請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95333
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 盧南佑 | zh_TW |
dc.contributor.advisor | Nan-You Lu | en |
dc.contributor.author | 陳麒再 | zh_TW |
dc.contributor.author | Chi-Tsai Chen | en |
dc.date.accessioned | 2024-09-05T16:13:12Z | - |
dc.date.available | 2024-09-06 | - |
dc.date.copyright | 2024-09-05 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-09 | - |
dc.identifier.citation | 行政院國家永續發展委員會. 臺灣2050淨零排放路徑及策略總說明. Retrieved Dec. 18, 2023, from https://ncsd.ndc.gov.tw/.
Librescu, L., & Song, O. (2005). Thin-walled composite beams: theory and application (Vol. 131): Springer Science & Business Media. Hansen, M. O. L., Sorensen, J. N., Voutsinas, S., Sorensen, N., & Madsen, H. A. (2006). State of the art in wind turbine aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 42(4), 285-330. doi: 10.1016/j.paerosci.2006.10.002. Lobitz, D. W. (2004). Aeroelastic stability predictions for a MW-sized blade. Wind Energy, 7(3), 211-224. doi: 10.1002/we.120. Librescu, L., & Song, O. (2005). Thin-walled composite beams: theory and application (Vol. 131): Springer Science & Business Media. 黃宇澤. (2022). 以等向性材料建立複材機翼等效模型於氣彈行為分析. (碩士), 國立成功大學. 王義竣. (2021). 以深度學習方式預測振顫速度之生成. (碩士), 淡江大學. . Umansky, A. (1939). Torsion and bending of thin-walled aircraft structures. Oboronghiz: Moscow, Russia. Flugge, W. (1934). Statik und Dynamik der Schalen. Berlin: Julius Springer. Nádai, A. (1925). Die elastischen Platten. Berlin: Springer. Song, O., & Librescu, L. (1997). Structural modeling and free vibration analysis of rotating composite thin-walled beams. Journal of the American Helicopter Society, 42(4), 358-369. doi: 10.4050/Jahs.42.358. Librescu, L., & Na, S. (1998). Boundary control of free and forced oscillation of shearable thin-walled beam cantilevers. European Journal of Mechanics a-Solids, 17(4), 687-700. doi: 10.1016/S0997-7538(99)80028-X. Song, O., Ju, J. S., & Librescu, L. (1998). Dynamic response of anisotropic thin-walled beams to blast and harmonically oscillating loads. International Journal of Impact Engineering, 21(8), 663-682. doi: 10.1016/S0734-743x(98)00019-0. Librescu, L., & Na, S. (1998). Dynamic response of cantilevered thin-walled beams to blast and sonic-boom loadings. Shock and Vibration, 5(1), 23-33. doi: 10.1155/1998/526216. Librescu, L., & Na, S. (1998). Dynamic response control of thin-walled beams to blast pulses using structural tailoring and piezoelectric actuation. Journal of Applied Mechanics-Transactions of the Asme, 65(2), 497-504. doi: 10.1115/1.2789082. Librescu, L., & Na, S. (2001). Active vibration control of doubly tapered thin-walled beams using piezoelectric actuation. Thin-Walled Structures, 39(1), 65-82. doi: 10.1016/S0263-8231(00)00054-9. Song, O., Librescu, L., & Oh, S. Y. (2001). Vibration of pretwisted adaptive rotating blades modeled as anisotropic thin-walled beams. AIAA Journal, 39(2), 285-295. doi: 10.2514/2.1303. Song, O., Jeong, N. H., & Librescu, L. (2001). Implication of conservative and gyroscopic forces on vibration and stability of an elastically tailored rotating shaft modeled as a composite thin-walled beam. Journal of the Acoustical Society of America, 109(3), 972-981. doi: 10.1121/1.1348301. Qin, Z. M., & Librescu, L. (2002). On a shear-deformable theory of anisotropic thin-walled beams: further contribution and validations. Composite Structures, 56(4), 345-358. doi: Pii S0263-8223(02)00019-3 Doi 10.1016/S0263-8223(02)00019-3 Farsadi, T., & Hasbestan, J. J. (2019). Calculation of flutter and dynamic behavior of advanced composite swept wings with tapered cross section in unsteady incompressible flow. Mechanics of Advanced Materials and Structures, 26(4), 314-332. doi: 10.1080/15376494.2017.1387322. Sener, Ö., Farsadi, T., Gözcü, M. O., & Kayran, A. (2018). Evaluation of the Effect of Spar Cap Fiber Angle of Bending-Torsion Coupled Blades on the Aero-Structural Performance of Wind Turbines. Journal of Solar Energy Engineering-Transactions of the Asme, 140(4). doi: 10.1115/1.4039350. Farsadi, T., & Kayran, A. (2021). Flutter study of flapwise bend-twist coupled composite wind turbine blades. Wind and Structures, 32(3), 267-281. doi: 10.12989/was.2021.32.3.267. Farsadi, T., & Kayran, A. (2021). Classical flutter analysis of composite wind turbine blades including compressibility. Wind Energy, 24(1), 69-91. doi: 10.1002/we.2559. Yu, W. B., Hodges, D. H., Volovoi, V., & Cesnik, C. E. S. (2002). On Timoshenko-like modeling of initially curved and twisted composite beams. International Journal of Solids and Structures, 39(19), 5101-5121. doi: 10.1016/S0020-7683(02)00399-2. Hansen, M. (2004). Aeroelastic stability analysis of wind turbines using an eigenvalue approach. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 7(2), 133-143. Hansen, M. (2002). Vibrations of a three-bladed wind turbine rotor due to classical flutter. Paper presented at the Wind Energy Symposium. Larwood, S. (2016). Flutter of Variations on a 5 MW Swept Wind Turbine Blade. Journal of Solar Energy Engineering-Transactions of the Asme, 138(2). doi: 10.1115/1.4032475. Hayat, K., de Lecea, A. G. M., Moriones, C. D., & Ha, S. K. (2016). Flutter performance of bend-twist coupled large-scale wind turbine blades. Journal of Sound and Vibration, 370, 149-162. doi: 10.1016/j.jsv.2016.01.032. Caracoglia, L. (2013). An Euler-Monte Carlo algorithm assessing Moment Lyapunov Exponents for stochastic bridge flutter predictions. Computers & Structures, 122, 65-77. doi: 10.1016/j.compstruc.2012.11.015. Náprstek, J. (2001). Stability domains of wind-excited random nonlinear systems through Lyapunov function. Journal of Wind Engineering and Industrial Aerodynamics, 89(14-15), 1499-1512. doi: 10.1016/S0167-6105(01)00127-1. Pourazarm, P., Caracoglia, L., Lackner, M., & Modarres-Sadeghi, Y. (2015). Stochastic analysis of flow-induced dynamic instabilities of wind turbine blades. Journal of Wind Engineering and Industrial Aerodynamics, 137, 37-45. doi: 10.1016/j.jweia.2014.11.013. Li, S., & Caracoglia, L. (2019). Surrogate Model Monte Carlo simulation for stochastic flutter analysis of wind turbine blades. Journal of Wind Engineering and Industrial Aerodynamics, 188, 43-60. doi: 10.1016/j.jweia.2019.02.004. Larsen, T. J., Hansen, A. M., & Buhl, T. (2004). Aeroelastic effects of large blade deflections for wind turbines. pp. 238-246. Delft University of Technology. Dose, B., Rahimi, H., Herráez, I., Stoevesandt, B., & Peinke, J. (2018). Fluid-structure coupled computations of the NREL 5 MW wind turbine by means of CFD. Renewable Energy, 129, 591-605. doi: 10.1016/j.renene.2018.05.064 Hansen, M. H. (2007). Aeroelastic instability problems for wind turbines. Wind Energy, 10(6), 551-577. doi: 10.1002/we.242 Bir, G., & Jonkman, J. (2007). Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines. Journal of Physics: Conference Series, 75. doi: 10.1088/1742-6596/75/1/012069 Wang, L., Liu, X., Renevier, N., Stables, M., & Hall, G. M. (2014). Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory. Energy, 76, 487-501. doi: 10.1016/j.energy.2014.08.046 Kallesøe, B.S., & Hansen, M.H. (2009). Some effects of large blade deflections on aeroelastic stability. 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 2009, Orlando, Florida. 839. doi: 10.2514/6.2009-839. Dowell, E. H. (2010). Some Recent Advances in Nonlinear Aeroelasticity: Fluid Structure Interaction in the 21th Century. Duke University, Durham, USA. doi: 10.2514/6.2010-3137. Jayatilake, S., & Titurus, B. (2022). Nonlinear aeroelastic analysis of a damped elastica-aerofoil system. Nonlinear Dynamics, 109(2), 731-754. doi: 10.1007/s11071-022-07479-3 Ageze, M. B., Hu, Y. F., & Wu, H. C. (2017). Wind Turbine Aeroelastic Modeling: Basics and Cutting Edge Trends. International Journal of Aerospace Engineering, 2017. doi: 10.1155/2017/5263897. JEC Group. Retrieved Dec. 19, 2023, from https://www.jeccomposites.com/. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95333 | - |
dc.description.abstract | 近年來,風力發電機葉片逐漸傾向尺寸加長且輕量化的設計方向發展。然而,這可能導致更劇烈的振動,甚至引發顫振(flutter)現象並加劇材料疲勞的問題,對風力發電機的可靠性和壽命造成嚴重影響。本研究旨在建立一高可信度的一維薄壁梁(thin-walled beam, TWB)模型,以應用於層板葉片在受風時之振動分析,從而改進風力發電機的設計和性能。本研究首先採用簡易的矩形空心薄壁梁模型,通過該模型並利用其幾何特性,對梁的應力狀態進行簡化,並且考慮多自由度的耦合運動。透過哈密頓原理,推導包含梁彎曲、扭轉和拉伸之運動方程式。層板之材料選取單向纖維強化的型式,此材料具有橫向等向性,並設置一可調節的層角,進一步探討一個簡易的單層板矩形截面懸臂梁之案例,並建立各自由度之等效質量與勁度參數。接著採用延伸加勒金方法(extended Galerkin method)對各參數於自由振動時沿著軸向之模型和對應的自然頻率進行求解,並對所獲得之數值結果進行一系列的驗證。結果顯示,自然模態勁度不受層角方向的影響。然而,耦合模態勁度、模態振型和自然頻率則受到層角方向的顯著影響。層角方向還可以決定解耦現象的發生,使多自由度耦合模態轉變為自然模態。此外,研究結果還表明,自然頻率隨著層角的增加而增大。本研究成果預期為複合材料葉片振動與顫振分析提供可靠的模型基礎。未來可以再進一步擴展研究範圍,考慮更複雜的葉片幾何結構,並引入風誘發負載。由於TWB計算之成本低且具有高可信度的特點,增進與大型且複雜之紊流風場模擬相結合之可行性,以更精確地評估大型風力發電機葉片之疲勞效應和性能表現。 | zh_TW |
dc.description.abstract | In recent years, there has been a trend towards the elongation and lightweight design of wind turbine blades. However, this may result in more intense vibrations, potentially causing flutter phenomena and exacerbating material fatigue issues, significantly impacting the reliability and lifespan of wind turbines. This study aims to establish a highly reliable one-dimensional thin-walled beam (TWB) model for the vibration analysis of laminate blades under wind loading, thereby improving the design and performance of wind turbines. Initially, this study employs a simple rectangular hollow thin-walled beam model. Utilizing the geometric properties of the model, the stress state of the beam could be simplified and the coupling motion of multi-degree of freedom could be considered. Through the Hamilton's principle, the equations of motion including bending, twist, and extension of the beam could be derived. The laminate material was selected to be unidirectional fiber-reinforced, possessing transverse isotropy, with an adjustable ply angle. A simplified case of a single-layer rectangular cantilever beam was then investigated and the equivalent mass and stiffness quantities for each degree of freedom was established. Subsequently, the extended Galerkin method was employed to solve for the mode shapes and corresponding natural frequencies along the axial direction under free vibration, followed by a series of verifications of the numerical results obtained. The results indicate that the natural stiffness quantities remain unaffected by the orientations of the ply angles. However, the coupling stiffness quantities, mode shapes, and natural frequencies are significantly influenced by the orientations of the ply angles. The ply angle orientations can also determine the occurrence of decoupling phenomena, causing multi-degree of freedom coupling modes to transform into natural modes. Additionally, the findings demonstrate that natural frequencies generally increase with the ply angle. The outcomes of this research are expected to provide a reliable foundation for vibration and flutter analysis of composite material blades. Future research may expand to consider more complex blade geometries and introduce wind-induced loading. Leveraging the low computational cost and high reliability of TWB, enhancing the feasibility of integration with large and complex turbulent wind field simulations will enable more accurate assessments of fatigue effects and performance of large-scale wind turbine blades. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-05T16:13:12Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-05T16:13:12Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Abstract i
中文摘要 iii Contents iv List of Figures vi List of Tables ix List of Abbreviations xi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background Introduction 2 1.2.1 Introduction of Vibration Issue 2 1.2.2 Introduction of Thin-Walled Beams 3 1.3 Literature Review 5 1.4 TWB Models and Vibration Analysis Procedure 11 1.4.1 The TWB Models of this Study 11 1.4.2 Developing Vibration Analysis Procedures 12 1.5 Thesis Structure 13 Chapter 2 Modeling Methodology 18 2.1 Establishment of Thin-Walled Beam Model 18 2.2 Hamilton's Principle and Equations of Motion 19 2.3 Mass and Stiffness matrices 30 2.4 Eigenvalue Problem for Free Vibration 34 2.5 Extended Galerkin Method (EGM) 36 2.6 Selection of the Order of Trial Functions 42 2.7 Verification of Models by Finite Element Method (FEM) 42 Chapter 3 Modeling Results of the CUS Beam Model 58 3.1 Stiffness Quantities of the CUS Beam Model 58 3.2 Free Vibration Analysis of the CUS Beam Model 60 3.2.1 Mode Shapes of the CUS Beam Model 60 3.2.2 Eigenfrequencies of the CUS Beam Model 63 Chapter 4 Modeling Results of the CAS Beam Model 77 4.1 Stiffness Quantities of the CAS Beam Model 77 4.2 Free Vibration Analysis of the CAS Beam Model 78 4.2.1 Mode Shapes of the CAS Beam Model 78 4.2.2 Eigenfrequencies of the CAS Beam Model 81 4.3 Comparison of the Results of the CAS and CUS Models 83 4.4 Verification of Reliability of Models by Stiffness Quantities 85 Chapter 5 Conclusions and Future work 99 5.1 Conclusions 99 5.2 Future Work 101 References 103 | - |
dc.language.iso | en | - |
dc.title | 異向性材料薄壁懸臂梁之振動分析 | zh_TW |
dc.title | Modal Analysis of a Thin-Walled Cantilever Beam with Anisotropic Materials | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王建凱;吳亦莊 | zh_TW |
dc.contributor.oralexamcommittee | Chien-Kai Wang;Yi-Chuang Wu | en |
dc.subject.keyword | 薄壁梁,複合材料葉片,風力發電機,振動,顫振, | zh_TW |
dc.subject.keyword | thin-walled beam,composite material blades,wind turbine,vibration,flutter, | en |
dc.relation.page | 107 | - |
dc.identifier.doi | 10.6342/NTU202403908 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 7.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。