請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95348完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳麒文 | zh_TW |
| dc.contributor.advisor | Chi-Wen Chen | en |
| dc.contributor.author | 何佳芷 | zh_TW |
| dc.contributor.author | Jia-Jhih He | en |
| dc.date.accessioned | 2024-09-05T16:17:41Z | - |
| dc.date.available | 2024-09-06 | - |
| dc.date.copyright | 2024-09-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | Chang, C., Harrison, J.F., & Huang, Y. (2015). Modeling Typhoon‐Induced Alterations on River Sediment Transport and Turbidity Based on Dynamic Landslide Inventories: Gaoping River Basin, Taiwan. Water, 7(12), 6910-6930.
Chen, C.Y., Chen, T.C., Yu, F.C., & Lin, S.C. (2005). Analysis of time-varying rainfall induced landslide. Environmental Geology, 48(4-5), 466-479. Chen, Y.C., Wu, Y.H., Shen, C.W., & Chiu, Y.J. (2018). Dynamic Modeling of Sediment Budget in Shihmen Reservoir Watershed in Taiwan. Water, 10(12):1808. Chen, Y.Y., Wei Huang, Wei-Hong Wang, Jehn-Yih Juang, Jing-Shan Hong, Tomomichi Kato, & Sebastiaan Luyssaert. (2019). Reconstructing Taiwan's land cover changes between 1904 and 2015 from historical maps and satellite images. Scientific Reports, 9(1):3643. Cellek, S. (2020). Effect of the slope angle and its classification on landslide. Natural. Hazards and Earth System Sciences Discussions, 1-23. Cellek, S. (2021). The effect of aspect on landslide and its relationship with other. parameters. In Landslides. Intechopen. Cruden, D. M. (1996). Cruden, dm, varnes, dj, 1996, landslide types and processes, transportation research board, us national academy of sciences, special report, 247: 36-75. Transp Res Board, 247, 36-57. Gao, Y., Li, B., Gao, H., Chen, L., & Wang, Y. (2020). Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area: a case study of the Shuicheng “7.23” landslide in Guizhou, China. Landslides, 17, 1663-1677. Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C.P. (2008). The rainfall intensity– duration control of shallow landslides and debris flows: an update. Landslides, 5, 3-17. Huang, J.C., & Kao, S.J. (2006). Optimal estimator for assessing landslide model performance. Hydrology and Earth System Sciences, 10(6), 957-965.Iverson, R.M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897-1910. Hutchinson, J.N. (1988). General report: Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. Iverson, R.M. (2000). Landslide triggering by rain infiltration. Water resources research, 36(7), 1897-1910. Keefer, D.K. (2000). Statistical analysis of an earthquake-induced landslide distribution—the 1989 Loma Prieta, California event. Engineering Geology, 58(3-4), 231-249. Lai, J.S., & Tsai, F. (2012). Verification and risk assessment for landslides in the Shimen reservoir watershed of Taiwan using spatial analysis and data mining. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 39, 67-70. Lin, C.Y., Chen, Y.C., Lin, J.Y., Mao, Y.S., & Wu, S.W. (2022). Key indicators describing the evolution of landslides in the Zhuoshui River Basin caused by the Chi-Chi earthquake in Taiwan. Geomatics, Natural Hazards and Risk, 13(1), 474-500. Liu, C.N., Huang, H.F., & Dong, J.J. (2008). Impacts of September 21, 1999 Chi-Chi earthquake on the characteristics of gully-type debris flows in central Taiwan. Natural Hazards, 47, 349-368. Meten, M., Prakash Bhandary, N., & Yatabe, R. (2015). Effect of landslide factor combinations on the prediction accuracy of landslide susceptibility maps in the Blue Nile Gorge of Central Ethiopia. Geoenvironmental Disasters, 2, 1-17. Mersha, T., & Meten, M. (2020). GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, northwestern Ethiopia. Geoenvironmental Disasters, 7, 1-22. Nakileza, B.R., & Nedala, S. (2020). Topographic influence on landslides characteristics and implication for risk management in upper Manafwa catchment, Mt Elgon Uganda. Geoenvironmental Disasters, 7, 1-13. Oguz, E.A., Benestad, R.E., Parding, K.M., Depina, I., & Thakur, V. (2024). Quantification of climate change impact on rainfall-induced shallow landslide susceptibility: a case study in central Norway. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 18(2), 467-490. Sun J, Yuan G, Song L, Zhang H. (2024) Unmanned Aerial Vehicles (UAVs) in Landslide Investigation and Monitoring: A Review. Drones. 8(1), 30. Pei, Y., Qiu, H., Zhu, Y., Wang, J., Yang, D., Tang, B., & Cao, M. (2023). Elevation. dependence of landslide activity induced by climate change in the eastern Pamirs. Landslides, 20(6), 1115-1133. Pradel, D., & Raad, G. (1993). Effect of permeability on surficial stability of homogeneous slopes. Journal of Geotechnical Engineering, 119(2), 315-332. Rabby, Y.W., Ishtiaque, A., & Rahman, M.S. (2020). Evaluating the effects of digital elevation models in landslide susceptibility mapping in Rangamati District, Bangladesh. Remote Sensing, 12(17), 2718. Sun, J., Yuan, G., Song, L., & Zhang, H. (2024). Unmanned aerial vehicles (UAVs) in landslide investigation and monitoring: a review. Drones, 8(1), 30. Varnes, D.J. (1978). Slope movement types and processes. Special Report, 176, 11-33. Wang, G., & Sassa, K. (2003). Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content. Engineering Geology, 69(1-2), 109-125. Wu, C.H. (2021). Evaluating the landslide stability and vegetation recovery: Case studies in the Tsengwen reservoir watershed in Taiwan. Water, 13(24), 3479. Xu, W., Xu, H., Chen, J., Kang, Y., Pu, Y., Ye, Y., & Tong, J. (2022). Combining numerical simulation and deep learning for landslide displacement prediction: an attempt to expand the deep learning dataset. Sustainability, 14(11), 6908. Yang, L., Cui, Y., Xu, C., & Ma, S. (2024). Application of coupling physics–based model TRIGRS with random forest in rainfall-induced landslide-susceptibility assessment. Landslides, 1-15. 王姵兮 (2007) 應用 TRIGRS 模式評估降雨及入滲誘發池上山棕寮地滑之影響研究。國立中正大學應用地球物理研究所,碩士論文。 尹立中、劉哲欣、吳亭燁 (2013) 降雨引致淺層崩塌物理模式分析尺度探討-高屏溪美輪山子集水區為例。社團法人中華水土保持學會 102 年度年會。 中央氣象局(2021)《颱風百問》。臺北:交通部中央氣象局。 李明熹 (2006) 土石流發生降雨警戒分析及應用 (Doctoral dissertation), 台南:國立成功大學)。 李三畏 (1984) 臺灣崩坍問題研討。地工技術雜誌,第7卷,第43-49頁。 何春蓀 (1989) 普通地質學,國立編譯館,220-221。 吳瑞賢、蘇文瑞、廖偉民、張志誠 (2002) 臺灣的颱風,暴雨災害量化分析。農業氣象及農業水資源之應用與管理。 吳思宓 (2016) 降雨誘發邊坡崩塌之探討與評估模式之建置。 林慶偉 (2003) 土石流災害預警空間,時間基準訂定之研究-子計畫:崩塌對土石流發生條件之影響(I)。 林睦容、洪子傑、曾奕豪、鐘履健 、楊昆樺、董逸文 (2006) 大甲溪流域環境生態系統分析。 林秉毅、林士堯(2021)台灣歷史氣候重建資料生產履歷(1.0版)。 周晏勤、蔡尹萱 、陳昭旭、陳時祖 (2006) 以高解析度衛星影像快速調查崩塌地。鑛冶:中國鑛冶工程學會會刊,50(4),117-124。 邱琳濱 (2010) 降雨引致山崩潛勢評估〔博士論文,國立臺灣大學〕。華藝線上圖書館。 洪鴻智、陳令韡 (2012) 颱洪災害之整合性脆弱度評估-大甲溪流域之應用。 地理學報, (65), 79-96。 胡原銘 (2006) 曾文水庫集水區崩塌特性之探討。長榮大學土地管理與開發研究所學位論文, 1-119。 康焜堡 (2009) 曾文水庫集水區之崩塌潛能評估。 長榮大學土地管理與開發研究所 (在職專班) 學位論文, 1-86。 施虹如、趙益群、吳亭燁、劉俊志、林以淳、李欣輯 (2015)。不同土壤參數分區方法對淺層崩塌模式精度之響。104年農業工程研討會,台北,台灣。 陳毅青 (2012) 降雨誘發崩塌侵蝕之規模頻率及其控制因子(Doctoral dissertation,國立臺灣大學土木工程學系博士論文)。 陳則佑、馮正一、莊育蓁 (2011) 應用 TRIGRS 程式於邊坡破壞機率分析-以奧萬大地區為例。中華水土保持學報,第 42 期第 3 卷,228-239。 陳樹群、郭靜苓、吳俊鋐 (2013) 西台灣強降雨誘發崩塌規模與區位之特性分析. Journal of Chinese Soil and Water Conservation,44(1),34-49。 陳時祖 (1996) 雨量與邊坡崩塌的關係,地工技術第57期。 陳信宇、葉信富 (2023)濁水溪流域內集水區地下水流動性與交換量評估。農業工程學報,69(1),41-54。 陳怡如 (2007) 屏東縣坡地災害潛勢分析。國立屏東科技大學水土保持系碩士論文,38-80。 張子瑩 (2002) 降雨與地震對行成崩塌區位之比較研究;以陳有蘭溪為例。(Doctoral dissertation, National Taiwan University)。 黃宏斌、徐肇斌、謝孟荃 (2006) 石門水庫集水區崩塌地之調查研究。農業工程學報,52(3),32-45。 曹鈞、葉信富 (2018) 臺灣集集攔河堰的興建對濁水溪流域水文環境影響之研究. 臺灣鑛業,70(2),18-29。 詹勳全、張嘉琪、陳樹群、魏郁軒、王昭堡、李桃生 (2015) 台灣山區淺層崩塌地特性調查與分析. Journal of Chinese Soil and Water Conservation,46(1),19-28。 劉守恆、林慶偉 (2004) SPOT 衛星影像之崩塌地自動分類研究。 航測及遙測學刊,9(2),9-22。鄭佳元(2009)降雨誘發淺層坡地崩塌之研究。博士論文。 鍾欣翰 (2008) 考慮水文模式的地形穩定分析-以匹亞溪集水區為例。國立中央大學應用地質研究所碩士論文。 蕭國鑫、尹承遠、劉進金、遊明芳、王晉倫 (2003) SPOT 影像與航照資料應用於崩塌地辨識之探討。 航測及遙測學刊,8(4),29-42。 賴志強 (2006) 台灣地區降雨及地震誘發崩塌之特性研究. 2006. PhD Thesis。 謝正倫、黃敏郎、蔡在宗、張維恕 (2010) 運用福衛二號影像進行莫拉克颱風崩塌地判釋. 中華防災學刊,2(1),35-42。 NCDR (2012) 100年坡地土砂災害衝擊評估。國家災害防救科技中心技術報告(NCDR 100-T36)。 NCDR (2017) 暖化情境下極端颱洪災事件之坡地災害衝擊評估:以大漢溪及新店溪集水區為例。國家災害防救科技中心技術報告(NCDR 106-T09)。 黎俊逸 (2017) 無人飛行載具於大規模崩塌地調查之應用研究。交通大學土木工程系所學位論文,1-125。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95348 | - |
| dc.description.abstract | 降雨是引發崩塌災害的主要因素之一。台灣地形特徵複雜且地勢陡峭加上地處亞熱帶氣候,氣候多變且降雨充沛,這些因素與人為過度開發的綜合影響,使得台灣非常容易發生崩塌災害事件。若我們能充分了解各集水區降雨所誘發的崩塌條件,並進一步提高預警效果,就能減緩崩塌災害對我們所帶來的衝擊。
然而為了確定台灣不同地區的降雨條件是否會對崩塌程度造成差異,本研究分別選擇台灣西部由北至南從石門水庫及水區、大甲溪集水區、濁水溪集水區、曾文水庫集水區、高屏溪集水區,共五個集水區做為代表,並參考氣候變遷災害調適平台統計六項極端降雨指標,選取2004-2019年間10場具代表性的颱風作為降雨條件,利用數值模式(TRIGRS)進行分析。根據降雨與崩塌特性關係,通過皮爾森矩陣分析各個集水區的最大小時降雨量、地質特徵、及颱風路徑對崩塌結果的影響。 結果顯示,石門水庫及水區與高屏溪集水區主要受最大48小時降雨量影響;大甲溪集水區以累積降雨量為主;濁水溪集水區以最大24小時降雨量為主控因素;曾文水庫集水區則以最大12小時降雨量為主要降雨條件。崩塌多發生於坡度150至300之間,且在臺灣西部地區,由於降雨條件的影響,崩塌多發生於受長時間日曬、受較多降雨的坡向或順向坡坡上;高程介於1000m至2000m之間的地區最容易發生崩塌事件。研究進一步討論大甲溪流域次集水區降雨誘發崩塌的結果,確認最主要誘發崩塌的因素為高程,最大小時降雨量會隨著高程降低而縮短;而颱風路徑的差異會對北、中、南部造成不同降雨量與崩塌情況。 了解各個集水區不同的降雨條件特性,有助於幫助我們在災害預警中更加因地制宜,並能在災害來臨時及時應對,做出更有效的判斷,最大程度地保障人民生命財產安全。 | zh_TW |
| dc.description.abstract | Rainfall is one of the primary factors triggering landslide disasters. Taiwan's complex terrain, steep topography, subtropical climate, and variable precipitation make it highly susceptible to such events, exacerbated by human-induced overdevelopment. Understanding the specific rainfall-induced landslide conditions in various watersheds and enhancing early warning systems are crucial to mitigating the impact of landslides.
To determine whether rainfall conditions vary in their impact on landslide severity across different regions of Taiwan, this study selected five representative watersheds from north to south: Shimen Reservoir and watershed, Dajia River watershed, Zhuoshui River watershed, Zengwun Reservoir watershed, and Kaoping River watershed. Utilizing statistical data from the Climate Change Adaptation Platform on six extreme rainfall indices and selecting 10 representative typhoons between 2004 and 2019, the study employed the TRIGRS numerical model for analysis. Based on the relationship between rainfall and landslide characteristics, Pearson correlation matrices were used to analyze the effects of maximum 48-hour rainfall, geological features, and typhoon paths on landslide outcomes in each watershed. The results indicate that Shimen Reservoir and Kaoping River watersheds are primarily influenced by maximum 48-hour rainfall; Dajia River watershed is predominantly affected by cumulative rainfall; Zhuoshui River watershed is controlled by maximum 24-hour rainfall; and Zengwun Reservoir watershed is mainly influenced by maximum 12-hour rainfall. Landslides occur most frequently on slopes with gradients between 15° and 30°, especially on aspects exposed to prolonged sunlight or receiving higher rainfall in Taiwan's western regions. Areas at elevations between 1000m and 2000m are particularly susceptible to landslides. Furthermore, the study discusses the results of rainfall-induced landslides in the sub-watersheds of the Dajia River basin, confirming that elevation is the primary triggering factor, with the duration of maximum hourly rainfall decreasing with lower elevations. Variations in typhoon paths lead to different rainfall amounts and landslide conditions in northern, central, and southern Taiwan. Understanding the unique rainfall conditions of each watershed facilitates tailored disaster preparedness and timely response strategies, ensuring the safety of lives and properties to the greatest extent possible during disasters. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-05T16:17:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-05T16:17:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii 圖次 viii 表次 x 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 崩塌的定義與類型 3 2.2 崩塌地調查方法 4 2.3 影響崩塌發生的因子 5 2.4 降雨對崩塌地之影響 5 2.5 崩塌潛勢分析之研究 6 第三章 研究區域 7 3.1 研究區域選擇 7 3.2 石門水庫集水區 9 3.2.1 地形概述 9 3.2.2 地質條件 9 3.2.3 氣候及水文特性 9 3.3 大甲溪集水區 11 3.3.1 地形概述 11 3.3.2 地質條件 11 3.3.3 氣候及水文特性 11 3.4 濁水溪集水區 13 3.4.1 地形概述 13 3.4.2 地質條件 13 3.4.3 氣候及水文特性 13 3.5 曾文水庫集水區 15 3.5.1 地形概述 15 3.5.2 地質條件 15 3.5.3 氣候及水文特性 15 3.6 高屏溪集水區 17 3.6.1 地形概述 17 3.6.2 地質條件 17 3.6.3 氣候及水文特性 17 第四章 研究方法 19 4.1 研究流程 19 4.1.1 研究資料 21 4.2 降雨資料的建置 22 4.2.1 降雨資料來源-颱風 23 4.2.2 雨場切割方法 26 4.3 TRIGRS模式 28 4.3.1 模式與參數建置 28 4.3.2 模式校驗 30 4.3.3 模式結果評估 31 4.4 皮爾森矩陣相關性係數 32 第五章 結果 33 5.1 各集水區降雨資料 33 5.2 各集水區崩塌參數 43 5.3 各集水區降雨條件與崩塌特徵相關係數 53 5.4 集水區地質與地形特徵 58 5.4.1 高程 58 5.4.2 坡度 61 5.4.3 坡向 64 5.4.4 岩性 67 第六章 討論 72 6.1 集水區地質地形特徵比較 72 6.1.1 高程 73 6.1.2 坡度 76 6.1.3 坡向 77 6.1.4 岩性 79 6.2 大甲溪流域次集水區 82 6.2.1 次集水區降雨資料 84 6.2.2 次集水區皮爾森矩陣 86 6.2.3 次集水區地質地形特徵比較 89 6.3 颱風路徑與崩塌相關性 95 6.4 衛星影像與TRIGRS結果比對 98 第七章 結論與建議 100 7.1 結論 100 7.2 建議 101 參考文獻 102 附錄 108 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 降雨 | zh_TW |
| dc.subject | 災害預警 | zh_TW |
| dc.subject | 崩塌 | zh_TW |
| dc.subject | TRIGRS | zh_TW |
| dc.subject | 相關係數 | zh_TW |
| dc.subject | correlation coefficient | en |
| dc.subject | disaster warning | en |
| dc.subject | rainfal | en |
| dc.subject | landslide | en |
| dc.subject | TRIGRS | en |
| dc.title | 臺灣西部不同環境條件之集水區誘發崩塌的降雨條件分析 | zh_TW |
| dc.title | Analysis of landslide-inducing rainfall conditions in catchments with different environmental settings in western Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊國鑫;李欣輯 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Hsin Yang;Hsin-Chi Lee | en |
| dc.subject.keyword | 崩塌,降雨,TRIGRS,相關係數,災害預警, | zh_TW |
| dc.subject.keyword | landslide,rainfal,TRIGRS,correlation coefficient,disaster warning, | en |
| dc.relation.page | 116 | - |
| dc.identifier.doi | 10.6342/NTU202401966 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 20.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
