Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95342
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor連豊力zh_TW
dc.contributor.advisorFeng-Li Lianen
dc.contributor.author李家瑞zh_TW
dc.contributor.authorChia-Jui Leeen
dc.date.accessioned2024-09-05T16:15:57Z-
dc.date.available2024-09-06-
dc.date.copyright2024-09-05-
dc.date.issued2024-
dc.date.submitted2024-08-15-
dc.identifier.citation[1] WHO. "WHO COVID-19 dashboard data." https://data.who.int/dashboards/covid19/data (accessed.
[2] I. Cooper, A. Mondal, and C. G. Antonopoulos, "A SIR model assumption for the spread of COVID-19 in different communities," (in English), Chaos Solitons Fractals, vol. 139, p. 14, Oct 2020, Art no. 110057, doi: 10.1016/j.chaos.2020.110057.
[3] S. Annas, M. I. Pratama, M. Rifandi, W. Sanusi, and S. Side, "Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia," (in English), Chaos Solitons Fractals, vol. 139, p. 7, Oct 2020, Art no. 110072, doi: 10.1016/j.chaos.2020.110072.
[4] K. G. Mekonen, T. G. Habtemicheal, and S. F. Balcha, "Modeling the effect of contaminated objects for the transmission dynamics of COVID-19 pandemic with self protection behavior changes," (in English), Results Appl. Math, Article vol. 9, p. 15, Feb 2021, Art no. 100134, doi: 10.1016/j.rinam.2020.100134.
[5] A. Das, A. Dhar, S. Goyal, A. Kundu, and S. Pandey, "COVID-19: Analytic results for a modified SEIR model and comparison of different intervention strategies," (in English), Chaos Solitons Fractals, Article; Early Access vol. 144, p. 13, 2021 2021, Art no. 110595, doi: 10.1016/j.chaos.2020.110595.
[6] L. López and X. Rodó, "A modified <i>SEIR</i> model to predict the COVID-19 outbreak in Spain and Italy: Simulating control scenarios and multi-scale epidemics," (in English), Results Phys., Article; Early Access vol. 21, p. 15, 2021 2021, Art no. 103746, doi: 10.1016/j.rinp.2020.103746.
[7] P. Scarabaggio, R. Carli, G. Cavone, N. Epicoco, and M. Dotoli, "Nonpharmaceutical Stochastic Optimal Control Strategies to Mitigate the COVID-19 Spread," (in English), IEEE Trans. Autom. Sci. Eng., Article; Early Access vol. 19, no. 2, pp. 560-575, 2022 2022, doi: 10.1109/tase.2021.3111338.
[8] M. A. Bahloul, A. Chahid, and T. M. Laleg-Kirati, "Fractional-Order SEIQRDP Model for Simulating the Dynamics of COVID-19 Epidemic," (in English), IEEE Open J. Eng. Med. Biol., Article vol. 1, pp. 249-256, 2020, doi: 10.1109/ojemb.2020.3019758.
[9] E. Karacuha et al., "Modeling and Prediction of the Covid-19 Cases With Deep Assessment Methodology and Fractional Calculus," (in English), IEEE Access, Article vol. 8, pp. 164012-164034, 2020, doi: 10.1109/access.2020.3021952.
[10] M. A. Khan, A. Atangana, E. Alzahrani, and Fatmawati, "The dynamics of COVID-19 with quarantined and isolation," (in English), Adv. Differ. Equ., Article vol. 2020, no. 1, p. 22, Aug 2020, Art no. 425, doi: 10.1186/s13662-020-02882-9.
[11] Z. H. Shen, Y. M. Chu, M. A. Khan, S. Muhammad, O. A. Al-Hartomy, and M. Higazy, "Mathematical modeling and optimal control of the COVID-19 dynamics," (in English), Results Phys., Article; Early Access vol. 31, p. 9, 2021 2021, Art no. 105028, doi: 10.1016/j.rinp.2021.105028.
[12] G. B. Libotte, F. S. Lobato, G. M. Platt, and A. J. S. Neto, "Determination of an optimal control strategy for vaccine administration in COVID-19 pandemic treatment," (in English), Comput. Meth. Programs Biomed., Article vol. 196, p. 13, Nov 2020, Art no. 105664, doi: 10.1016/j.cmpb.2020.105664.
[13] T. D. Keno and H. T. Etana, "Optimal Control Strategies of COVID-19 Dynamics Model," (in English), J. Math., Article vol. 2023, p. 20, Feb 2023, Art no. 2050684, doi: 10.1155/2023/2050684.
[14] Y. R. Yuan and N. Li, "Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness," (in English), Physica A, Article; Early Access vol. 603, p. 23, 2022 Oct 2022, Art no. 127804, doi: 10.1016/j.physa.2022.127804.
[15] S. T. McQuade et al., "Control of COVID-19 outbreak using an extended SEIR model," (in English), Math. Models Meth. Appl. Sci., Article vol. 31, no. 12, pp. 2399-2424, Nov 2021, doi: 10.1142/s0218202521500512.
[16] J. K. K. Asamoah, M. A. Owusu, Z. Jin, F. T. Oduro, A. Abidemi, and E. O. Gyasi, "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," (in English), Chaos Solitons Fractals, Article vol. 140, p. 19, Nov 2020, Art no. 110103, doi: 10.1016/j.chaos.2020.110103.
[17] T. T. Li and Y. M. Guo, "Optimal control and cost-effectiveness analysis of a new COVID-19 model for Omicron strain," (in English), Physica A, Article; Early Access vol. 606, p. 20, 2022 Nov 2022, Art no. 128134, doi: 10.1016/j.physa.2022.128134.
[18] J. K. K. Asamoah et al., "Optimal control and comprehensive cost-effectiveness analysis for COVID-19," (in English), Results Phys., Article; Early Access vol. 33, p. 16, 2022 2022, Art no. 105177, doi: 10.1016/j.rinp.2022.105177.
[19] P. van den Driessche and J. Watmough, "Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission," (in eng), Math Biosci, vol. 180, pp. 29-48, Nov-Dec 2002, doi: 10.1016/s0025-5564(02)00108-6.
[20] A. I. Abioye et al., "Mathematical model of COVID-19 in Nigeria with optimal control," (in English), Results Phys., Article vol. 28, p. 10, Sep 2021, Art no. 104598, doi: 10.1016/j.rinp.2021.104598.
[21] A. Atangana and S. I. Araz, "Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications," (in English), Adv. Differ. Equ., vol. 2020, no. 1, p. 89, Dec 2020, Art no. 659, doi: 10.1186/s13662-020-03095-w.
[22] T. CDC. "傳染病統計資料查詢系統." https://nidss.cdc.gov.tw/nndss/disease?id=19CoV (accessed.
[23] J. T. W. Suzanne Lenhart, Optimal Control Applied to Biological Models, 1st Edition ed. Chapman and Hall/CRC, 2007.
[24] T. CDC. "疾管署嚴正澄清,依法採購及審查COVID-19疫苗,絕無外界質疑「一路開綠燈」情事." https://www.cdc.gov.tw/Bulletin/Detail/VaoxlYHF8imJH-Qj2851GA?typeid=9 (accessed.
[25] MOHW. "網傳「政府採購快篩試劑較他國昂貴」絕非事實 切勿以訛傳訛." https://www.mohw.gov.tw/cp-17-69380-1.html (accessed.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95342-
dc.description.abstract數學模型常被用來描述疾病傳播的動態。在這篇論文中,試圖找出一個最佳控制的方法來抑制COVID-19疾病的傳播,且擁有最佳的成本效益。首先提出一個數學模型來描述COVID-19傳播的人口動態。接著對模型實施數學分析,利用靈敏度分析找出模型中哪些參數對模型的影響較大。用非線性最小平方法對台灣2022年4月至6月的確診資料做擬合,估計並找出合適的模型參數。接下來將模型延伸至最佳控制問題,含有三個控制變數:個人保護、疫苗接種、快篩檢測。然後使用電腦軟體對加進控制變數的模型進行數值模擬。最後使用ICER方法分析各種控制政策的成本效益並找出成本效益最高的控制方法。zh_TW
dc.description.abstractMathematical model is widely used to describe the dynamics of disease transmission. In this thesis, we aim to find an optimal control method that mitigate the spread of the COVID-19 pandemic with the best cost-effectiveness. First, we propose a mathematical model to describe the population dynamics of the COVID-19 spread. We conduct mathematical analysis on the proposed model. We do sensitivity analysis to find out the parameters with stronger influence on the model using nonlinear least-squares fitting method with the data of COVID-19 confirmed cases in Taiwan from April to June, 2022 to estimate and obtain appropriate fitting parameters and model. Next, we extend the model to an optimal control problem by adding three control variables: personal protection, vaccination, and rapid test detection. After that, we do numerical simulation for the model with the implementation of control variables with software tools. Lastly, we evaluate the cost-effectiveness of each control strategy and determine the one with the best cost-effectiveness with the ICER method.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-05T16:15:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-05T16:15:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Problem Formulation 2
1.4 Contribution 4
1.5 Organization of the Thesis 4
Chapter 2 Background and Literature Survey 5
2.1 Population Model for the COVID-19 Pandemic 5
2.2 Optimal Control 6
2.3 Cost-effectiveness Analysis 8
2.4 Flow Chart of the Research 9
Chapter 3 Formulation of Mathematical Model 10
3.1 Model Formulation 10
Chapter 4 Mathematical Analysis of Model 14
4.1 Positivity and Boundedness of Solutions 14
4.2 Disease-Free Equilibrium 16
4.3 Basic Reproduction Number 17
4.4 Endemic Equilibrium Point 19
4.5 Global Stability of Disease-free Equilibrium 20
4.6 Sensitivity Analysis 21
Chapter 5 Optimal Control of Mathematical Model 25
5.1 Formulation of Optimal Control Problem 25
5.2 Existence of Optimal Control 26
5.3 Pontryagin’s Maximum Principle 27
Chapter 6 Numerical Simulation 30
6.1 Parameter Estimation 30
6.2 Runge-Kutta 4th-order method 32
6.3 Forward-backward sweep method 33
6.4 Numerical Simulation of Optimal Control Problem 33
Chapter 7 Cost-effectiveness Analysis of Control 41
7.1 Incremental Cost-effectiveness ratio (ICER) 41
Chapter 8 Conclusion 51
REFERENCE 53
-
dc.language.isoen-
dc.subjectCOVID-19zh_TW
dc.subjectSEIR模型zh_TW
dc.subject基本傳染數zh_TW
dc.subject最佳控制zh_TW
dc.subject成本效益分析zh_TW
dc.subjectICERzh_TW
dc.subjectSEIR modelen
dc.subjectCOVID-19en
dc.subjectICERen
dc.subjectcost-effectiveness analysisen
dc.subjectbasic reproduction numberen
dc.subjectoptimal controlen
dc.titleCOVID-19疫情模型的最佳控制與成本效益分析zh_TW
dc.titleOptimal Control and Cost-effectiveness Analysis for COVID-19 Pandemic Modelen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王富正;江明理zh_TW
dc.contributor.oralexamcommitteeFu-Cheng Wang;Ming-Li Chiangen
dc.subject.keywordCOVID-19,SEIR模型,基本傳染數,最佳控制,成本效益分析,ICER,zh_TW
dc.subject.keywordCOVID-19,SEIR model,optimal control,basic reproduction number,cost-effectiveness analysis,ICER,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202404223-
dc.rights.note未授權-
dc.date.accepted2024-08-15-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
3.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved