radioenhancers. Anticancer Res. 34, 443-453. Rahman, W.N., Corde, S., Yagi, N., Aziz, S.A.A., Annabell, N., Geso, M., 2014. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams. Int. J. Nanomedicine 9, 2459-2467. https://doi.org/10.2147/ijn.S59471. Railey, P., Song, Y., Liu, T.Y., Li, Y., 2017. Metal organic frameworks with immobilized nanoparticles: Synthesis and applications in photocatalytic hydrogen generation and energy storage. Mater. Res. Bull. 96, 385-394. https://doi.org/10.1016/j.materresbull.2017.04.020. Redfern, L.R., Lo, W.S., Dillingham, I.J., Eatman, J.G., Mian, M.R., Tsung, C.K., Farha, O.K., 2020. Enhancing four-carbon olefin production from acetylene over copper nanoparticles in metal-organic frameworks. ACS Appl. Mater. Interfaces 12, 31496-31502. https://doi.org/10.1021/acsami.0c08244. Schaate, A., Roy, P., Preusse, T., Lohmeier, S.J., Godt, A., Behrens, P., 2011. Porous interpenetrated zirconium-organic frameworks (PIZOFs): A chemically versatile family of metal-organic frameworks. Chem. Eur. J. 17, 9320-9325. https://doi.org/10.1002/chem.201101015. Shiryaeva, E.S., Baranova, I.A., Kiselev, G.O., Morozov, V.N., Belousov, A.V., Sherstiuk, A.A., Kolyvanova, M.A., Krivoshapkin, P.V., Feldman, V.I., 2019. Hafnium oxide as a nanoradiosensitizer under X-ray irradiation of aqueous organic systems: a model study using the spin-trapping technique and monte carlo simulations. J. Phys. Chem. C 123, 27375-27384. https://doi.org/10.1021/acs.jpcc.9b08387. Singco, B., Liu, L.H., Chen, Y.T., Shih, Y.H., Huang, H.Y., Lin, C.H., 2016. Approaches to drug delivery: confinement of aspirin in MIL-100(Fe) and aspirin in the de novo synthesis of metal-organic frameworks. Microporous Mesoporous Mater. 223, 254-260. https://doi.org/10.1016/j.micromeso.2015.08.017. Sun, Q., Wu, J.G., Jin, L.L., Hong, L.J., Wang, F., Mao, Z.W., Wu, M.J., 2020. Cancer cell membrane-coated gold nanorods for photothermal therapy and radiotherapy on oral squamous cancer. J. Mater. Chem. B 8, 7253-7263. https://doi.org/10.1039/d0tb01063d. Teranishi, T., Eguchi, M., Kanehara, M., Gwo, S., 2011. Controlled localized surface plasmon resonance wavelength for conductive nanoparticles over the ultraviolet to near-infrared region. J. Mater. Chem. 21, 10238-10242. https://doi.org/10.1039/c0jm04545d. Wang, H., Mu, X.Y., He, H., Zhang, X.D., 2018. Cancer radiosensitizers. Trends Pharmacol. Sci. 39, 24-48. https://doi.org/10.1016/j.tips.2017.11.003. Wang, Y., Yan, J., Wen, N., Xiong, H., Cai, S., He, Q., Hu, Y., Peng, D., Liu, Z., Liu, Y., 2020. Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials 230, 119619. https://doi.org/10.1016/j.biomaterials.2019.119619. Xiao, J.W., Fan, S.X., Wang, F., Sun, L.D., Zheng, X.Y., Yan, C.H., 2014. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells. Nanoscale 6, 4345-4351. https://doi.org/10.1039/c3nr06843a. Xie, L.N., Zhang, X.J., Chu, C.C., Dong, Y.Q., Zhang, T.Z., Li, X.Y., Liu, G., Cai, W., Han, S.X., 2021. Preparation, toxicity reduction and radiation therapy application of gold nanorods. J. Nanobiotechnology 19. https://doi.org/10.1186/s12951-021-01209-4. Xiong, Y.J., Wiley, B., Chen, J.Y., Li, Z.Y., Yin, Y.D., Xia, Y.N., 2005. Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties. Angew. Chem. Int. Ed. 44, 7913-7917. https://doi.org/10.1002/anie.200502722. Yin, Z.J., Jin, F.G., Liu, T.G., Fu, E.Q., Xie, Y.H., Sun, R.L., 2011. Overexpression of STAT3 potentiates growth, survival, and radioresistance of non-small-cell lung cancer (NSCLC) cells. J. Surg. Res. 171, 675-683. https://doi.org/10.1016/j.jss.2010.03.053. Yu, Y.-S., Liang, Y.-Y., Hsieh, C.-C., Lin, Z.-J., Cheng, P.-H., Cheng, C.-C., Chen, S.-P., Lai, L.-J., Wu, K.C.W., 2024. Downsizing and soft X-ray tomography for cellular uptake of interpenetrated metal–organic frameworks. J. Mater. Chem. B 12, 6079-6090. https://doi.org/10.1039/D4TB00329B. Zhang, S.X., Gao, J.F., Buchholz, T.A., Wang, Z.L., Salehpour, M.R., Drezek, R.A., Yu, T.K., 2009a. Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a monte carlo simulation study. Biomed. Microdevices 11, 925-933. https://doi.org/10.1007/s10544-009-9309-5. Zhang, X.-D., Wu, D., Shen, X., Chen, J., Sun, Y.-M., Liu, P.-X., Liang, X.-J., 2012. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 33, 6408-6419. https://doi.org/10.1016/j.biomaterials.2012.05.047. Zhang, X.D., Guo, M.L., Wu, H.Y., Sun, Y.M., Ding, Y.Q., Feng, X., Zhang, L.A., 2009b. Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. Int. J. Nanomedicine 4, 165-173. https://doi.org/10.2147/ijn.s6723. Zhang, Y.M., Huang, F., Ren, C.H., Liu, J.J., Yang, L.J., Chen, S.Z., Chang, J.L., Yang, C.H., Wang, W.W., Zhang, C.N., Liu, Q., Liang, X.J., Liu, J.F., 2019. Enhanced radiosensitization by gold nanoparticles with acid-triggered aggregation in cancer radiotherapy. Adv. Sci. 6. https://doi.org/10.1002/advs.201801806. Zhang, Y.M., Liu, J.J., Yu, Y., Chen, S.Z., Huang, F., Yang, C.H., Chang, J.L., Yang, L.J., Fan, S.J., Liu, J.F., 2020. Enhanced radiotherapy using photothermal therapy based on dual-sensitizer of gold nanoparticles with acid-induced aggregation. Nanomed.: Nanotechnol. Biol. Med. 29. https://doi.org/10.1016/j.nano.2020.102241. Zhao, H., Shu, G., Zhu, J., Fu, Y., Gu, Z., Yang, D., 2019. Persistent luminescent metal-organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery. Biomaterials 217, 119332. https://doi.org/10.1016/j.biomaterials.2019.119332. Ahmed, E.M., 2015. Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6, 105-121. https://doi.org/10.1016/j.jare.2013.07.006. Akerman, S., Akerman, K., Karppi, J., Koivu, P., Sundell, A., Paronen, P., Jarvinen, K., 1999. Adsorption of drugs onto a poly(acrylic acid) grafted cation-exchange membrane. Eur. J. Pharm. Sci. 9, 137-143. https://doi.org/10.1016/s0928-0987(99)00055-x. Albrektsson, T., Johansson, C., 2001. Osteoinduction, osteoconduction and osseointegration. Eur. Spine. J. 10, S96-S101. https://doi.org/10.1007/s005860100282. Anast, C.S., Winnacker, J.L., Forte, L.R., Burns, T.W., 1976. Impaired release of parathyroid hormone in magnesium deficiency. J. Clin. Endocrinol. Metab. 42, 707-717. https://doi.org/10.1210/jcem-42-4-707. Beck, G.R., Jr., Zerler, B., Moran, E., 2001. Gene array analysis of osteoblast differentiation. Cell Growth Differ. 12, 61-83. Bergh, C., Wennergren, D., Moller, M., Brisby, H., 2020. Fracture incidence in adults in relation to age and gender: a study of 27,169 fractures in the Swedish Fracture Register in a well-defined catchment area. Plos One 15, e0244291. https://doi.org/10.1371/journal.pone.0244291. Bigi, A., Falini, G., Foresti, E., Gazzano, M., Ripamonti, A., Roveri, N., 1993. Magnesium influence on hydroxyapatite crystallization. J. Inorg. Biochem. 49, 69-78. https://doi.org/10.1016/0162-0134(93)80049-f. Canioni, R., Roch-Marchal, C., Secheresse, F., Horcajada, P., Serre, C., Hardi-Dan, M., Ferey, G., Greneche, J.M., Lefebvre, F., Chang, J.S., Hwang, Y.K., Lebedev, O., Turner, S., Van Tendeloo, G., 2011. Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). J. Mater. Chem. 21, 1226-1233. https://doi.org/10.1039/c0jm02381g. Castiglioni, S., Cazzaniga, A., Albisetti, W., Maier, J.A.M., 2013. Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients 5, 3022-3033. https://doi.org/10.3390/nu5083022. Chen, J., Zhang, X., Huang, C., Cai, H., Hu, S., Wan, Q., Pei, X., Wang, J., 2017. Osteogenic activity and antibacterial effect of porous titanium modified with metal-organic framework films. J Biomed Mater Res A 105, 834-846. https://doi.org/10.1002/jbm.a.35960. Cho, Y.-S., Jung, W.-K., Kim, J.-A., Choi, I.L.W., Kim, S.-K., 2009. Beneficial effects of fucoidan on osteoblastic MG-63 cell differentiation. Food Chemistry 116, 990-994. https://doi.org/10.1016/j.foodchem.2009.03.051. de Grado, G.F., Keller, L., Idoux-Gillet, Y., Wagner, Q., Musset, A.M., Benkirane-Jessel, N., Bornert, F., Offner, D., 2018. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J. Tissue Eng. 9, 1-18. https://doi.org/10.1177/2041731418776819. Eliaz, N., Metoki, N., 2017. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. Materials (Basel) 10. https://doi.org/10.3390/ma10040334. Fang, Y., Yang, Z., Li, H., Liu, X., 2020. MIL-100(Fe) and its derivatives: from synthesis to application for wastewater decontamination. Environ. Sci. Pollut. Res. Int. 27, 4703-4724. https://doi.org/10.1007/s11356-019-07318-w. Feng, X., Qin, M., Cui, S., Rode, C., 2018. Metal-organic framework MIL-100(Fe) as a novel moisture buffer material for energy-efficient indoor humidity control. Building and Environment 145, 234-242. https://doi.org/https://doi.org/10.1016/j.buildenv.2018.09.027. Forgan, R.S., 2020. Modulated self-assembly of metal-organic frameworks. Chem. Sci. 11, 4546-4562. https://doi.org/10.1039/d0sc01356k. Guesh, K., Caiuby, C.A.D., Mayoral, A., Diaz-Garcia, M., Diaz, I., Sanchez-Sanchez, M., 2017. Sustainable preparation of MIL-100(Fe) and its photocatalytic behavior in the degradation of methyl orange in water. Cryst. Growth Des. 17, 1806-1813. https://doi.org/10.1021/acs.cgd.6b01776. Hallab, N.J., Vermes, C., Messina, C., Roebuck, K.A., Glant, T.T., Jacobs, J.J., 2002. Concentration- and composition-dependent effects of metal ions on human MG-63 osteoblasts. J Biomed Mater Res 60, 420-433. https://doi.org/10.1002/jbm.10106. Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., Eubank, J.F., Heurtaux, D., Clayette, P., Kreuz, C., Chang, J.S., Hwang, Y.K., Marsaud, V., Bories, P.N., Cynober, L., Gil, S., Férey, G., Couvreur, P., Gref, R., 2010. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172-178. https://doi.org/10.1038/nmat2608. Horcajada, P., Surblé, S., Serre, C., Hong, D.Y., Seo, Y.K., Chang, J.S., Grenèche, J.M., Margiolaki, I., Férey, G., 2007. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem. Commun. 27, 2820-2822. https://doi.org/10.1039/b704325b. Hsu, C.H., Yu, Y.S., Gu, Y.S., Wu, K.C.W., 2022. Modification of magnetite-doped NH2-MIL-100(Fe) with aliphatic C8 carbon chain for feasible protein purification in reversed-phase mode. Sep. Purif. Technol. 288, 120528. https://doi.org/10.1016/j.seppur.2022.120528. Jiang, H.J., Xu, J., Qiu, Z.Y., Ma, X.L., Zhang, Z.Q., Tan, X.X., Cui, Y., Cui, F.Z., 2015. Mechanical properties and cytocompatibility improvement of vertebroplasty PMMA bone cements by incorporating mineralized collagen. Materials 8, 2616-2634. https://doi.org/10.3390/ma8052616. Jiang, S., Liu, S., Feng, W.H., 2011. PVA hydrogel properties for biomedical application. J. Mech. Behav. Biomed. Mater. 4, 1228-1233. https://doi.org/10.1016/j.jmbbm.2011.04.005. Joseph, N., Lawson, H.D., Overholt, K.J., Damodaran, K., Gottardi, R., Acharya, A.P., Little, S.R., 2019. Synthesis and characterization of CaSr-Metal Organic Frameworks for biodegradable orthopedic applications. Sci Rep 9, 13024. https://doi.org/10.1038/s41598-019-49536-9. Katz, M.J., Brown, Z.J., Colón, Y.J., Siu, P.W., Scheidt, K.A., Snurr, R.Q., Hupp, J.T., Farha, O.K., 2013. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 49, 9449-9451. https://doi.org/10.1039/c3cc46105j. Kitagawa, S., Kitaura, R., Noro, S., 2004. Functional porous coordination polymers. Angew. Chem. Int. Ed. Engl. 43, 2334-2375. https://doi.org/10.1002/anie.200300610. Kluin, O.S., van der Mei, H.C., Busscher, H.J., Neut, D., 2013. Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis. Expert Opin. Drug Deliv. 10, 341-351. https://doi.org/10.1517/17425247.2013.751371. Kondo, M., Yoshitomi, T., Seki, K., Matsuzaka, H., Kitagawa, S., 1997. Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4'‐bpy)3(NO3)4]·xH2O}n (M = Co, Ni, Zn). Angew. Chem. Int. Ed. 36, 1725-1727. https://doi.org/10.1002/anie.199717251. Kuppler, R.J., Timmons, D.J., Fang, Q.R., Li, J.R., Makal, T.A., Young, M.D., Yuan, D.Q., Zhao, D., Zhuang, W.J., Zhou, H.C., 2009. Potential applications of metal-organic frameworks. Coord. Chem. Rev. 253, 3042-3066. https://doi.org/10.1016/j.ccr.2009.05.019. Larsson, M., Bergstrand, A., Mesiah, L., Van Vooren, C., Larsson, A., 2014. Nanocomposites of polyacrylic acid nanogels and biodegradable polyhydroxybutyrate for bone regeneration and drug delivery. J. Nanomater. 2014, 371307. https://doi.org/10.1155/2014/371307. Liang, X.Y., Duan, P.G., Gao, J.M., Guo, R.S., Qu, Z.H., Li, X.F., He, Y., Yao, H.Q., Ding, J.D., 2018. Bilayered PLGA/PLGA-HAp composite scaffold for osteochondral tissue engineering and tissue regeneration. ACS Biomater. Sci. Eng. 4, 3506-3521. https://doi.org/10.1021/acsbiomaterials.8b00552. Lin, J.T., Lane, J.M., 2004. Osteoporosis - a review. Clin. Orthop. Relat. Res. 425, 126-134. https://doi.org/10.1097/01.blo.0000132404.30139.f2. Lin, Y.J., Hsu, F.C., Chou, C.W., Wu, T.H., Lin, H.R., 2014. Poly(acrylic acid)-chitosan-silica hydrogels carrying platelet gels for bone defect repair. J. Mater. Chem. B 2, 8329-8337. https://doi.org/10.1039/c4tb01356e. Makadia, H.K., Siegel, S.J., 2011. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377-1397. https://doi.org/10.3390/polym3031377. Mammoli, F., Castiglioni, S., Parenti, S., Cappadone, C., Farruggia, G., Iotti, S., Davalli, P., Maier, J.A.M., Grande, A., Frassineti, C., 2019. Magnesium is a key regulator of the balance between osteoclast and osteoblast differentiation in the presence of vitamin D3. Int. J. Mol. Sci. 20, 385. https://doi.org/10.3390/ijms20020385. Marquez, A.G., Demessence, A., Platero-Prats, A.E., Heurtaux, D., Horcajada, P., Serre, C., Chang, J.S., Ferey, G., de la Pena-O'Shea, V.A., Boissiere, C., Grosso, D., Sanchez, C., 2012. Green microwave synthesis of MIL-100(Al, Cr, Fe) nanoparticles for thin-film elaboration. Eur. J. Inorg. Chem. 2012, 5165-5174. https://doi.org/10.1002/ejic.201200710. Matassi, F., Nistri, L., Chicon Paez, D., Innocenti, M., 2011. New biomaterials for bone regeneration. Clin. Cases Miner. Bone Metab. 8, 21-24. Minardi, S., Corradetti, B., Taraballi, F., Sandri, M., Van Eps, J., Cabrera, F.J., Weiner, B.K., Tampieri, A., Tasciotti, E., 2015. Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials 62, 128-137. https://doi.org/10.1016/j.biomaterials.2015.05.011. Moosavi, S.M., Nandy, A., Jablonka, K.M., Ongari, D., Janet, J.P., Boyd, P.G., Lee, Y., Smit, B., Kulik, H.J., 2020. Understanding the diversity of the metal-organic framework ecosystem. Nat. Commun. 11, 4068. https://doi.org/10.1038/s41467-020-17755-8. Mora-Raimundo, P., Lozano, D., Manzano, M., Vallet-Regí, M., 2019. Nanoparticles to Knockdown Osteoporosis-Related Gene and Promote Osteogenic Marker Expression for Osteoporosis Treatment. ACS Nano 13, 5451-5464. https://doi.org/10.1021/acsnano.9b00241. Mutnuri, S., Fernandez, I., Kochar, T., 2016. Suppression of parathyroid hormone in a patient with severe magnesium depletion. Case. Rep. Nephrol. 2016, 2608538. https://doi.org/10.1155/2016/2608538. Notodihardjo, F.Z., Kakudo, N., Kushida, S., Suzuki, K., Kusumoto, K., 2012. Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats. J. Craniomaxillofac Surg. 40, 287-291. https://doi.org/10.1016/j.jcms.2011.04.008. Owen, T.A., Aronow, M., Shalhoub, V., Barone, L.M., Wilming, L., Tassinari, M.S., Kennedy, M.B., Pockwinse, S., Lian, J.B., Stein, G.S., 1990. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J. Cell Physiol. 143, 420-430. https://doi.org/10.1002/jcp.1041430304. Park, K.S., Ni, Z., Côté, A.P., Choi, J.Y., Huang, R., Uribe-Romo, F.J., Chae, H.K., O'Keeffe, M., Yaghi, O.M., 2006. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A. 103, 10186-10191. https://doi.org/10.1073/pnas.0602439103. Pasternak, K., Kocot, J., Horecka, A., 2010. Biochemistry of magnesium. J. Elem. 15, 601-616.https://doi.org/10.1002/10.5601/jelem.2010.15.3.601-616 Pegueroles, M., Aguirre, A., Engel, E., Pavon, G., Gil, F.J., Planell, J.A., Migonney, V., Aparicio, C., 2011. Effect of blasting treatment and Fn coating on MG63 adhesion and differentiation on titanium: a gene expression study using real-time RT-PCR. J. Mater. Sci. Mater. Med. 22, 617-627. https://doi.org/10.1007/s10856-011-4229-3. Price, N., Bendall, S.P., Frondoza, C., Jinnah, R.H., Hungerford, D.S., 1997. Human osteoblast-like cells (MG63) proliferate on a bioactive glass surface. J. Biomed. Mater. Res. 37, 394-400. https://doi.org/10.1002/(sici)1097-4636(19971205)37:3<394::Aid-jbm10>3.0.Co;2-c. Quijia, C.R., Lima, C., Silva, C., Alves, R.C., Frem, R., Chorilli, M., 2021. Application of MIL-100(Fe) in drug delivery and biomedicine. J. Drug Deliv. Sci. Technol. 61, 102217. https://doi.org/10.1016/j.jddst.2020.102217. Rosi, N.L., Eckert, J., Eddaoudi, M., Vodak, D.T., Kim, J., O'Keeffe, M., Yaghi, O.M., 2003. Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127-1129. https://doi.org/10.1126/science.1083440. Rubin, H.N., Reynolds, M.M., 2017. Functionalization of metal-organic frameworks to achieve controllable wettability. Inorg. Chem. 56, 5266-5274. https://doi.org/10.1021/acs.inorgchem.7b00373. Samart, C., Prawingwong, P., Amnuaypanich, S., Zhang, H.B., Kajiyoshi, K., Reubroycharoen, P., 2014. Preparation of poly acrylic acid grafted-mesoporous silica as pH responsive releasing material. J. Ind. Eng. Chem. 20, 2153-2158. https://doi.org/10.1016/j.jiec.2013.09.045. Scheiger, J.M., Levkin, P.A., 2020. Hydrogels with preprogrammable lifetime via UV-induced polymerization and degradation. Adv. Funct. Mater. 30, 1909800. https://doi.org/10.1002/adfm.201909800. Senra, M.N.R., Marques, M.D.V., 2020. Synthetic polymeric materials for bone replacement. J. Compos. Sci. 4, 191. https://doi.org/10.3390/jcs4040191. Sokolova, V., Kostka, K., Shalumon, K.T., Prymak, O., Chen, J.P., Epple, M., 2020. Synthesis and characterization of PLGA/HAP scaffolds with DNA-functionalised calcium phosphate nanoparticles for bone tissue engineering. J. Mater. Sci. Mater. Med. 31, 102. https://doi.org/10.1007/s10856-020-06442-1. Sugimoto, K., Dinnebier, R.E., Hanson, J.C., 2007. Structures of three dehydration products of bischofite from in situ synchrotron powder diffraction data (MgCl2·nH2O; n = 1, 2, 4). Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 63, 235-242. https://doi.org/10.1107/s0108768107002558. Sun, Y.J., Zheng, L.W., Yang, Y., Qian, X., Fu, T., Li, X.W., Yang, Z.Y., Yan, H., Cui, C., Tan, W.H., 2020. Metal-organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 12, 103. https://doi.org/10.1007/s40820-020-00423-3. Tai, I.C., Fu, Y.C., Wang, C.K., Chang, J.K., Ho, M.L., 2013. Local delivery of controlled-release simvastatin/PLGA/HAp microspheres enhances bone repair. Int. J. Nanomedicine 8, 3895-3904. https://doi.org/10.2147/ijn.S48694. Tarafder, S., Davies, N.M., Bandyopadhyay, A., Bose, S., 2013. 3D printed tricalcium phosphate scaffolds: Effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater Sci 1, 1250-1259. https://doi.org/10.1039/c3bm60132c. Tazaki, J., Murata, M., Akazawa, T., Yamamoto, M., Ito, K., Arisue, M., Shibata, T., Tabata, Y., 2009. BMP-2 release and dose-response studies in hydroxyapatite and beta-tricalcium phosphate. Biomed. Mater. Eng. 19, 141-146. https://doi.org/10.3233/bme-2009-0573. Tu, K.N., Lie, J.D., Wan, C.K.V., Cameron, M., Austel, A.G., Nguyen, J.K., Van, K., Hyun, D., 2018. Osteoporosis: a review of treatment options. Pharm. Ther. 43, 92-104. van Berkum, S., Dee, J.T., Philipse, A.P., Erné, B.H., 2013. Frequency-dependent magnetic susceptibility of magnetite and cobalt ferrite nanoparticles embedded in PAA hydrogel. Int. J. Mol. Sci. 14, 10162-10177. https://doi.org/10.3390/ijms140510162. Wandiyanto, J.V., Truong, V.K., Al Kobaisi, M., Juodkazis, S., Thissen, H., Bazaka, O., Bazaka, K., Crawford, R.J., Ivanova, E.P., 2019. The fate of osteoblast-like MG-63 cells on pre-infected bactericidal nanostructured titanium surfaces. Materials 12, 1575. https://doi.org/10.3390/ma12101575. Winkler, T., Sass, F.A., Duda, G.N., Schmidt-Bleek, K., 2018. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: the nsolved challenge. Bone Jt. Res. 7, 232-243.https://doi.org/10.1302/2046-3758.73.Bjr-2017-0270.R1. Wu, A.M., Bisignano, C., James, S.L., Abady, G.G., Abedi, A., Abu-Gharbieh, E., Alhassan, R.K., Alipour, V., Arabloo, J., Asaad, M., Asmare, W.N., Awedew, A.F., Banach, M., Banerjee, S.K., Bijani, A., Birhanu, T.T.M., Bolla, S.R., Camera, L.A., Chang, J.C., Cho, D.Y., Chung, M.T., Couto, R.A.S., Dai, X.C., Dandona, L., Dandona, R., Farzadfar, F., Filip, I., Fischer, F., Fomenkov, A.A., Gill, T.K., Gupta, B., Haagsma, J.A., Haj-Mirzaian, A., Hamidi, S., Hay, S.I., Ilic, I.M., Ilic, M.D., Ivers, R.Q., Jurisson, M., Kalhor, R., Kanchan, T., Kavetskyy, T., Khalilov, R., Khan, E.A., Khan, M., Kneib, C.J., Krishnamoorthy, V., Kumar, G.A., Kumar, N., Lalloo, R., Lasrado, S., Lim, S.S., Liu, Z.C., Manafi, A., Manafi, N., Menezes, R.G., Meretoja, T.J., Miazgowski, B., Miller, T.R., Mohammad, Y., Mohammadian-Hafshejani, A., Mokdad, A.H., Murray, C.J.L., Naderi, M., Naimzada, M.D., Nayak, V.C., Nguyen, C.T., Nikbakhsh, R., Olagunju, A.T., Otstavnov, N., Otstavnov, S.S., Padubidri, J.R., Pereira, J., Pham, H.Q., Pinheiro, M., Polinder, S., Pourchamani, H., Rabiee, N., Radfar, A., Rahman, M.H.U., Rawaf, D.L., Rawaf, S., Saeb, M.R., Samy, A.M., Riera, L.S., Schwebel, D.C., Shahabi, S., Shaikh, M.A., Soheili, A., Tabares-Seisdedos, R., Tovani-Palone, M.R., Tran, B.X., Travillian, R.S., Valdez, P.R., Vasankari, T.J., Velazquez, D.Z., Venketasubramanian, N., Vu, G.T., Zhang, Z.J., Vos, T., Collaborators, G.B.D.F., 2021. Global, regional, and national burden of bone fractures in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet Healthy Longev. 2, E580-E592. https://doi.org/10.1016/s2666-7568(21)00172-0. Xu, T.T., He, X., Chen, Z.H., He, L., Lu, M.J., Ge, J.H., Weng, J., Mu, Y.D., Duan, K., 2019. Effect of magnesium particle fraction on osteoinduction of hydroxyapatite sphere-based scaffolds. J. Mater. Chem. B 7, 5648-5660. https://doi.org/10.1039/c9tb01162e. Yang, S., Lin, X., Blake, A.J., Thomas, K.M., Hubberstey, P., Champness, N.R., Schroder, M., 2008. Enhancement of H2 adsorption in Li+-exchanged co-ordination framework materials. Chem. Commun., 6108-6110. https://doi.org/10.1039/b814155j. Yue, S., He, H., Li, B., Hou, T., 2020. Hydrogel as a biomaterial for bone tissue engineering: a review. Nanomaterials 10, 1511. https://doi.org/10.3390/nano10081511. Zhang, F., Shi, J., Jin, Y., Fu, Y., Zhong, Y., Zhu, W., 2015. Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chem. Eng. J. 259, 183-190. https://doi.org/doi.org/10.1016/j.cej.2014.07.119. Zhao, C.W., Zhou, L., Chiao, M., Yang, W.T., 2020. Antibacterial hydrogel coating: strategies in surface chemistry. Adv. Colloid Interface Sci. 285, 102280. https://doi.org/10.1016/j.cis.2020.102280. Zhao, D.Y., Zhu, T.T., Li, J., Cui, L.G., Zhang, Z.Y., Zhuang, X.L., Ding, J.X., 2021. Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. Bioact. Mater. 6, 346-360. https://doi.org/10.1016/j.bioactmat.2020.08.016. Zhu, J., Yang, S., Cai, K., Wang, S., Qiu, Z., Huang, J., Jiang, G., Wang, X., Fang, X., 2020. Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures. Theranostics 10, 6544-6560. https://doi.org/10.7150/thno.44428. Zofková, I., Kancheva, R.L., 1995. The relationship between magnesium and calciotropic hormones. Magnes. Res. 8, 77-84. Zou, R.Q., Sakurai, H., Han, S., Zhong, R.Q., Xu, Q., 2007. Probing the Lewis acid sites and CO catalytic oxidation activity of the porous metal-organic polymer [Cu(5-methylisophthalate)]. J. Am. Chem. Soc. 129, 8402-8403. https://doi.org/10.1021/ja071662s. AboulFotouh, K., Uno, N., Xu, H., Moon, C., Sahakijpijarn, S., Christensen, D.J., Davenport, G.J., Cano, C., Ross, T.M., Williams Iii, R.O., Cui, Z., 2022a. Formulation of dry powders of vaccines containing MF59 or AddaVax by Thin-Film Freeze-Drying: Towards a dry powder universal flu vaccine. Int. J. Pharm. 624, 122021. https://doi.org/10.1016/j.ijpharm.2022.122021. AboulFotouh, K., Xu, H., Moon, C., Williams, R.O., 3rd, Cui, Z., 2022b. Development of (inhalable) dry powder formulations of AS01(B)-containing vaccines using Thin-Film Freeze-Drying. Int. J. Pharm. 622, 121825. https://doi.org/10.1016/j.ijpharm.2022.121825. Alzhrani, R.F., Xu, H., Moon, C., Suggs, L.J., Williams, R.O., 3rd, Cui, Z., 2021. Thin-Film Freeze-Drying is a viable method to convert vaccines containing aluminum salts from liquid to dry powder. Methods Mol. Biol. 2183, 489-498. https://doi.org/10.1007/978-1-0716-0795-4_27. Baldridge, J.R., Yorgensen, Y., Ward, J.R., Ulrich, J.T., 2000. Monophosphoryl lipid A enhances mucosal and systemic immunity to vaccine antigens following intranasal administration. Vaccine 18, 2416-2425. https://doi.org/10.1016/S0264-410X(99)00572-1. Beckett, S.T., Francesconi, M.G., Geary, P.M., Mackenzie, G., Maulny, A.P., 2006. DSC study of sucrose melting. Carbohydr. Res. 341, 2591-2599. https://doi.org/10.1016/j.carres.2006.07.004. Bhandari, B.R., Hartel, R.W., 2002. Co-crystallization of sucrose at high concentration in the presence of glucose and fructose. J. Food Sci. 67, 1797-1802. https://doi.org/10.1111/j.1365-2621.2002.tb08725.x. Birkhoff, M., Leitz, M., Marx, D., 2009. Advantages of intranasal vaccination and considerations on device selection. Indian J. Pharm. Sci. 71, 729-731. Cai, L., Xu, H., Cui, Z., 2022. Factors limiting the translatability of rodent model-based intranasal vaccine research to humans. AAPS PharmSciTech 23, 191. https://doi.org/10.1208/s12249-022-02330-9. Chavda, V.P., Vora, L.K., Pandya, A.K., Patravale, V.B., 2021. Intranasal vaccines for SARS-CoV-2: From challenges to potential in COVID-19 management. Drug Discov. Today 26, 2619-2636. https://doi.org/10.1016/j.drudis.2021.07.021. Chen, J.Z., Kiaee, M., Martin, A.R., Finlay, W.H., 2020. In vitro assessment of an idealized nose for nasal spray testing: Comparison with regional deposition in realistic nasal replicas. Int. J. Pharm. 582, 119341. https://doi.org/10.1016/j.ijpharm.2020.119341. Covaciu, M., Olaru, F., Petrescu, I., 2004. Ovalbumin isoforms - purification and denaturation/renaturation studies. Analele Stiintifice ale Universitatii "Alexandru Ioan Cuza" din Iasi Sec. II a. Genetica si Biologie Moleculara 5. Davis, S.S., 2001. Nasal vaccines. Adv. Drug Deliv. Rev. 51, 21-42. https://doi.org/10.1016/S0169-409X(01)00162-4. Debertin, A.S., Tschernig, T., Tönjes, H., Kleemann, W.J., Tröger, H.D., Pabst, R., 2003. Nasal-associated lymphoid tissue (NALT): frequency and localization in young children. Clin. Exp. Immunol. 134, 503-507. https://doi.org/10.1111/j.1365-2249.2003.02311.x. Dekina, S., Romanovska, I., Ovsepyan, A., Tkach, V., Muratov, E., 2016. Gelatin/carboxymethyl cellulose mucoadhesive films with lysozyme: Development and characterization. Carbohydr. Polym. 147, 208-215. https://doi.org/10.1016/j.carbpol.2016.04.006. Engstrom, J.D., Lai, E.S., Ludher, B.S., Chen, B., Milner, T.E., Williams, R.O., 3rd, Kitto, G.B., Johnston, K.P., 2008. Formation of stable submicron protein particles by thin film freezing. Pharm. Res. 25, 1334-1346. https://doi.org/10.1007/s11095-008-9540-4. Flood, A., Estrada, M., McAdams, D., Ji, Y., Chen, D., 2016. Development of a freeze-dried, heat-stable influenza subunit vaccine formulation. PLoS One 11, e0164692. https://doi.org/10.1371/journal.pone.0164692. Gao, M., Shen, X., Mao, S., 2020. Factors influencing drug deposition in thenasal cavity upon delivery via nasal sprays. J. Pharm. Investig. 50, 251-259. https://doi.org/10.1007/s40005-020-00482-z. Gasparini, C., Acunzo, M., Biuso, A., Roncaglia, S., Migliavacca, F., Borriello, C.R., Bertolini, C., Allen, M.R., Orenti, A., Boracchi, P., Zuccotti, G.V., 2021. Nasal spray live attenuated influenza vaccine: the first experience in Italy in children and adolescents during the 2020-21 season. Ital. J. Pediatr. 47, 225. https://doi.org/10.1186/s13052-021-01172-8. Ghani, J.A., Choudhury, I.A., Hassan, H.H., 2004. Application of Taguchi method in the optimization of end milling parameters. Mater. Process. Technol. 145, 84-92. https://doi.org/10.1016/S0924-0136(03)00865-3. Grabovac, V., Guggi, D., Bernkop-Schnürch, A., 2005. Comparison of the mucoadhesive properties of various polymers. Adv. Drug Deliv. Rev. 57, 1713-1723. https://doi.org/10.1016/j.addr.2005.07.006. Hufnagel, S., Sahakijpijarn, S., Moon, C., Cui, Z., Williams III, R.O., 2022. The development of thin-film freezing and its application to improve delivery of biologics as dry powder aerosols. Kona Powder Part. J., 2022010. Jawad, R., Elleman, C., Martin, G.P., Royall, P.G., 2018. Crystallisation of freeze-dried sucrose in model mixtures that represent the amorphous sugar matrices present in confectionery. Food Funct. 9, 4621-4634. https://doi.org/10.1039/C8FO00729B. Kesavan, K., Nath, G., Pandit, J.K., 2010. Sodium alginate based mucoadhesive system for gatifloxacin and its in vitro antibacterial activity. Sci. Pharm. 78, 941-957. https://doi.org/10.3797/scipharm.1004-24. Li, X., Thakkar, S.G., Ruwona, T.B., Williams, R.O., Cui, Z., 2015. A method of lyophilizing vaccines containing aluminum salts into a dry powder without causing particle aggregation or decreasing the immunogenicity following reconstitution. J. Controlled Release 204, 38-50. https://doi.org/10.1016/j.jconrel.2015.02.035. Lu, Y., Thomas, L.C., Jerrell, J.P., Cadwallader, K.R., Schmidt, S.J., 2017. Investigating the thermal decomposition differences between beet and cane sucrose sources. J. Food Meas. Charact. 11, 1640-1653. https://doi.org/10.1007/s11694-017-9544-z. Madhavan, M., Ritchie, A.J., Aboagye, J., Jenkin, D., Provstgaad-Morys, S., Tarbet, I., Woods, D., Davies, S., Baker, M., Platt, A., Flaxman, A., Smith, H., Belij-Rammerstorfer, S., Wilkins, D., Kelly, E.J., Villafana, T., Green, J.A., Poulton, I., Lambe, T., Hill, A.V.S., Ewer, K.J., Douglas, A.D., 2022. Tolerability and immunogenicity of an intranasally-administered adenovirus-vectored COVID-19 vaccine: An open-label partially-randomised ascending dose phase I trial. eBioMedicine, 104298. https://doi.org/10.1016/j.ebiom.2022.104298. Ortiz, J.R., Goswami, D., Lewis, K.D., Sharmeen, A.T., Ahmed, M., Rahman, M., Rahman, M.Z., Feser, J., Neuzil, K.M., Brooks, W.A., 2015. Safety of Russian-backbone seasonal trivalent, live-attenuated influenza vaccine in a phase II randomized placebo-controlled clinical trial among children in urban Bangladesh. Vaccine 33, 3415-3421. https://doi.org/10.1016/j.vaccine.2015.04.048. Overhoff, K.A., Johnston, K.P., Tam, J., Engstrom, J., Williams, R.O., 2009. Use of thin film freezing to enable drug delivery: A review. J. Drug Deliv. Sci. Technol. 19, 89-98. https://doi.org/10.1016/S1773-2247(09)50016-0. Roe, K., Labuza, T., 2005. Glass transition and crystallization of amorphous trehalose-sucrose mixtures. Int. J. Food Prop. 8, 559-574. https://doi.org/10.1080/10942910500269824. Sahin-Yilmaz, A., Naclerio, R.M., 2011. Anatomy and physiology of the upper airway. Proc. Am. Thorac. Soc. 8, 31-39. https://doi.org/10.1513/pats.201007-050RN. Saito, S., Ainai, A., Suzuki, T., Harada, N., Ami, Y., Yuki, Y., Takeyama, H., Kiyono, H., Tsukada, H., Hasegawa, H., 2016. The effect of mucoadhesive excipient on the nasal retention time of and the antibody responses induced by an intranasal influenza vaccine. Vaccine 34, 1201-1207. https://doi.org/10.1016/j.vaccine.2016.01.020. Sasaki, S., Hamajima, K., Fukushima, J., Ihata, A., Ishii, N., Gorai, I., Hirahara, F., Mohri, H., Okuda, K., 1998a. Comparison of intranasal and intramuscular immunization against human immunodeficiency virus type 1 with a DNA-monophosphoryl lipid A adjuvant vaccine. Infect. Immun. 66, 823-826. https://doi.org/10.1128/IAI.66.2.823-826.1998. Sasaki, S., Sumino, K., Hamajima, K., Fukushima, J., Ishii, N., Kawamoto, S., Mohri, H., Kensil, C.R., Okuda, K., 1998b. Induction of systemic and mucosal immune responses to human immunodeficiency virus type 1 by a DNA vaccine formulated with QS-21 saponin adjuvant via intramuscular and intranasal routes. J. Virol. 72, 4931-4939. https://doi.org/10.1128/JVI.72.6.4931-4939.1998. Sato-Kaneko, F., Yao, S., Lao, F.S., Sako, Y., Jin, J., Shukla, N.M., Cottam, H.B., Chan, M., Belsuzarri, M.M., Carson, D.A., Hayashi, T., 2022. A dual adjuvant system for intranasal boosting of local and systemic immunity for influenza vaccination. Vaccines 10, 1694. https://doi.org/10.3390/vaccines10101694. FluoroTag™ FITC Conjugation Kit. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/364/319/fitc1bul.pdf (accessed 26 Jan). Sogias, I.A., Williams, A.C., Khutoryanskiy, V.V., 2008. Why is chitosan mucoadhesive? Biomacromolecules 9, 1837-1842. https://doi.org/10.1021/bm800276d. Suryadevara, M., Domachowske, J.B., 2014. Quadrivalent influenza vaccine in the United States. Hum Vaccin Immunother 10, 596-599. https://doi.org/10.4161/hv.27115. te Booy, M.P., de Ruiter, R.A., de Meere, A.L., 1992. Evaluation of the physical stability of freeze-dried sucrose-containing formulations by differential scanning calorimetry. Pharm Res 9, 109-114. https://doi.org/10.1023/a:1018944113914. Thakkar, S.G., Warnken, Z.N., Alzhrani, R.F., Valdes, S.A., Aldayel, A.M., Xu, H., Williams, R.O., Cui, Z., 2018. Intranasal immunization with aluminum salt-adjuvanted dry powder vaccine. Journal of Controlled Release 292, 111-118. https://doi.org/https://doi.org/10.1016/j.jconrel.2018.10.020. Ovalbumin Polyclonal Antibody, HRP (PA1-196-HRP). https://www.thermofisher.com/antibody/product/Ovalbumin-Antibody-Polyclonal/PA1-196-HRP (accessed 26 Jan 2022). Trenkel, M., Scherließ, R., 2021. Nasal powder formulations: in-vitro characterisation of the impact of powders on nasal residence time and sensory effects. Pharmaceutics 13, 385.https://doi.org/10.3390/pharmaceutics13030385 U.S. FDA., 2002. Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products — Chemistry, Manufacturing, and Controls Documentation. U.S. FDA., 2003. Bioavailability and Bioequivalence Studies for Nasal Aerosols and Nasal Sprays for Local Action, in: Research, C.f.D.E.a. (Ed.). Wang, J.-L., Kuang, M., Xu, H., Williams, R.O., Cui, Z., 2022. Accelerated mass transfer from frozen thin films during thin-film freeze-drying. bioRxiv, 2022.2004.2016.488553. https://doi.org/10.1101/2022.04.16.488553. Wang, J.L., Hanafy, M.S., Xu, H., Leal, J., Zhai, Y., Ghosh, D., Williams Iii, R.O., David Charles Smyth, H., Cui, Z., 2021. Aerosolizable siRNA-encapsulated solid lipid nanoparticles prepared by thin-film freeze-drying for potential pulmonary delivery. Int. J. Pharm. 596, 120215. https://doi.org/10.1016/j.ijpharm.2021.120215. Warnken, Z.N., Smyth, H.D.C., Davis, D.A., Weitman, S., Kuhn, J.G., Williams, R.O., 2018. Personalized medicine in nasal delivery: The use of patient-specific administration parameters to improve nasal drug targeting using 3D-printed nasal replica casts. Mol. Pharm. 15, 1392-1402. https://doi.org/10.1021/acs.molpharmaceut.7b00702. Xi, J., Si, X., Kim, J.W., Berlinski, A., 2011. Simulation of airflow and aerosol deposition in the nasal cavity of a 5-year-old child. J. Aerosol Sci. 42, 156-173. https://doi.org/10.1016/j.jaerosci.2010.12.004. Xu, H., Bhowmik, T., Gong, K., Huynh, T.N.A., Williams, R.O., Cui, Z., 2021a. Thin-film freeze-drying of a bivalent Norovirus vaccine while maintaining the potency of both antigens. Int. J. Pharm. 609, 121126. https://doi.org/10.1016/j.ijpharm.2021.121126. Xu, H., Cai, L., Hufnagel, S., Cui, Z., 2021b. Intranasal vaccine: Factors to consider in research and development. Int. J. Pharm. 609, 121180. https://doi.org/10.1016/j.ijpharm.2021.121180. Xu, H., Moon, C., Sahakijpijarn, S., Dao, H.M., Alzhrani, R.F., Wang, J.-l., Williams, R.O., Cui, Z., 2022. Aerosolizable plasmid DNA dry powders engineered by thin-film freezing. bioRxiv, 2022.2010.2003.510625. https://doi.org/10.1101/2022.10.03.510625. Yu, Y.S., AboulFotouh, K., Xu, H., Williams, G., Suman, J., Cano, C., Warnken, Z.N., Wu, K.C., Williams, R.O., 3rd, Cui, Z., 2023. Feasibility of intranasal delivery of thin-film freeze-dried, mucoadhesive vaccine powders. Int. J. Pharm. 640, 122990. https://doi.org/10.1016/j.ijpharm.2023.122990. Allison, S.D., Molina, M.d.C., Anchordoquy, T.J., 2000. Stabilization of lipid/DNA complexes during the freezing step of the lyophilization process: the particle isolation hypothesis. Biochim. Biophys. Acta Biomembr. 1468, 127-138. https://doi.org/10.1016/S0005-2736(00)00251-0. Barnard, J.G., Singh, S., Randolph, T.W., Carpenter, J.F., 2011. Subvisible particle counting provides a sensitive method of detecting and quantifying aggregation of monoclonal antibody caused by freeze-thawing: Insights into the roles of particles in the protein aggregation pathway. J. Pharm. Sci. 100, 492-503. https://doi.org/10.1002/jps.22305. Cleland, J.L., Lam, X., Kendrick, B., Yang, J., Yang, T.H., Overcashier, D., Brooks, D., Hsu, C., Carpenter, J.F., 2001. A specific molar ratio of stabilizer to protein is required for storage stability of a lyophilized monoclonal antibody. J. Pharm. Sci. 90, 310-321. https://doi.org/10.1002/1520-6017(200103)90:3<310::aid-jps6>3.0.co;2-r. Coll, M., Solans, X., Font-Altaba, M., Subirana, J., 1986. Structure of L-leucine: a redetermination. Acta Crystallogr. C 42, 599-601. https://doi.org/10.1107/S0108270186095240. Djupesland, P.G., 2013. Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review. Drug. Deliv. Transl. Res. 3, 42-62.https://doi.org/10.1007/s13346-012-0108-9. Emami, F., Vatanara, A., Park, E.J., Na, D.H., 2018. Drying technologies for the stability and bioavailability of biopharmaceuticals. Pharmaceutics 10, 131.https://doi.org/10.3390/pharmaceutics10030131. Emig, C.J., Mena, M.A., Henry, S.J., Vitug, A., Ventura, C.J., Fox, D., Nguyenla, X.H., Xu, H., Moon, C., Sahakijjpijarn, S., Kuehl, P.J., Revelli, D., Cui, Z., Williams, R.O., Christensen, D.J., 2021. AUG-3387, a human-derived monoclonal antibody neutralizes SARS-CoV-2 variants and reduces viral load from therapeutic treatment of hamsters in vivo. bioRxiv, 2021.2010.2012.464150. https://doi.org/10.1101/2021.10.12.464150. Engstrom, J.D., Lai, E.S., Ludher, B.S., Chen, B., Milner, T.E., Williams, R.O., Kitto, G.B., Johnston, K.P., 2008. Formation of stable submicron protein particles by thin film freezing. Pharm. Res. 25, 1334-1346. https://doi.org/10.1007/s11095-008-9540-4. Filipović-Grčić, J., Hafner, A., 2010. Nasal powder drug delivery, in: Gad, S.C. (Ed.), Pharmaceutical sciences encyclopedia: Drug discovery, development, and manufacturing. John Wiley & Sons, Inc., Hoboken, pp. 1-32. https://doi.org/10.1002/9780470571224.pse356. Glücklich, N., Dwivedi, M., Carle, S., Buske, J., Mäder, K., Garidel, P., 2020. An in-depth examination of fatty acid solubility limits in biotherapeutic protein formulations containing polysorbate 20 and polysorbate 80. Int. J. Pharm. 591, 119934. https://doi.org/10.1016/j.ijpharm.2020.119934. Guo, S., Yu, C., Guo, X., Jia, Z., Yu, X., Yang, Y., Guo, L., Wang, L., 2022. Subvisible particle analysis of 17 monoclonal antibodies approved in China using flow imaging and light obscuration. J. Pharm. Sci. 111, 1164-1171. https://doi.org/10.1016/j.xphs.2021.09.021. Haeuser, C., Goldbach, P., Huwyler, J., Friess, W., Allmendinger, A., 2020. Excipients for room temperature stable freeze-dried monoclonal antibody formulations. J. Pharm. Sci. 109, 807-817. https://doi.org/10.1016/j.xphs.2019.10.016. Halwe, S., Kupke, A., Vanshylla, K., Liberta, F., Gruell, H., Zehner, M., Rohde, C., Krähling, V., Gellhorn Serra, M., Kreer, C., Klüver, M., Sauerhering, L., Schmidt, J., Cai, Z., Han, F., Young, D., Yang, G., Widera, M., Koch, M., Werner, A., Kämper, L., Becker, N., Marlow, M.S., Eickmann, M., Ciesek, S., Schiele, F., Klein, F., Becker, S., 2021. Intranasal Administration of a Monoclonal Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. Viruses 13, 1498. https://doi.org/10.3390/v13081498. Heo, Y.-A., 2022. Sotrovimab: First approval. Drugs 82, 477-484. https://doi.org/10.1007/s40265-022-01690-7. Hou, Y.J., Okuda, K., Edwards, C.E., Martinez, D.R., Asakura, T., Dinnon, K.H., 3rd, Kato, T., Lee, R.E., Yount, B.L., Mascenik, T.M., Chen, G., Olivier, K.N., Ghio, A., Tse, L.V., Leist, S.R., Gralinski, L.E., Schäfer, A., Dang, H., Gilmore, R., Nakano, S., Sun, L., Fulcher, M.L., Livraghi-Butrico, A., Nicely, N.I., Cameron, M., Cameron, C., Kelvin, D.J., de Silva, A., Margolis, D.M., Markmann, A., Bartelt, L., Zumwalt, R., Martinez, F.J., Salvatore, S.P., Borczuk, A., Tata, P.R., Sontake, V., Kimple, A., Jaspers, I., O'Neal, W.K., Randell, S.H., Boucher, R.C., Baric, R.S., 2020. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182, 429-446.e414.https://doi.org/10.1016/j.cell.2020.05.042. Hufnagel, S., Xu, H., Sahakijpijarn, S., Moon, C., Chow, L.Q.M., Williams Iii, R.O., Cui, Z., 2022. Dry powders for inhalation containing monoclonal antibodies made by thin-film freeze-drying. Int. J. Pharm. 618, 121637. https://doi.org/10.1016/j.ijpharm.2022.121637. Jain, H., Schweitzer, J.W., Justice, N.A., 2022. Respiratory syncytial virus infection, StatPearls. StatPearls Publishing, Treasure Island (FL). Kalonia, C., Kumru, O.S., Indira Prajapati, V., Mathaes, R., Engert, J., Zhou, S., Russell Middaugh, C., Volkin, D.B., 2015. Calculating the mass of subvisible protein particles with improved accuracy using microflow imaging data. J. Pharm. Sci. 104, 536-547. https://doi.org/10.1002/jps.24156. Keam, S.J., 2022. Tixagevimab + cilgavimab: First approval. Drugs 82, 1001-1010. https://doi.org/10.1007/s40265-022-01731-1. Kelley, B., De Moor, P., Douglas, K., Renshaw, T., Traviglia, S., 2022. Monoclonal antibody therapies for COVID-19: Lessons learned and implications for the development of future products. Curr. Opin. Biotechnol. 78, 102798. https://doi.org/10.1016/j.copbio.2022.102798. Kim, A.I., Akers, M.J., Nail, S.L., 1998. The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute. J. Pharm. Sci. 87, 931-935. https://doi.org/10.1021/js980001d. Kolanjiyil, A.V., Walenga, R., Babiskin, A., Golshahi, L., Hindle, M., Longest, W., 2023. Establishing quantitative relationships between changes in nasal spray in vitro metrics and drug delivery to the posterior nasal region. Int. J. Pharm. 635, 122718. https://doi.org/10.1016/j.ijpharm.2023.122718. Ku, Z., Xie, X., Hinton, P.R., Liu, X., Ye, X., Muruato, A.E., Ng, D.C., Biswas, S., Zou, J., Liu, Y., Pandya, D., Menachery, V.D., Rahman, S., Cao, Y.A., Deng, H., Xiong, W., Carlin, K.B., Liu, J., Su, H., Haanes, E.J., Keyt, B.A., Zhang, N., Carroll, S.F., Shi, P.Y., An, Z., 2021. Nasal delivery of an IgM offers broad protection from SARS-CoV-2 variants. Nature 595, 718-723. https://doi.org/10.1038/s41586-021-03673-2. Kwak, B.-M., Lee, J.E., Ahn, J.-H., Jeon, T.-H., 2009. Laser diffraction particle sizing by wet dispersion method for spray-dried infant formula. J. Food Eng. 92, 324-330. https://doi.org/10.1016/j.jfoodeng.2008.12.005. Li, L., Gorukanti, S., Choi, Y.M., Kim, K.H., 2000. Rapid-onset intranasal delivery of anticonvulsants: pharmacokinetic and pharmacodynamic evaluation in rabbits. Int. J. Pharm. 199, 65-76. https://doi.org/10.1016/S0378-5173(00)00373-2. Madden, J., McGandy, E., Seeman, N., Harding, M., Hoy, A., 1972a. The crystal structure of the monoclinic form of L-histidine. Acta Crystallogr. B 28, 2382-2389. https://doi.org/10.1107/S056774087200617X. Madden, J.J., McGandy, E.L., Seeman, N.C., 1972b. The crystal structure of the orthorhombic form of L-(+)-histidine. Acta Crystallogr. B 28, 2377-2382. https://doi.org/10.1107/S0567740872006168. May, J.C., 2016. Regulatory control of freeze-dried products: Importance and evaluation of residual moisture, in: Rey, L., May, J.C. (Eds.), Freeze drying/lyophilization of pharmaceutical and biological products. CRC Press, Boca Raton, pp. 288-316. https://doi.org/10.3109/9781439825761. Mohammed, A.R., Coombes, A.G.A., Perrie, Y., 2007. Amino acids as cryoprotectants for liposomal delivery systems. Eur. J. Pharm. Sci. 30, 406-413. https://doi.org/10.1016/j.ejps.2007.01.001. Moreira, T.G., Matos, K.T.F., De Paula, G.S., Santana, T.M.M., Da Mata, R.G., Pansera, F.C., Cortina, A.S., Spinola, M.G., Baecher-Allan, C.M., Keppeke, G.D., Jacob, J., Palejwala, V., Chen, K., Izzy, S., Healey, B.C., Rezende, R.M., Dedivitis, R.A., Shailubhai, K., Weiner, H.L., 2021. Nasal administration of anti-CD3 monoclonal antibody (foralumab) reduces lung inflammation and blood inflammatory biomarkers in mild to moderate COVID-19 patients: A pilot study. Front. Immunol. 12, 709861. https://doi.org/10.3389/fimmu.2021.709861. Nižić Nodilo, L., Ugrina, I., Špoljarić, D., Amidžić Klarić, D., Jakobušić Brala, C., Perkušić, M., Pepić, I., Lovrić, J., Saršon, V., Safundžić Kučuk, M., 2021. A Dry Powder Platform for Nose-to-Brain Delivery of Dexamethasone: Formulation Development and Nasal Deposition Studies. Pharmaceutics 13, 795. https://doi.org/10.3390/pharmaceutics13060795. Petersen, E., Koopmans, M., Go, U., Hamer, D.H., Petrosillo, N., Castelli, F., Storgaard, M., Al Khalili, S., Simonsen, L., 2020. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect. Dis. 20, e238-e244. https://doi.org/10.1016/s1473-3099(20)30484-9. Pormohammad, A., Ghorbani, S., Khatami, A., Razizadeh, M.H., Alborzi, E., Zarei, M., Idrovo, J.-P., Turner, R.J., 2021. Comparison of influenza type A and B with COVID-19: A global systematic review and meta-analysis on clinical, laboratory and radiographic findings. Rev. Med. Virol. 31, e2179. https://doi.org/10.1002/rmv.2179. Sahakijpijarn, S., Moon, C., Koleng, J.J., Christensen, D.J., Williams Iii, R.O., 2020. Development of remdesivir as a dry powder for inhalation by thin film freezing. Pharmaceutics 12, 1002.https://doi.org/10.3390/pharmaceutics12111002. Schüle, S., Friess, W., Bechtold-Peters, K., Garidel, P., 2007. Conformational analysis of protein secondary structure during spray-drying of antibody/mannitol formulations. Eur. J. Pharm. Biopharm. 65, 1-9. https://doi.org/10.1016/j.ejpb.2006.08.014. Seow, H.C., Liao, Q., Lau, A.T.Y., Leung, S.W.S., Yuan, S., Lam, J.K.W., 2022. Dual targeting powder formulation of antiviral agent for customizable nasal and lung deposition profile through single intranasal administration. Int. J. Pharm. 619, 121704.https://doi.org/10.1016/j.ijpharm.2022.121704. Sharma, D.K., King, D., Oma, P., Merchant, C., 2010. Micro-flow imaging: flow microscopy applied to sub-visible particulate analysis in protein formulations. AAPS J. 12, 455-464.https://doi.org/10.1208/s12248-010-9205-1. Soleimanizadeh, A., Dinter, H., Schindowski, K., 2021. Central nervous system delivery of antibodies and their single-domain antibodies and variable fragment derivatives with focus on intranasal nose to brain administration. Antibodies 10, 47. https://doi.org/10.3390/antib10040047. US FDA, 2002. Nasal spray and inhalation solution, suspension, and spray drug products — Chemistry, manufacturing, and controls documentation. US FDA, 2003. Bioavailability and bioequivalence studies for nasal aerosols and nasal sprays for local action. USP-NF, 2023. 〈787〉 Subvisible particulate matter in therapeutic protein injections, United States Pharmacopeia, Rockville, MD. https://doi.org/10.31003/USPNF_M6497_02_01. van Riel, D., den Bakker, M.A., Leijten, L.M.E., Chutinimitkul, S., Munster, V.J., de Wit, E., Rimmelzwaan, G.F., Fouchier, R.A.M., Osterhaus, A.D.M.E., Kuiken, T., 2010. Seasonal and pandemic human influenza viruses attach better to human upper respiratory tract epithelium than avian influenza viruses. Am. J. Clin. Pathol. 176, 1614-1618. https://doi.org/10.2353/ajpath.2010.090949. Wang, J.-L., Kuang, M., Xu, H., Williams, R.O., Cui, Z., 2023. Accelerated water removal from frozen thin films containing bacteria. Int. J. Pharm. 630, 122408. https://doi.org/10.1016/j.ijpharm.2022.122408. Warnken, Z.N., Smyth, H.D.C., Davis, D.A., Weitman, S., Kuhn, J.G., Williams, R.O., III, 2018. Personalized medicine in nasal delivery: The use of patient-specific administration parameters to improve nasal drug targeting using 3D-printed nasal replica casts. Mol. Pharm. 15, 1392-1402. https://doi.org/10.1021/acs.molpharmaceut.7b00702. Weltzin, R., Traina-Dorge, V., Soike, K., Zhang, J.Y., Mack, P., Soman, G., Drabik, G., Monath, T.P., 1996. Intranasal monoclonal IgA antibody to respiratory syncytial virus protects rhesus monkeys against upper and lower respiratory tract infection. J. Infect. Dis. 174, 256-261. https://doi.org/10.1093/infdis/174.2.256. Ye, J., Shao, H., Hickman, D., Angel, M., Xu, K., Cai, Y., Song, H., Fouchier, R.A., Qin, A., Perez, D.R., 2010. Intranasal delivery of an IgA monoclonal antibody effective against sublethal H5N1 influenza virus infection in mice. Clin. Vaccine Immunol. 17, 1363-1370. https://doi.org/10.1128/cvi.00002-10. Yu, Y.S., AboulFotouh, K., Xu, H., Williams, G., Suman, J., Cano, C., Warnken, Z.N., Wu, K.C., Williams, R.O., 3rd, Cui, Z., 2023. Feasibility of intranasal delivery of thin-film freeze-dried, mucoadhesive vaccine powders. Int. J. Pharm. 640, 122990. https://doi.org/10.1016/j.ijpharm.2023.122990. Yu, Y.S., Xu, H., AboulFotouh, K., Williams, G., Suman, J., Sahakijpijarn, S., Cano, C., Warnken, Z.N., Wu, K.C., Williams, R.O., 3rd, Cui, Z., 2024. Intranasal delivery of thin-film freeze-dried monoclonal antibodies using a powder nasal spray system. Int. J. Pharm. 653, 123892. https://doi.org/10.1016/j.ijpharm.2024.123892. Zhang, Y., Soto, M., Ghosh, D., Williams, R.O., 2021. Manufacturing stable bacteriophage powders by including buffer system in formulations and using Thin Film Freeze-drying technology. Pharm. Res. 38, 1793-1804. https://doi.org/10.1007/s11095-021-03111-y. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95444 | - |
| dc.description.abstract | 近年來,孔洞材料用於生醫領域的潛力逐漸受到重視,本論文探討了兩類新興孔洞材料的開發、合成、鑑定,並且將它們應用於癌症治療、骨折治療,以及鼻腔藥物輸送。
其中,在本論文第一、二章節中探討了鋯基/鉿基金屬有機框架Zr/Hf-PEB的製備,並且透過配位調控的策略,在不破壞結晶性的情況下,將這兩種互穿結構之金屬有機框架之粒徑縮小至約200奈米,適合用於生醫領域。接著,利用了Hf-PEB配位體上三鍵的特性,將鈀金屬奈米顆粒嵌入到Hf-PEB的孔洞之中。考量到鉿元素具有高原子序,可以做為癌症放射治療的增敏劑,並且鈀金屬奈米顆粒可以吸收近紅外光的特性,可作為光熱治療的增敏劑,因此,包覆了鈀金屬奈米顆粒的鉿基金屬有機框架Pd@Hf-PEB可以被應用在癌症的光熱-放射聯合療法中。 而本論文的第三章節探討了鐵基金屬有機框架 MIL-100(Fe) 材料的合成以及修飾,並將其作為鎂離子的載體,應用於骨頭的修復。由於鎂離子的直徑小於MIL-100(Fe) 孔洞的窗口大小,因此在鎂離子被載入MIL-100(Fe) 的孔洞之中後,需要進行表面修飾,使得鎂離子能夠停留於孔洞之中,對此,本研究提出了兩個策略:1. 將聚丙烯酸的鈉鹽修飾到搭載鎂離子之MIL-100(Fe) 之表面。 2. 將聚丙烯酸透過EDC/NHS反應修飾到搭載鎂離子之NH2-MIL-100(Fe) 表面,據我們所知,NH2-MIL-100(Fe) 是由我們團隊最先發表之材料,是帶有NH2官能基版本的MIL-100(Fe) 金屬有機框架,先前我們已展示其在修飾後,可以被應用在蛋白質的純化。在這個研究中,元素分析的結果表明第一種聚丙烯酸修飾方式更能夠提升鎂離子的搭載量,並且,將其與MG-63骨肉瘤細胞株共培養時,可以在初期提升細胞鹼性磷酸酶的活性,顯示搭載鎂離子的MIL-100(Fe) 具有加速骨細胞分化的特性。 而本論文的第四章節則是關於鼻腔乾粉疫苗劑型的開發,透過薄膜冷凍技術以及凍乾製程,液體疫苗可以被轉化為具高度孔洞性,適合透過鼻腔輸送的乾粉劑型,在研究中,我們合成了含有微脂體佐劑的模式疫苗,並且發現添加羧甲基纖維素可以提升疫苗粉末對黏膜的黏附性,當使用鼻噴劑系統將疫苗粉末輸送到鼻腔模型時,粉末可以抵達鼻甲以及鼻咽區域,顯示此疫苗粉末搭配鼻噴劑系統的有效性。 在第五章節中,薄膜冷凍技術以及凍乾製程被用來將中和SARS-CoV-2的單株抗體轉化為乾粉劑型。此劑型不僅具有高度孔洞性,且其中的單株抗體並不會在冷凍乾燥的過程中大量團聚,適合被輸送至鼻腔之中,以及用於預防或治療上呼吸道的病毒感染。同樣的,當使用鼻噴劑系統將疫苗粉末輸送到鼻腔模型時,此單株抗體粉末劑型可以抵達鼻甲以及鼻咽區域。 總的來說,這些章節皆探討了新穎孔洞材料的開發,以及於生醫領域的應用潛力,並且範圍涵蓋了癌症治療、骨治療,疫苗的輸送,以及病毒的預防及治療。 | zh_TW |
| dc.description.abstract | In recent years, the potential of porous materials as biomedical materials has gained attention. This dissertation explores the development, synthesis, and characterization of two kinds of porous materials (i.e., metal-organic frameworks and thin-film freeze-dried powders), and their applications in cancer therapy, bone healing, and intranasal drug delivery.
In Chapter 1 and Chapter 2, the synthesis of interpenetrated Zr or Hf-based metal-organic frameworks (MOFs) (Zr-PEB or Hf-PEB) was studied. Since methods that could produce nanoscale Zr-PEB or Hf-PEB have not been reported, coordination modulation strategy was tuned to reduce their sizes to about 200 nm for the first time, making them suitable for biomedical applications. The ethynyl group on the linker of Hf-PEB has been utilized to incorporate Pd nanoparticles into the pores. Considering that Hf, as a high-Z element, can sensitize X-ray during radiotherapy, and Pd nanoparticles can sensitize near-infrared (NIR) during photothermal therapy, the Pd-loaded Hf-PEB (Pd@Hf-PEB) can be applied in the combined photothermal-radiation therapy of cancer. In Chapter 3, the synthesis and surface modification of the iron-based MOF MIL-100(Fe) was studied, and Mg ions were loaded to the pores of MIL-100(Fe) for bone healing. Since the diameter of Mg ions is smaller than the window size of MIL-100(Fe), a surface modification is required to improve the loading of Mg ions. Two strategies were utilized in this study: 1. Grafting the surface of Mg-loaded MIL-100(Fe) with the sodium salt of poly(acrylic acid). 2. Functionalizing the surface of Mg-loaded NH2-MIL-100(Fe) with poly(acrylic acid) via EDC/NHS reaction. Where NH2-MIL-100(Fe) is MIL-100(Fe) with a NH2 substitution group on the linker. To the best of our knowledge, NH2-MIL-100(Fe) was reported by our group for the first time, and previously we have demonstrated that NH2-MIL-100(Fe) after surface modification can be utilized in the purification of proteins. The results show that the material produced using the first strategy (i.e., Mg@MIL-100(Fe)-PAA) had a higher Mg loading. When osteosarcoma cells MG-63 were treated with Mg@MIL-100(Fe)-PAA, the alkaline phosphatase (ALP) activity increased in the first few days, indicating that Mg@MIL-100(Fe)-PAA can potentially promote osteoblast differentiation and accelerate bone healing. In Chapter 4, the development of a nasal powder vaccine formulation was study. By utilizing the thin-film freezing (TFF) technology and lyophilization, liquid vaccines can be converted into porous dry powder vaccines suitable for intranasal delivery. Therefore, a model vaccine containing liposomal adjuvant and ovalbumin as antigen was synthesized. It was found that the addition of sodium carboxymethyl cellulose (CMC) can enhance the powder's mucoadhesion property. When the vaccine powder was delivered to the nasal replica casts using a nasal spray system from Aptar, it reached the turbinates and nasopharyngeal regions, demonstrating the efficacy. In Chapter 5, again, TFF technology and lyophilization were used to convert a monoclonal antibody (mAb) neutralizing SARS-CoV-2 into dry powder formulations without causing significant aggregation of the mAb. Similarly, when delivered to nasal replica casts using Aptar’s nasal spray system, the mAb powder could reach the turbinate region and nasopharynx, indicating that the powder is suitable for intranasal delivery to prevent or treat upper respiratory infections Overall, this dissertation focusses on the development of novel (porous) materials and their potential biomedical applications, including cancer therapy, bone healing, intranasal vaccine, and viral infection prevention and treatment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-09T16:11:18Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-09T16:11:18Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iv TABLE OF CONTENTS vi LIST OF FIGURES xii LIST OF TABLES xxi Chapter 1. Downsizing and Soft X-ray Tomography for Cellular Uptake of Interpenetrated Metal-Organic Frameworks 1 Abstract 1 1.1. Introduction 2 1.2. Materials and Methods 8 1.2.1. Materials 8 1.2.2. Synthesis of H2PEB Linker 8 1.2.3. Synthesis of Zr-PEB and Hf-PEB Powders 9 1.2.4. Synthesis of Zr-PEB and Hf-PEB Nanoparticles 10 1.2.5. Scanning Electron Microscopy 11 1.2.6. X-ray Diffraction (XRD) 11 1.2.7. Fourier Transform Infrared Spectroscopy (FT-IR) 11 1.2.8. Photoluminescence Spectroscopy (PL) 12 1.2.9. Zeta Potential 12 1.2.10. Specific Surface Area 12 1.2.11. Viability Assay 13 1.2.12. Observing the Cellular Uptake of Hf-PEB/TFA Using Confocal Microscopy 13 1.2.13. Observing the Cellular Uptake of Hf-PEB/TFA Using SXT 14 1.3. Results and Discussion 16 1.3.1. Synthesis of Zr-PEB and Hf-PEB Powders 16 1.3.2. Synthesis of Zr-PEB and Hf-PEB Nanoparticles 20 1.3.3. Biocompatibility of Zr-PEB/TFA and Hf-PEB/TFA 23 1.3.4. Observing the Cellular Uptake of Hf-PEB/TFA using Confocal Microscopy 24 1.3.5. Observing the Cellular Uptake of Hf-PEB/TFA using SXT 26 1.4. Conclusions 29 1.5. References 30 Chapter 2. Dual-Sensitization of X-ray and Near-Infrared Based on Pd-Loaded Metal-Organic Framework for Radiation-Photothermal Combined Cancer Therapy 39 Abstract 39 2.1. Introduction 40 2.2. Materials and Methods 45 2.2.1. Materials 45 2.2.2. Cell Lines 45 2.2.3. General Characterization Methods 46 2.2.4. Synthesis of 1,4-Bis(2-[4-carboxyphenyl]ethynyl)benzene (H2PEB) Linker. 47 2.2.5. Synthesis of Hf-PEB. 49 2.2.6. Incorporation of Pd NPs in Hf-PEB 50 2.2.7. PEGylation of Hf-PEB and Pd@Hf-PEB 50 2.2.8. In Vitro Photothermal Activity 52 2.2.9. Cytotoxicity Assay 52 2.2.10. Detection of ROS 53 2.2.11. Observing the Cellular Uptake of Pd@Hf-PEB-PEG 54 2.2.12. Comet Assay 55 2.2.13. Colony Formation Assay 57 2.3. Results and Discussion 60 2.3.1. Synthesis and Characterization of H2PEB Linker 60 2.3.2. Synthesis and Characterization of Hf-PEB Particles 63 2.3.3. Incorporation of Pd NPs in Hf-PEB 65 2.3.4. Photothermal Activity of Pd@Hf-PEB-PEG 70 2.3.5. The Generation of ROS 71 2.3.6. Cytotoxicity Assay 72 2.3.7. The Cellular Uptake of Pd@Hf-PEB-PEG 73 2.3.8. Colony Formation Assay 75 2.3.9. DNA Strand Breaks 76 2.4. Conclusions 78 2.5. References 79 Chapter 3. Poly(acrylic acid)-Grafted Metal-Organic Framework Carrying Mg Ions for Bone Repair 89 Abstract 89 3.1. Introduction 90 3.2. Materials and Methods 95 3.2.1. Materials 95 3.2.2. General Characterization Methods 95 3.2.3. Synthesis of MIL-100(Fe) 96 3.2.4. Synthesis of NH2-MIL-100(Fe) 96 3.2.5. Synthesis of the Mg@MIL-100(Fe)-PAA 97 3.2.6. Synthesis of Mg@NH2-MIL-100(Fe)-PAA 97 3.2.7. Loading Efficiency of the Mg Ions 98 3.2.8. Release Profile of the Mg Ions 98 3.2.9. Biocompatibility of the Materials 98 3.2.10. Alkaline Phosphatase Assay 99 3.2.11. Statistical analysis 100 3.3. Results and Discussion 101 3.3.1. Synthesis and Characterization of MIL-100(Fe) 101 3.3.2. Synthesis and Characterization of NH2-MIL-100(Fe) 103 3.3.3. Encapsulation of the Mg Ions in MIL-100(Fe) or NH2-MIL-100(Fe) 105 3.3.4. The Release Profile of the Mg Ions from the Mg@MIL-100(Fe)-PAA 110 3.4.5. The Biocompatibility of the Mg@MIL-100(Fe)-PAA 111 3.4.6. The ALP Assay of the Mg@MIL-100(Fe)-PAA 112 3.5. Conclusions 114 3.6. References 115 Chapter 4. Feasibility of Intranasal Delivery of Thin-Film Freeze-Dried, Mucoadhesive Vaccine Powders 125 Abstract 125 4.1. Introduction 127 4.2. Materials and Methods 130 4.2.1. Materials 130 4.2.2. Preparation of the AdjLMQ/OVA Model Vaccine 130 4.2.3. Preparation of AdjLMQ/OVA Model Vaccines with CMC 131 4.2.4. Thin-Film Freeze-Drying of the AdjLMQ/OVA Model Vaccines 131 4.2.5. Determination of Particle Size and Zeta Potential 132 4.2.6. Evaluation of the Integrity of the OVA and the Liposomes 132 4.2.7. In vitro Mucoadhesion Test 133 4.2.8. Characterization of the TFF Vaccine Powders 133 4.2.9. Plume Geometry, Spray Pattern, and the Particle Size Distribution of the Aerosolized Powder 135 4.2.10. Deposition Pattern of the TFF Vaccine Powder 136 4.2.11. Statistical Analysis 139 4.3. Results and Discussion 140 4.3.1. Preparation and Thin-Film Freeze-Drying of the AdjLMQ/OVA Model Vaccine 140 4.3.2. Preparing AdjLMQ/OVA Vaccine Formulations with CMC 140 4.3.3. In vitro Mucoadhesion Test 141 4.3.4. The Integrity of the OVA Before and After the AdjLMQ/OVA Vaccine Formulations were Subjected to Thin-Film Freeze-Drying 143 4.3.5. Characterization of the TFF AdjLMQ/OVA Vaccine Powders with 0 or 1.9% w/w CMC 144 4.3.6. Spraytec Analysis of the Thin-Film Freeze-Dried AdjLMQ/OVA Vaccine Powders Sprayed with a UDSP Nasal Device 147 4.3.7. The Plume Geometry and Spray Pattern of the Thin-Film Freeze-Dried AdjLMQ/OVA Vaccine Powders Sprayed with the UDSP Nasal Device 150 4.3.8. The Integrity of the OVA and the AdjLMQ After the AdjLMQ/OVA Vaccine Powders were Sprayed Using the UDSP Nasal Device 151 4.3.9. Deposition Patterns of the TFF AdjLMQ/OVA/CMC1.9% Vaccine Powder in Nasal Replica Casts 152 4.4. Conclusions 163 4.5. References 164 Chapter 5. Intranasal Delivery of Thin-Film Freeze-Dried Monoclonal Antibodies Using a Powder Nasal Spray System 171 Abstract 171 5.1. Introduction 173 5.2. Materials and Methods 176 5.2.1. Materials 176 5.2.2. Preparation of AUG-3387 Dry Powders 176 5.2.3. Size Exclusion Chromatography (SEC) Analysis 177 5.2.4. Micro-Flow Imaging (MFI) Analysis 177 5.2.5. Measurement of the Residual Moisture Content 179 5.2.6. Measurement of the Specific Surface Area 179 5.2.7. X-ray Diffraction (XRD) 179 5.2.8. Plume Geometry and Spray Pattern 180 5.2.9. Scanning Electron Microscopy 180 5.2.10. Measurement of the Particle Size Distribution 181 5.2.11. Measurement of the Particle Size Distribution (“Dry” Method) 181 5.2.12. Intranasal Deposition Patterns of the TFF mAb Powder 182 5.2.13. Statistical Analyses 183 5.3. Results and discussion 184 5.3.1. Preparationd Characterization of TFF mAb Powders 184 5.3.2. Deposition Patterns of TFF AUG-3387C Powder in Nasal Replica Casts 195 5.4. Conclusions 198 5.5. References 199 | - |
| dc.language.iso | en | - |
| dc.subject | 孔洞材料 | zh_TW |
| dc.subject | 放射治療 | zh_TW |
| dc.subject | 增敏劑 | zh_TW |
| dc.subject | 金屬有機框架 | zh_TW |
| dc.subject | 鼻腔藥物輸送 | zh_TW |
| dc.subject | Porous materials | en |
| dc.subject | Intranasal drug delivery | en |
| dc.subject | Radiotherapy | en |
| dc.subject | Sensitizers | en |
| dc.subject | Metal-organic frameworks | en |
| dc.title | 互穿金屬有機框架之微小化及功能化並應用於癌症的光熱—放射聯合療法 | zh_TW |
| dc.title | Downsizing and Functionalization of Interpenetrated Metal–Organic Frameworks for Combined Photothermal and Radiation Cancer Therapy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 胡哲銘;游佳欣;陳慧文;萬德輝 | zh_TW |
| dc.contributor.oralexamcommittee | Che-Ming Jack Hu;Jiashing Yu;Hui-Wen Chen;Dehui Wan | en |
| dc.subject.keyword | 孔洞材料,金屬有機框架,增敏劑,放射治療,鼻腔藥物輸送, | zh_TW |
| dc.subject.keyword | Porous materials,Metal-organic frameworks,Sensitizers,Radiotherapy,Intranasal drug delivery, | en |
| dc.relation.page | 205 | - |
| dc.identifier.doi | 10.6342/NTU202403823 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2026-08-07 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 8.44 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
