Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95349
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張時中zh_TW
dc.contributor.advisorShi-Chung Changen
dc.contributor.author陳界宇zh_TW
dc.contributor.authorChieh-Yu Chenen
dc.date.accessioned2024-09-05T16:18:00Z-
dc.date.available2024-09-06-
dc.date.copyright2024-09-05-
dc.date.issued2024-
dc.date.submitted2024-08-10-
dc.identifier.citation[AnE14] J. M. Andrade and M. G. Estévez-Pérez, "Statistical Comparison of the Slopes of Two Regression Lines: A Tutorial," Analytica Chimica Acta, vol. 838, pp. 1-12, Aug. 2014, doi: 10.1016/j.aca.2014.04.057.
[BBL19] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini, "Anomaly Detection Using Autoencoders in High Performance Computing Systems," in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9428-9433, 2019.
[BBZ22] A. A. R. Broer, R. Benedictus, and D. Zarouchas, "The Need for Multi-Sensor Data Fusion in Structural Health Monitoring of Composite Aircraft Structures," Aerospace, vol. 9, no. 4, 2022, doi: 10.3390/aerospace9040183.
[BHS01] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik, "Support Vector Clustering," Journal of Machine Learning Research, vol. 2, no. 12, pp. 125-137, 2001.
[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart, "Concentration and Isoperimetry," in Concentration Inequalities: A Nonasymptotic Theory of Independence, Oxford, 2013, doi: 10.1093/acprof:oso/9780199535255.003.0007.
[BaB18] M. Bahi and M. Batouche, Deep Semi-supervised Learning for DTI Prediction Using Large Datasets and H2O-Spark Platform, pp. 1-7, 2018.
[Bal12] P. Baldi, "Autoencoders, Unsupervised Learning, and Deep Architectures," in Proceedings of ICML Workshop on Unsupervised and Transfer Learning, vol. 27, pp. 37-49, 2012.
[CBK09] V. Chandola, A. Banerjee, and V. Kumar, "Anomaly Detection: A Survey," Acm Comput Surv, vol. 41, no. 3, pp. 1-58, 2009, doi: 10.1145/1541880.1541882.
[CCH21] C.-Y. Chen, S.-C. Chang, Y.-C. Hsieh, H.-T. Hsu, D.-Y. Liao, and P. B. Luh, "Effective Detection of Prominent Anomalies from Semiconductor Equipment Sensory Data by Using Unsupervised Learning," in the 18th International Conference on Automation Technology (Automation 2021), Kinmen, Taiwan, Nov. 12-14, 2021.
[CCL19] C.-Y. Chen, S.-C. Chang, and D.-Y. Liao, "Exploiting Frequency Analysis for Semiconductor Equipment Anomaly Detection: An HDP Drift Case," in the 16th International Conference on Automation Technology (Automation 2019), Taipei, Taiwan, Nov. 22-24, 2019.
[CCL20] C.-Y. Chen, S.-C. Chang, and D.-Y. Liao, "Equipment Anomaly Detection for Semiconductor Manufacturing by Exploiting Unsupervised Learning from Sensory Data," Sensors, vol. 20, no. 19, p. 5650, Oct. 2020, doi: 10.3390/s20195650.
[CFZ16] C. Chang, J. Farah, and L. Zhang, "Micro-Arcing During High-Density Plasma Chemical Vapor Deposition," Applied Materials, Oct. 2016. [Online]. Available: https://www.appliedmaterials.com/zh-hant/nanochip/ nanochip-fab-solutions/october-2016/micro-arcing?fbclid=IwAR2Ebn3PML_aptgev80K8uRTR3yYjS3qkViNFM8spw4dj1MieWo58xU4lTA
[CNR11] M. Chowdhury, D. Nuruzzaman, and M. Rahaman, "The Effect of Gas Flow Rate on the Thin Film Deposition Rate on Carbon Steel Using Thermal CVD," International Journal of Chemical Reactor Engineering, vol. 9, Dec. 2011, doi: 10.2202/1542-6580.2673.
[ChB09] A. Chen and J. Blue, "Recipe-Independent Indicator for Tool Health Diagnosis and Predictive Maintenance," IEEE Transactions on Semiconductor Manufacturing, vol. 22, no. 4, pp. 522-535, 2009, doi: 10.1109/TSM.2009.2028215.
[Che23] C.-Y. Chen, "Unsupervised Multi-sensor Error Sequence Fusion to Improve Sensitivity of Semiconductor Equipment Anomaly Detection," in the 20th International Conference on Automation Technology (Automation 2023), Taipei, Taiwan, Dec. 8-10, 2023.
[DuJ19] A. Dubey and V. Jain, "Comparative study of convolution neural network’s relu and leaky-relu activation functions," in Applications of Computing, Automation and Wireless Systems in Electrical Engineering: Proceedings of MARC 2018, pp. 873-880, 2019.
[ErP20] E. C. Erkuş and V. Purutçuoğlu, "Outlier Detection and Quasi-periodicity Optimization Algorithm: Frequency Domain Based Outlier Detection (FOD)," European Journal of Operational Research, Jan. 2020, doi: https://doi.org/10.1016/j.ejor.2020.01.014.
[FHT20] S.-K. S. Fan, C.-Y. Hsu, D.-M. Tsai, F. He, and C.-C. Cheng, "Data-Driven Approach for Fault Detection and Diagnostic in Semiconductor Manufacturing," IEEE Transactions on Automation Science and Engineering, vol. 17, no. 4, pp. 1925-1936, 2020, doi: 10.1109/tase.2020.2983061.
[GPM14] I. Goodfellow et al., "Generative Adversarial Nets," Advances in neural information processing systems, vol. 27, 2014.
[HCL23] Y.-C. Hsieh, C.-Y. Chen, D.-Y. Liao, K.-C. Lin, and S.-C. Chang, "Data Cleansing with Minimum Distortion for ML-Based Equipment Anomaly Detection," IEEE Transactions on Semiconductor Manufacturing, vol. 36, no. 4, pp. 506-514, Nov. 2023, doi: 10.1109/TSM.2023.3262957.
[HDY12] G. Hinton et al., "Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups," IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, 2012, doi: 10.1109/MSP.2012.2205597.
[HiS06] G. E. Hinton and R. R. Salakhutdinov, "Reducing the Dimensionality of Data with Neural Networks," Science, vol. 313, no. 5786, pp. 504-507, Jul. 2006, doi: 10.1126/science.1127647.
[HsL21] C.-Y. Hsu and W.-C. Liu, "Multiple Time-Series Convolutional Neural Network for Fault Detection and Diagnosis and Empirical Study in Semiconductor Manufacturing," Journal of Intelligent Manufacturing, vol. 32, no. 3, pp. 823-836, 2021, doi: 10.1007/s10845-020-01591-0.
[IVE18] M. Al Iqbal, A. Vargas, J. S. Erickson, and K. P. Bennett, "Automated Diagnosis of Anomalies via Sensor-Step Data Outlier Detection: An Application in Semiconductors," in SIGKDD ODD v5. 0 Workshop, 2018.
[KFG18] A. I. Károly, R. Fullér, and P. Galambos, "Unsupervised Clustering for Deep Learning: A Tutorial Survey," Acta Polytechnica Hungarica, vol. 15, no. 8, pp. 29-53, 2018.
[KYL19] M. S. Kim, J. P. Yun, S. Lee, and P. Park, "Unsupervised Anomaly detection of LM Guide Using Variational Autoencoder," in 2019 11th International Symposium on Advanced Topics in Electrical Engineering (ATEE), pp. 1-5, Mar. 2019.
[KiB14] D. Kingma and J. Ba. "Adam: A Method for Stochastic Optimization," 2014, arXiv:1412.6980.
[Kwa23] S. Kwak, "Are Only p-Values Less than 0.05 Significant? A p-Value Greater than 0.05 Is Also Significant!," J Lipid Atheroscler, vol. 12, no. 2, pp. 89-95, 2023, doi: 10.12997/jla.2023.12.2.89.
[LBC08] A. Lazarevic, A. Banerjee, V. Chandola, V. Kumar, and J. Srivastava, "Data Mining for Anomaly Detection," in Tutorial at the European Conference on Principles and Practice of Knowledge Discovery in Databases, 2008.
[LCT18] D.-Y. Liao, C.-Y. Chen, W.-P. Tsai, H.-T. Chen, Y.-T. Wu, and S.-C. Chang, "Anomaly Detection for Semiconductor Tools Using Stacked Autoencoder Learning," in Proceedings of 2018 International Symposium on Semiconductor Manufacturing (ISSM), Tokyo, Japan, pp. 1-4, 2018.
[LGO18] J. Liu et al., "Anomaly Detection in Manufacturing Systems Using Structured Neural Networks," in 2018 13th World Congress on Intelligent Control and Automation (WCICA), pp. 175-180, Jul. 2018.
[LZW20] T. Liu, Y. Zhu, H. Wang, B. Balamurugan, P. Vijayakumar, and J. Peng, "Transformer Anomaly Detection Based on Time-Frequency Domain Software-Hardware Cooperative Analysis," Transactions on Emerging Telecommunications Technologies, p. e3865, 2020.
[MDH12] A.-r. Mohamed, G. E. Dahl, and G. Hinton, "Acoustic Modeling Using Deep Belief Networks," IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 14-22, 2012, doi: 10.1109/TASL.2011.2109382.
[MPV21] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression Analysis. John Wiley & Sons, 2021.
[Man08] C. D. Manning, Introduction to Information Retrieval. Syngress Publishing, 2008.
[Mit07] H. B. Mitchell, Multi-sensor Data Fusion: An Introduction. Springer Science & Business Media, 2007.
[MoI17] J. Moyne and J. Iskandar, "Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing," Processes, vol. 5, no. 4, p. 39, 2017, doi: 10.3390/pr5030039.
[Mor20] C. M. Moore, "Validation Split (Machine Learning)," Radiopaedia, 2020. Accessed: Sep. 14, 2020. [Online]. Available: https://radiopaedia.org/articles/validation-split-machine-learning
[Mos03] M. Mosher, Detailed vibration analysis of pinion gear with time-frequency methods. National Aeronautics and Space Administration, Ames Research Center, 2003.
[OhY18] D. Y. Oh and I. D. Yun, "Residual Error Based Anomaly Detection Using Auto-Encoder in SMD Machine Sound," Sensors, vol. 18, no. 5, p. 1308, 2018.
[PaY18] Y. Park and I. D. Yun, "Fast Adaptive RNN Encoder-Decoder for Anomaly Detection in SMD Assembly Machine," Sensors, vol. 18, no. 10, p. 3573, 2018.
[Pie99] H. O. Pierson, Handbook of Chemical Vapor Deposition: Principles, Technology, and Applications. William Andrew, 1999.
[RBY16a] H. Rostami, J. Blue, and C. Yugma, "Equipment Condition Diagnosis and Fault Fingerprint Extraction in Semiconductor Manufacturing," in 15th IEEE International Conference on Machine Learning and Applications, 2016, doi: 10.1109/icmla.2016.0094.
[RBY16b] H. Rostami, J. Blue, and G. C. Yugma, "Equipment Anomaly Detection and Automatic Fault Fingerprint Extraction in Semiconductor Manufacturing," in Proceedings of International Symposium on Semiconductor Manufacturing Intelligence, Hsinchu, Taiwan, 2016.
[RML18] S. Rajendran, W. Meert, V. Lenders, and S. Pollin, "SAIFE: Unsupervised Wireless Spectrum Anomaly Detection with Interpretable Features," in 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 1-9, Oct. 2018.
[RaW11] N. M. Razali and Y. B. Wah, "Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests," Journal of Statistical Modeling and Analytics, vol. 2, no. 1, pp. 21-33, 2011.
[SEM00] SEMI E5-0600, "SEMI Equipment Communications Standard 2 Message Content (SECS-II)," Semiconductor Equipment & Materials Institute, 2000.
[SHI95] E. Sachs, A. Hu, and A. Ingolfsson, "Run by Run Process Control: Combining SPC and Feedback Control," IEEE Transactions on Semiconductor Manufacturing, vol. 8, no. 1, pp. 26-43, 1995, doi: 10.1109/66.350755.
[SJH87] H. Sorensen, D. Jones, M. Heideman, and C. Burrus, "Real-Valued Fast Fourier Transform Algorithms," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 6, pp. 849-863, Jun. 1987, doi: 10.1109/TASSP.1987.1165220.
[SPS20] "Semiconductor Processing Steps," Professional Plastics. Accessed: Sep. 13, 2020. [Online]. Available: https://www.professionalplastics.com/SemiconductorProcessing
[SSJ21] N. Sharma, R. Sharma, and N. Jindal, "Machine Learning and Deep Learning Applications-A Vision," Global Transitions Proceedings, vol. 2, no. 1, pp. 24-28, Jun. 2021, doi: 10.1016/j.gltp.2021.01.004.
[STB17] G. A. Susto, M. Terzi, and A. Beghi, "Anomaly Detection Approaches for Semiconductor Manufacturing," Procedia Manufacturing, vol. 11, pp. 2018-2024, 2017, doi: 10.1016/j.promfg.2017.07.353.
[TBH14] M. Tsagris, C. Beneki, H. Hassani. "On the Folded Normal Distribution," Mathematics, vol. 2, no. 1, pp. 12-28, 2014.
[TJL15] A. Taylor, N. Japkowicz, and S. Leblanc, "Frequency-Based Anomaly Detection for the Automotive CAN Bus," 2015 World Congress on Industrial Control Systems Security (WCICSS), pp. 45-49, Dec. 2015, doi: 10.1109/WCICSS.2015.7420322.
[VLL10] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and L. Bottou, "Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion," Journal of Machine Learning Research, vol. 11, no. 12, 2010.
[WFG19] C. Weber et al., "A Wafer Yield Fluctuation Analysis Model Utilizing Least-Squares Spectral Analysis," in 2019 International Symposium on Signals, Circuits and Systems (ISSCS), pp. 1-6, Jul. 2019.
[WKQ08] X. Wu et al., "Top 10 Algorithms in Data Mining," Knowledge and information systems, vol. 14, pp. 1-37, 2008.
[WYZ16] Y. Wang, H. Yao, and S. Zhao, "Auto-Encoder Based Dimensionality Reduction," Neurocomputing, vol. 184, pp. 232-242, Apr. 2016, doi: 10.1016/j.neucom.2015.08.104.
[WZW19] X.-S. Wei, C.-L. Zhang, J. Wu, C. Shen, and Z.-H. Zhou, "Unsupervised Object Discovery and Co-localization by Deep Descriptor Transformation," Pattern Recognition, vol. 88, pp. 113-126, Apr. 2019, doi: 10.1016/j.patcog.2018.10.022.
[Wal13] S. Wallis, "Binomial Confidence Intervals and Contingency Tests: Mathematical Fundamentals and the Evaluation of Alternative Methods," Journal of Quantitative Linguistics, vol. 20, no. 3, pp. 178-208, 2013, doi: 10.1080/09296174.2013.799918.
[XMY16] C. Xing, L. Ma, and X. Yang, "Stacked Denoise Autoencoder Based Feature Extraction and Classification for Hyperspectral Images," Journal of Sensors, vol. 2016, pp. 1-10, 2016, doi: 10.1155/2016/3632943.
[XWH22] L. Xi, R. Wang, and Z. J. Haas, "Data-Correlation-Aware Unsupervised Deep-Learning Model for Anomaly Detection in Cyber-Physical Systems," IEEE Internet of Things Journal, vol. 9, no. 22, pp. 22410-22421, 2022, doi: 10.1109/JIOT.2022.3150048.
[YaG14] R. D. Yates and D. J. Goodman, Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers. John Wiley & Sons, 2014.
[ZGO08] B. Zhang et al., "Rolling Element Bearing Feature Extraction and Anomaly Detection Based on Vibration Monitoring," in 2008 16th Mediterranean Conference on Control and Automation, pp. 1792-1797, Jun. 2008.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95349-
dc.description.abstract健康的設備對維持高生產率和高品質至關重要。線上異常檢測系統通過監視設備感測數據(ESD)來檢測維護需求和潛在影響產線良率的議題。半導體ESD的收集頻率和容量隨著感測器使用量逐漸增加而增加,這些感測器測量的量稱為狀態識別變量(SVID)。儘管近年來機器學習和自動化技術有長足進展,資深工程師仍面臨有效處理和利用大量湧入的ESD的新挑戰。他們對SVIDs、設備健康狀況、製程品質、產品良率之間的複雜關係缺乏全面的了解。因此,半導體廠迫切需要在自動化、快速、極小化ESD先驗知識需求的線上異常檢測上取得進展,從而促進主動的良率與作業管理。
本論文研究了非監督和快速ESD異常檢測問題(P),並設計了解決方法(M),以實現自動化和非監督的決策支持,具體如下:
(P1) 如何從個別SVIDs的ESD中利用非監督學習,以在幾乎沒有先驗知識的情況下促進有效的線上異常檢測?
(M1) 頻域與時域自編碼器學習異常檢測(STALAD)框架和解決方案設計:主要挑戰為ESD的正常行為多樣且未知。我們設計了STALAD,包含四項創新:(1)識別因重複製程造成的ESD週期序列和頻域變換(CSST),(2)利用堆疊自編碼器(SAEs)對ESD的CSST進行非監督學習以萃取數據主要特徵做為正常數據週期,(3)基於誤差序列的假設檢定以檢測異常,其中誤差序列是習得正常數據週期與待測感測數據週期間的差異,(4)動態程序控制,實現定期和並行的學習與檢定。
(P2) 如何在有限的實際數據下進行STALAD的效能評估?
(M2) 我們分析著名異常的特徵,並設計漂移、移位和尖點等模型,以生成任意大小的異常數據。此外,我們藉由調整現有實際數據的學習時段來操作數據集中正常/異常數據的比例,以評估STALAD的檢測時間及學習時對異常的容忍度。
(P3) 如何利用SVID間關聯性來達成更靈敏、更早的異常檢測?
(M3) 多感測器誤差序列融合異常檢測(MESFAD)檢定方案設計:工程師缺乏有效利用SVID間關聯性進行更有效異常檢測的知識。我們開發了MESFAD檢定方案,包含兩項創新:(1)均勻融合標準化誤差序列,以放大共現的異常訊號,相比於雜訊,(2)使用機率近似模型以在給定的誤警率下設置檢測門檻值。
(P4) 如何在非監督的情況下配對可能相關的SVIDs?
(M4) 基於頻域分析的對數-對數斜率相似性(SALSS)檢定方案設計:SVID間關聯性對ESD的影響的知識缺乏。我們開發了SALSS檢定方案,包含兩項創新:(1)使用對數-對數圖中的斜率和其信賴區間(CI)作為習得正常數據週期的振幅譜特徵,(2)分別對斜率進行t檢定和對CI寬度進行F檢定,以判斷兩SVIDs的振幅譜特徵相似性。具備相似振幅譜特徵的SVIDs將較有可能相關。
最終的貢獻和價值如下:
(R1) STALAD 運用SAEs萃取量產工廠中各SVIDs數據在時域、頻域上正常數據週期的主要特徵,並設計異常檢測方法:STALAD無須數據標籤,便在一個案例研究數據集上達成100%準確率,且可在學習階段容忍最多33%異常數據,減少設備工程師篩選正常數據的工作量。緩慢漂移主要影響低頻振幅,雜訊則通常均勻影響所有振幅,故頻域STALAD可比時域STALAD更早檢測出緩慢漂移。作為控片晶圓監控製程參數的補充,STALAD可提前8天預警製程問題、避免數百片晶圓曝險、幫助製程工程師評估良率影響。
(R2) 設計異常模型與調整學習時段,使對STALAD的效能評估更加精確:著名的異常模型使我們得以評估STALAD對不易取得的小異常的靈敏度。調整現有數據中的學習時段可產生所期望的正常/異常的比例,以評估STALAD的檢測時間和在學習時對異常的容忍度。
(R3) MESFAD融合誤差序列以提升訊噪比並加速異常檢測:利用兩相關SVIDs中的異常共現性,MESFAD有更高的靈敏度和更快的檢測速度。案例研究表明,MESFAD可比設備工程師現行使用的個別SVIDs異常檢測方法提前395個週期(約22小時)檢測到異常。
(R4) SALSS利用對數-對數圖與假設檢定於振幅譜特徵,辨識出可能的SVID間關聯性:對相關SVIDs的研究顯示它們的振幅通常呈現冪衰減形式。SALSS正確辨識出案例研究數據集中的關聯性。結合使用SALSS與MESFAD,相比於未結合SALSS,可降低7.4%誤警率,同時維持100%靈敏度。
zh_TW
dc.description.abstractHealthy equipment is crucial for maintaining high productivity and quality. In-line anomaly detection (AD) systems monitor equipment sensory data (ESD) to detect maintenance needs and potential issues affecting production line yield. Semiconductor ESD is collected at high rates and volumes due to increased sensor usage. These sensor-measured quantities are known as Status Variable Identifications (SVID). Despite advancements in machine learning and automation over recent years, veteran engineers still face new challenges in effectively processing and exploiting the rapid influx and large volumes of ESD. They continue to lack comprehensive knowledge of the complex relationships among SVIDs, equipment health, process quality, and product yields. There are pressing needs for advancements in automated and prompt in-line AD with minimal prior ESD knowledge to facilitate proactive yield and operations management.
This dissertation investigates unsupervised and prompt ESD AD problems (P) and designs methods (M) for an automated and unsupervised decision support as follows:
(P1) How to exploit unsupervised learning from ESD of individual SVIDs to facilitate effective in-line AD with little prior knowledge?
(M1) Spectral and Time Autoencoder Learning for Anomaly Detection (STALAD) framework and solution design: The key challenge is that normal behaviors of ESD are diversified but unknown. We design the STALAD framework which consists of four innovations: (1) identification of cycle series and spectral transformation (CSST) from ESD due to repetitive processing, (2) unsupervised learning from CSST of ESD by exploiting Stacked AutoEncoders (SAEs) for extracting major features of data as normal cycles, (3) hypothesis test for AD based on the error sequence, which is the difference between the learned normal cycle and the tested ESD cycle, (4) dynamic procedure control enabling periodic and parallel learning and testing.
(P2) How to evaluate STALAD's performance under limited field data availability?
(M2) We analyze the features of prominent anomalies and design models such as drift, shift, and spike to generate anomaly data of arbitrary sizes. Additionally, we manipulate the normal/abnormal ratio by adjusting the learning period in available field data to evaluate STALAD's detection time and its tolerance for anomaly data during learning.
(P3) How to exploit SVID relations for more sensitive and earlier AD?
(M3) Multi-sensor Error Sequence Fusion for Anomaly Detection (MESFAD) test scheme design: Engineers lack the knowledge to effectively exploit SVID relations for more effective AD. We develop the MESFAD test scheme, which consists of two innovations: (1) evenly fusing standardized error sequences to amplify co-occurring anomaly signals over noise, and (2) using a probabilistic approximation model to set the test threshold under a given false alarm rate.
(P4) How to pair possibly related SVIDs without supervision?
(M4) Spectral Analysis-based Log-log Slope Similarity (SALSS) test scheme design: Knowledge about the effects of SVID relations on ESD is lacking. We develop the SALSS test scheme, which consists of two innovations: (1) using the slope and the confidence interval (CI) of the slope in the log-log plot as magnitude features of the learned normal cycles, and (2) applying a t-test on the slope and an F-test on the width of the slope CI, respectively, to judge the similarity of magnitude features of two SVIDs. SVIDs with similar magnitude features will have higher possibility to be related.
The resultant contributions and values are as follows:
(R1) STALAD exploits SAEs to extract major features of normal cycles of individual-SVID ESD in mass production fabs in temporal and spectral domains, and design AD methods: STALAD achieves 100% accuracy on a case study dataset without data labels, and tolerates up to 33% anomaly data in the learning phase, reducing the effort needed for equipment engineers to filter normal data. Slow drifts primarily affect low-frequency magnitudes, while noise typically affects all magnitudes evenly. Hence, spectral STALAD can detect slow drifts earlier than temporal STALAD. Complementary to control wafer monitoring on process parameters, STALAD may warn of process issues 8 days earlier, preventing hundreds of wafers from risking defects and aiding process engineers in assessing yield impacts.
(R2) Designing anomaly models and adjusting learning period enable more precise performance evaluation on STALAD: Prominent anomaly models enable the assessment of STALAD's sensitivity to small anomalies that are rarely available. Adjusting the learning period in available data can generate datasets with desired normal/abnormal ratio for evaluating STALAD's detection time and tolerance to anomalies.
(R3) MESFAD's error sequence fusion for higher signal-to-noise ratio speeds up AD: MESFAD achieves higher sensitivity and faster detection speed by exploiting the co-occurrence of anomalies in two related SVIDs. A case study demonstrates MESFAD may detect anomalies 395 cycles (about 22 hours) earlier than detecting anomalies on individual SVIDs, which is the current practice for equipment engineers.
(R4) SALSS's exploitation of log-log plots and hypothesis testing on magnitude features identifies possible SVID relations: Investigation on related SVIDs shows that their magnitudes often exhibit power decay patterns. SALSS correctly identifies relationships in a case study dataset. Combining SALSS with MESFAD reduces 7.4% false alarm while maintaining 100% sensitivity compared to not combining SALSS.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-05T16:18:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-05T16:18:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
Abstract iii
中文摘要 vii
Table of Contents x
List of Figures xvi
List of Tables xxi
List of Abbreviations xxii
Chapter 1 Introduction 1
1.1 Significance of Semiconductor Equipment Sensory Data Anomaly Detection 1
1.2 Motivation and Need for Unsupervised Equipment Sensory Data Anomaly Detection 2
1.3 Scope of Research 5
1.4 Methodology Overview 6
1.5 Dissertation Organization 12
Chapter 2 Unsupervised Semiconductor Equipment Sensory Data Anomaly Detection Problem Definitions 13
2.1 Equipment Sensory Data Characteristics 13
2.2 Literature Survey of Approaches 18
2.2.1 Semiconductor Equipment Anomaly Detection 18
2.2.2 Unsupervised Learning 19
2.2.3 Stacked Autoencoder 20
2.3 Problem Scope Boundaries 21
2.4 Problem Definitions and Challenges 22
Chapter 3 Design of Spectral and Time Autoencoder Learning for Anomaly Detection (STALAD) over Individual Sensors [CCL20] 26
3.1 STALAD Framework Overview 26
3.2 Data Preprocessing into Cycle Series and Spectral Transformation 34
3.3 Unsupervised Normal Feature Learning 37
3.3.1 Design Ideas 37
3.3.2 Detailed Design 40
3.3.3 Functionality Evaluation 43
3.4 Time and Frequency Stacked Autoencoder-Based Feature Testing 49
3.4.1 Design 49
3.4.2 Functionality Evaluation 51
3.5 Two-Phased Procedure Control 53
Chapter 4 STALAD Performance Evaluation over Individual Sensors 56
4.1 Performance Evaluation on Detecting Anomalies in Real Dataset [CCL20] 56
4.1.1 Evaluation Dataset Descriptions 56
4.1.2 Evaluation for Anomalies with Known Data Features 58
4.1.3 Evaluation of Detection Time 65
4.2 Tolerance to Anomalies During Learning [CCL20] 68
4.3 Performance Evaluation and Analysis on Detecting Prominent Anomalies [CCH21] 72
4.3.1 Introduction of Prominent Anomalies 73
4.3.2 Equipment Sensory Data Modeling 75
4.3.3 Experiment Design 78
4.3.4 Experiment Results 81
4.4 Potential Detection Advancement by Spectral Analysis [CCL19] 89
4.5 Deficiencies of STALAD and Further Issues 95
Chapter 5 Multi-sensor STALAD Exploiting SVID Relations for More Effective AD 97
5.1 Issues of Exploiting Multi-sensor Data for Anomaly Detection 97
5.2 Exploiting Relations in SVID Pairs: Problems and Challenges 99
5.2.1 Simple Relation Model to Capture Co-occurrence of Anomalies 101
5.2.2 Deficiency of Individual Result Fusion 103
5.2.3 Anomaly Co-occurrence Exploitation Problems and Challenges 105
5.3 Design of Multi-sensor Error Sequence Fusion for Anomaly Detection (MESFAD) 105
5.3.1 Framework Overview 106
5.3.2 Error Sequences and Test Thresholds Retrieval for Fusion 108
5.3.3 Error Sequence Fusion Design 109
5.3.4 Threshold Judgement 110
5.4 Gaussian Signal Analysis for MESFAD Threshold Design and Performance Evaluation 111
5.4.1 Assumptions for Analysis 111
5.4.2 False Alarm Rate-Based Threshold Setting 112
5.4.3 Miss Rate Analysis of MESFAD 117
5.4.4 ROC Curve Comparison (IRF as the Baseline) 119
5.4.5 Explanation of Performance Improvement of MESFAD 122
5.5 Detection Effectiveness of MESFAD Design on Prominent Anomalies in Real Normal Data 123
5.5.1 Experiment Design 124
5.5.2 Result Discussions for Drift Anomalies 126
5.5.3 Result Discussions for Shift Anomalies 127
5.6 Generalization to More-than-Two Related SVIDs 129
5.7 Summary 133
Chapter 6 Spectral Analysis-Based SVID Pairing by Using Log-Log Slope Similarity 135
6.1 Motivation and Problem of Pairing SVIDs for MESFAD 136
6.1.1 Observations on Magnitude Spectra of Learned Normal Cycles 137
6.1.2 Relationship Between Normal Feature Similarity and SVID Relations 140
6.1.3 SVID Pairing Problem Definition 144
6.2 Design of Spectral Analysis-Based Log-Log Slope Similarity (SALSS) 145
6.2.1 Framework Overview 145
6.2.2 Magnitude Features: Log-Log Slope as Decaying Speed and Confidence Interval of the Slope as Fluctuation Size 147
6.2.3 Hypothesis Testing on Regression Slopes and Their Confidence Intervals for Similarity 151
6.3 SALSS Effectiveness Evaluation 155
6.3.1 Known Physical Relationship Identification Results 155
6.3.2 Integrating SALSS with MESFAD for AD 158
6.4 Summary 162
Chapter 7 Conclusions and Future Work 164
7.1 Conclusions 164
7.2 Future work 168
Appendix A 172
Appendix B 181
References 182
-
dc.language.isoen-
dc.subject異常共現zh_TW
dc.subject非監督學習zh_TW
dc.subject堆疊自編碼器zh_TW
dc.subject頻域分析zh_TW
dc.subject半導體設備感測數據zh_TW
dc.subject假設檢定zh_TW
dc.subject誤差序列zh_TW
dc.subject異常檢測zh_TW
dc.subjectUnsupervised Learningen
dc.subjectAnomaly Detectionen
dc.subjectCo-occurrence of Anomaliesen
dc.subjectError Sequenceen
dc.subjectHypothesis Testingen
dc.subjectSemiconductor Equipment Sensory Dataen
dc.subjectSpectral Analysisen
dc.subjectStacked Autoencoderen
dc.title運用非監督式學習與感測數據之半導體機台異常檢測方法設計zh_TW
dc.titleAnomaly Detection by Exploiting Unsupervised Learning from Semiconductor Equipment Sensory Dataen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee吳政鴻;藍俊宏;廖大穎;陳俊宏;范治民;連豊力;楊光磊;簡正忠zh_TW
dc.contributor.oralexamcommitteeCheng-Hung Wu;Jakey Blue;Da-Yin Liao;Chun-Hung Chen;Chih-Min Fan;Feng-Li Lian;Konrad Young;Cheng-Chung Chienen
dc.subject.keyword異常檢測,異常共現,誤差序列,假設檢定,半導體設備感測數據,頻域分析,堆疊自編碼器,非監督學習,zh_TW
dc.subject.keywordAnomaly Detection,Co-occurrence of Anomalies,Error Sequence,Hypothesis Testing,Semiconductor Equipment Sensory Data,Spectral Analysis,Stacked Autoencoder,Unsupervised Learning,en
dc.relation.page190-
dc.identifier.doi10.6342/NTU202404083-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf6.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved