請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95346完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳希立 | zh_TW |
| dc.contributor.advisor | Sih-Li Chen | en |
| dc.contributor.author | 林聖穎 | zh_TW |
| dc.contributor.author | Sheng-Ying LIN | en |
| dc.date.accessioned | 2024-09-05T16:17:07Z | - |
| dc.date.available | 2024-09-06 | - |
| dc.date.copyright | 2024-09-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-13 | - |
| dc.identifier.citation | [1] S. T. Evon and B. Oakes, "Variable frequency drive principles and practices (above NEMA) AC motors for variable frequency application," in Conference Record of 1999 Annual Pulp and Paper Industry Technical Conference (Cat. No. 99CH36338), 1999: IEEE, pp. 94-108.
[2] G. W. Oetjen and P. Haseley, Freeze-drying. Wiley-VCH, 2004. [3] C. Ratti, "Hot air and freeze-drying of high-value foods: a review," Journal of Food Engineering, vol. 49, no. 4, pp. 311-319, 2001/09/01/ 2001, doi: https://doi.org/10.1016/S0260-8774(00)00228-4. [4] Y. Liu, Y. Tian, and Y. He, "Exploratory Testing of Energy-Saving Characteristics of Large-Scale Freeze-Drying Equipment," Energies, vol. 17, no. 4, p. 884, 2024. [Online]. Available: https://www.mdpi.com/1996-1073/17/4/884. [5] 王. 簡. 吳. 李. 陳. 王. 林宜蓁, "臺灣推動國際醫療現況-問題及未來發展策略," 財團法人中技社, 2020, vol. 144. [6] D. Nowak and E. Jakubczyk, "The Freeze-Drying of Foods—The Characteristic of the Process Course and the Effect of Its Parameters on the Physical Properties of Food Materials," Foods, vol. 9, no. 10, p. 1488, 2020. [Online]. Available: https://www.mdpi.com/2304-8158/9/10/1488. [7] K. T. Yu, C. L. Su, and J. L. Kuo, "Variable recycled air controls of HVAC systems for energy savings in high-tech industries," in 2016 IEEE International Conference on Industrial Technology (ICIT), 14-17 March 2016 2016, pp. 215-220, doi: 10.1109/ICIT.2016.7474753. [8] X. Li, J. Yi, J. He, J. Dong, and X. Duan, "Comparative evaluation of quality characteristics of fermented napa cabbage subjected to hot air drying, vacuum freeze drying, and microwave freeze drying," LWT, vol. 192, p. 115740, 2024/01/15/ 2024, doi: https://doi.org/10.1016/j.lwt.2024.115740. [9] 徐成海, 关奎之, and 张世伟, 真空低温技术与设备. 冶金工业出版社, 1995. [10] P. Di Matteo, G. Donsì, and G. Ferrari, "The role of heat and mass transfer phenomena in atmospheric freeze-drying of foods in a fluidised bed," Journal of Food Engineering, vol. 59, no. 2, pp. 267-275, 2003/09/01/ 2003, doi: https://doi.org/10.1016/S0260-8774(02)00467-3. [11] R. Litchfield and A. I. Liapis, "An adsorption-sublimation model for a freeze dryer," Chemical Engineering Science, vol. 34, no. 9, pp. 1085-1090, 1979. [12] 高福成, "现代食品工程高新技术," 北京: 中国轻工业 出版社, 1997. [13] 朱德泉, 王继先, 钱良存, 周杰敏, 王硕, and 朱德文, "猕猴桃切片微波真空干燥工艺参数的优化," 农业工程学报, no. 3, pp. 248-252, 2009. [14] 李瑜 and 许时婴, "大蒜干燥工艺的研究," 食品与发酵工业, vol. 30, no. 6, p. 54, 2004. [15] N. Luo and H. Shu, "Analysis of Energy Saving during Food Freeze Drying," Procedia Engineering, vol. 205, pp. 3763-3768, 2017/01/01/ 2017, doi: https://doi.org/10.1016/j.proeng.2017.10.330. [16] 徐成海, 刘军, and 王德喜, "发展中的真空冷冻干燥技术," 真空, no. 5, pp. 1-7, 2003. [17] J. Harper and A. Tappel, "Freeze-drying of food products," Advances in Food Research, vol. 7, pp. 171-234, 1957. [18] L. Rey and J. C. May, Freeze-drying/lyophilization of pharmaceutical & biological products, revised and expanded. CRC Press, 2004. [19] A. Arav and D. Natan, "Freeze drying (lyophilization) of red blood cells," Journal of Trauma and Acute Care Surgery, vol. 70, no. 5, pp. S61-S64, 2011. [20] H. Yu, J. Teo, J. W. Chew, and K. Hadinoto, "Dry powder inhaler formulation of high-payload antibiotic nanoparticle complex intended for bronchiectasis therapy: Spray drying versus spray freeze drying preparation," International Journal of Pharmaceutics, vol. 499, no. 1, pp. 38-46, 2016/02/29/ 2016, doi: https://doi.org/10.1016/j.ijpharm.2015.12.072. [21] S. Bhatta, T. Stevanovic Janezic, and C. Ratti, "Freeze-drying of plant-based foods," Foods, vol. 9, no. 1, p. 87, 2020. [22] M. Karwacka, A. Ciurzyńska, S. Galus, and M. Janowicz, "Freeze-dried snacks obtained from frozen vegetable by-products and apple pomace–Selected properties, energy consumption and carbon footprint," Innovative Food Science & Emerging Technologies, vol. 77, p. 102949, 2022. [23] A. Tappel, "FREEZE‐DRIED MEAT. II. THE MECHANISM OF OXIDATIVE DETERIORATION OF FREEZE‐DRIED BEEF a," Journal of Food Science, vol. 21, no. 2, pp. 195-206, 1956. [24] S. P. Ishwarya and C. Anandharamakrishnan, "Spray-freeze-drying approach for soluble coffee processing and its effect on quality characteristics," Journal of Food Engineering, vol. 149, pp. 171-180, 2015. [25] R. Wang, M. Zhang, and A. S. Mujumdar, "Effect of food ingredient on microwave freeze drying of instant vegetable soup," LWT-Food Science and Technology, vol. 43, no. 7, pp. 1144-1150, 2010. [26] K.-i. IzUTsU, S. YOSHIOKA, and T. TERAO, "Effect of mannitol crystallinity on the stabilization of enzymes during freeze-drying," Chemical and pharmaceutical bulletin, vol. 42, no. 1, pp. 5-8, 1994. [27] I. Roy and M. N. Gupta, "Freeze‐drying of proteins: Some emerging concerns," Biotechnology and applied biochemistry, vol. 39, no. 2, pp. 165-177, 2004. [28] J. Grenier, H. Duval, F. Barou, P. Lv, B. David, and D. Letourneur, "Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying," Acta Biomaterialia, vol. 94, pp. 195-203, 2019. [29] C. Xie et al., "Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing–drying method," ACS nano, vol. 15, no. 6, pp. 10000-10009, 2021. [30] L.-l. Huang, M. Zhang, A. S. Mujumdar, D.-f. Sun, G.-w. Tan, and S. Tang, "Studies on decreasing energy consumption for a freeze-drying process of apple slices," Drying Technology, vol. 27, no. 9, pp. 938-946, 2009. [31] S. Ambros, M. Oezcelik, E. Dachmann, and U. Kulozik, "Microwave freeze drying of fruit foams for the production of healthy snacks," Nutrition and Food Engineering, vol. 4, no. 4, pp. 1135-1135, 2017. [32] X. Cao, M. Zhang, A. S. Mujumdar, Q. Zhong, and Z. Wang, "Effects of ultrasonic pretreatments on quality, energy consumption and sterilization of barley grass in freeze drying," Ultrasonics Sonochemistry, vol. 40, pp. 333-340, 2018. [33] X. Xu et al., "Ultrasound freeze-thawing style pretreatment to improve the efficiency of the vacuum freeze-drying of okra (Abelmoschus esculentus (L.) Moench) and the quality characteristics of the dried product," Ultrasonics Sonochemistry, vol. 70, p. 105300, 2021/01/01/ 2021, doi: https://doi.org/10.1016/j.ultsonch.2020.105300. [34] M. Zhang, J. Tang, A. S. Mujumdar, and S. Wang, "Trends in microwave-related drying of fruits and vegetables," Trends in Food Science & Technology, vol. 17, no. 10, pp. 524-534, 2006/10/01/ 2006, doi: https://doi.org/10.1016/j.tifs.2006.04.011. [35] E. J. Bassey, J.-H. Cheng, and D.-W. Sun, "Enhancing infrared drying of red dragon fruit by novel and innovative thermoultrasound and microwave-mediated freeze-thaw pretreatments," LWT, vol. 202, p. 116225, 2024/06/15/ 2024, doi: https://doi.org/10.1016/j.lwt.2024.116225. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95346 | - |
| dc.description.abstract | 面對冷凍乾燥加工製品普遍存在能耗過高的局面,研究高效、節能、提高品質的技術與裝置,具有重大現實意義。本研究就是將變頻技術及熱回收技術運用於真空冷凍乾燥系統的一種研究。傳統的真空冷凍乾燥技術在加工過程中往往能耗高,效率低下,且對產品品質的控制不夠精準。采用變頻技術可以根據實際生產需求,動態調節設備運行參數,提高能源利用效率,降低生產成本,同時保證產品的品質和穩定性。
冷凍乾燥技術的核心是利用低溫將物品中的水分凍結成固態,然後將凍結的水分通過昇華原理轉變為氣態,從而實現產品的乾燥。真空冷凍乾燥系統中傳統的加熱方式在冷凍系統中通常會產生大量的熱量排放,造成能源的浪費。本研究旨在分析冷凍系統中需要排除的熱量,探討利用這些熱量來加熱物料的可行性。通過合理利用熱能,可以降低能源消耗,提高系統的能源效益和經濟性。 並且在利用冷凍系統中須排出的熱量進行產品的加熱產生的負載變化,將變頻技術應用於冷凍系統中,不僅可以提高系統的能源利用效率,還可以提高產品的品質和生產效率。這對於促進冷凍乾燥技術的發展,推動生物科技、醫療工程、材料工程和食品製程等領域的應用具有重要意義。本研究對於真空冷凍乾燥加工製品的能耗問題提出了解決方案,具有重要的理論和實踐價值。 在本研究中,更換了壓縮機形式、使用變頻控制技術和廢熱回收技術的系統相比於傳統控制方式,整體能耗降低了27.97%。此結果強調了壓縮機形式、變頻控制技術及廢熱回收裝置在節能方面的巨大潛力,表明它們不僅能提升真空冷凍乾燥系統的性能,還能顯著降低運行成本,具有重要的實際應用價值。 | zh_TW |
| dc.description.abstract | Facing the prevalent issue of high energy consumption in the processing of frozen and dried products, researching efficient, energy-saving, and quality-improving technologies and devices holds significant practical importance. This study applies variable frequency and heat recovery technologies to vacuum freezing and drying systems. Traditional vacuum freezing and drying techniques often result in high energy consumption, low efficiency, and insufficient control over product quality. By utilizing variable frequency technology, equipment parameters can be dynamically adjusted according to actual production needs, thereby enhancing energy utilization efficiency, reducing production costs, and ensuring product quality and stability.
The core of freeze-drying technology lies in freezing the moisture in products into a solid state at low temperatures, followed by transforming the frozen moisture into gas through the principle of sublimation, thus achieving product drying. In conventional vacuum freezing and drying systems, the traditional heating method typically generates significant heat emission, leading to energy waste. This study aims to analyze the heat that needs to be removed from the freezing system and explore the feasibility of using this heat to heat materials. Rational utilization of heat energy can reduce energy consumption, enhance the system's energy efficiency, and improve its economic viability. Furthermore, by incorporating the heat expelled from the freezing system into product heating and applying variable frequency technology, the study not only increases the energy utilization efficiency of the system but also enhances product quality and production efficiency. This has significant implications for advancing freeze-drying technology and promoting its applications in various fields such as biotechnology, medical engineering, materials engineering, and food processing. The study proposes solutions to the energy consumption issues in the processing of vacuum freeze-dried products, possessing both theoretical and practical value. In this study, the overall energy consumption of the system, which incorporated a change in compressor type, the use of variable frequency control technology, and waste heat recovery technology, was reduced by 27.97% compared to traditional control methods. This result emphasizes the significant potential of compressor type, variable frequency control technology, and waste heat recovery devices in energy saving. It indicates that these technologies can not only enhance the performance of vacuum freeze-drying systems but also significantly reduce operating costs, demonstrating their important practical application value. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-05T16:17:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-05T16:17:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
致謝 I 摘要 II Abstract III 目次 V 圖次 VII 表次 X 符號說明 XI 第一章、 序論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 真空冷凍乾燥特點 3 1.2.2 真空冷凍乾燥發展歷史 5 1.2.3 真空冷凍乾燥應用領域 5 1.2.4 真空冷凍乾燥節能研究 6 1.3 研究的動機與目的 6 第二章、 基礎理論 8 2.1 物質型態的變化 8 2.1.1 物質的組成 8 2.1.2 冰的昇華原理 8 2.1.3 物質的變化與能量 9 2.1.4 共晶點 10 2.2 真空冷凍乾燥的基本流程 11 2.2.1 冷凍過程(Solidification) 11 2.2.2 昇華過程(Sublimation) 12 2.2.3 脫附過程(Desorption) 13 2.3 真空冷凍乾燥的系統組成 13 2.3.1 冷凍系統 13 2.3.2 真空系統 17 2.3.3 控制系統 17 2.3.4 熱交換系統 18 2.4 變頻器基礎理論 19 第三章、 研究方法 20 3.1 實驗架設 20 3.1.1 系統簡介 20 3.1.2 實驗設備 21 3.2 實驗方法 33 3.2.1 往復式壓縮機與渦捲式壓縮機比較實驗 33 3.2.2 壓縮機變頻實驗 40 3.2.3 壓縮機廢熱回收實驗 42 第四章、 結果與討論 45 4.1 不同形式壓縮機對系統性能的影響 45 4.1.1 實驗量測數據與性能分析 45 4.2 壓縮機變頻實驗 54 4.2.1 實驗量測數據 54 4.3 壓縮機廢熱回收實驗 60 4.3.1 實驗量測數據 60 第五章、 結論與建議 72 5.1 結論 72 5.2 建議及展望 72 文獻回顧 74 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 渦捲式壓縮機 | zh_TW |
| dc.subject | 能效提升 | zh_TW |
| dc.subject | 變頻技術 | zh_TW |
| dc.subject | 熱回收技術 | zh_TW |
| dc.subject | 真空冷凍乾燥 | zh_TW |
| dc.subject | energy efficiency improvment | en |
| dc.subject | Vacuum Freeze-Drying | en |
| dc.subject | Heat recovery technology | en |
| dc.subject | variable frequency technology | en |
| dc.subject | scroll compressor | en |
| dc.title | 熱回收與變頻技術在真空冷凍乾燥中的節能性能分析 | zh_TW |
| dc.title | Performance Analysis of Energy-Efficient Vacuum Freeze-Drying with Heat Recovery and Variable Frequency Technology | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江沅晉;李文興;王榮昌 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Chin Chiang;Wen-Shing Lee;Jung-Chang Wang | en |
| dc.subject.keyword | 真空冷凍乾燥,熱回收技術,變頻技術,渦捲式壓縮機,能效提升, | zh_TW |
| dc.subject.keyword | Vacuum Freeze-Drying,Heat recovery technology,variable frequency technology,scroll compressor,energy efficiency improvment, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202403827 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
