Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95323
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor連豊力zh_TW
dc.contributor.advisorFeng-Li Lianen
dc.contributor.author李昀諴zh_TW
dc.contributor.authorYun-Xian Lien
dc.date.accessioned2024-09-05T16:09:58Z-
dc.date.available2024-09-06-
dc.date.copyright2024-09-05-
dc.date.issued2024-
dc.date.submitted2024-08-04-
dc.identifier.citation[1: Vatansever & Butun 2017] Saffet Vatansever and Ismail Butun, “A broad overview of GPS fundamentals: Now and future,” 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), pp. 1–6, Jan. 2017.
[2: Hutt et al. 2021] Oliver Hutt, Kate Bowers, and Shane Johnson, “The effect of GPS refresh rate on measuring police patrol in micro-places,” Crime Science, Vol. 10, Feb. 2021.
[3: Strandjord et al. 2020] Kirsten L. Strandjord, Penina Axelrad, and Shan Mohiuddin, “Improved urban navigation with shadow matching and specular matching,” NAVIGATION: Journal of the Institute of Navigation, Vol. 67, No. 3, Art. no. 3, Sep. 2020.
[4: 廖育萱 & 彭彥嘉 2023] 廖育萱 & 彭彥嘉, “農用戶外自主運行機器人定位技術介紹,” 機械工業雜誌, No. 485, Art. no. 485, Aug. 2023.
[5: Liao et al. 2023] Yiyi Liao, Jun Xie, and Andreas Geiger, “KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 45, No. 3, pp. 3292–3310, Mar. 2023.
[6: Yin et al. 2022] Jie Yin, Ang Li, Tao Li, Wenxian Yu, and Danping Zou, “M2DGR: A Multi-Sensor and Multi-Scenario SLAM Dataset for Ground Robots,” IEEE Robotics and Automation Letters, Vol. 7, No. 2, pp. 2266–2273, Apr. 2022.
[7: Liu et al. 2022] Zhe Liu, Dianxi Shi, Ruihao Li, Wei Qin, Yongjun Zhang, and Xiaoguang Ren, “PLC-VIO: Visual–Inertial Odometry Based on Point-Line Constraints,” IEEE Transactions on Automation Science and Engineering, Vol. 19, No. 3, Art. no. 3, Jul. 2022.
[8: Zhou et al. 2015] Huizhong Zhou, Danping Zou, Ling Pei, Rendong Ying, and Peilin Liu, “StructSLAM: Visual SLAM With Building Structure Lines,” IEEE Transactions on Vehicular Technology, Vol. 64, No. 4, Art. no. 4, Apr. 2015.
[9: Lu et al. 2000] C.-P. Lu, G.D. Hager, and E. Mjolsness, “Fast and globally convergent pose estimation from video images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 6, Art. no. 6, Jun. 2000.
[10: Nister 2004] D. Nister, “An efficient solution to the five-point relative pose problem,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, No. 6, pp. 756–770, Jun. 2004.
[11: Choi et al. 2013] Sunglok Choi, Jaehyun Park, and Wonpil Yu, “Resolving scale ambiguity for monocular visual odometry,” 2013 10th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 604–608, Oct. 2013.
[12: Mur-Artal et al. 2015] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós, “ORB-SLAM: A Versatile and Accurate Monocular SLAM System,” IEEE Transactions on Robotics, Vol. 31, No. 5, pp. 1147–1163, Oct. 2015.
[13: Li et al. 2020] Yanyan Li, Nikolas Brasch, Yida Wang, Nassir Navab, and Federico Tombari, “Structure-SLAM: Low-Drift Monocular SLAM in Indoor Environments,” IEEE Robotics and Automation Letters, Vol. 5, No. 4, pp. 6583–6590, Oct. 2020.
[14: Qin et al. 2018] Tong Qin, Peiliang Li, and Shaojie Shen, “VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator,” IEEE Transactions on Robotics, Vol. 34, No. 4, Art. no. 4, Aug. 2018.
[15: Lin et al. 2022] Zihan Lin, Jincheng Yu, Lipu Zhou, Xudong Zhang, Jian Wang, and Yu Wang, “Point Cloud Change Detection With Stereo V-SLAM: Dataset, Metrics and Baseline,” IEEE Robotics and Automation Letters, Vol. 7, No. 4, pp. 12443–12450, Oct. 2022.
[16: Zhang et al. 2015] Guoxuan Zhang, Jin Han Lee, Jongwoo Lim, and Il Hong Suh, “Building a 3-D Line-Based Map Using Stereo SLAM,” IEEE Transactions on Robotics, Vol. 31, No. 6, pp. 1364–1377, Feb. 2015.
[17: Lin et al. 2023] Xi Lin, Yewei Huang, Dingyi Sun, Tzu-Yuan Lin, Brendan Englot, Ryan M. Eustice, Maani Ghaffari, “A Robust Keyframe-Based Visual SLAM for RGB-D Cameras in Challenging Scenarios,” IEEE Access, Vol. 11, pp. 97239–97249, 2023.
[18: Cheng et al. 2023] Shuhong Cheng, Changhe Sun, Shijun Zhang, and Dianfan Zhang, “SG-SLAM: A Real-Time RGB-D Visual SLAM Toward Dynamic Scenes With Semantic and Geometric Information,” IEEE Transactions on Instrumentation and Measurement, Vol. 72, pp. 1–12, 2023.
[19: Zhao et al. 2019] Lili Zhao, Zhili Liu, Jianwen Chen, Weitong Cai, Wenyi Wang, and Liaoyuan Zeng, “A Compatible Framework for RGB-D SLAM in Dynamic Scenes,” IEEE Access, Vol. 7, pp. 75604–75614, 2019.
[20: Weikersdorfer et al. 2013] David Weikersdorfer, Raoul Hoffmann, and Jörg Conradt, “Simultaneous Localization and Mapping for Event-Based Vision Systems,” in Proceedings of Computer Vision Systems, Berlin, Heidelberg, pp. 133–142, 2013.
[21: Rebecq et al. 2017] Henri Rebecq, Timo Horstschaefer, Guillermo Gallego, and Davide Scaramuzza, “EVO: A Geometric Approach to Event-Based 6-DOF Parallel Tracking and Mapping in Real Time,” IEEE Robotics and Automation Letters, Vol. 2, No. 2, pp. 593–600, Apr. 2017.
[22: Engel et al. 2014] Jakob Engel, Thomas Schöps, and Daniel Cremers, “LSD-SLAM: Large-Scale Direct Monocular SLAM,” Computer Vision – ECCV 2014, Cham, pp. 834–849, 2014.
[23: Silveira et al. 2008] Geraldo Silveira, Ezio Malis, and Patrick Rives, “An Efficient Direct Approach to Visual SLAM,” IEEE Transactions on Robotics, Vol. 24, No. 5, pp. 969–979, Oct. 2008.
[24: Forster et al. 2017] Christian Forster, Zichao Zhang, Michael Gassner, Manuel Werlberger, and Davide Scaramuzza, “SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems,” IEEE Transactions on Robotics, Vol. 33, No. 2, Art. no. 2, Apr. 2017.
[25: Campos et al. 2021] Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M. M. Montiel, and Juan D. Tardós, “ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM,” IEEE Transactions on Robotics, Vol. 37, No. 6, pp. 1874–1890, Feb. 2021.
[26: Rublee et al. 2011] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski, “ORB: An efficient alternative to SIFT or SURF,” 2011 International Conference on Computer Vision, pp. 2564–2571, Jan. 2011.
[27: Gomez-Ojeda et al. 2019] Ruben Gomez-Ojeda, Francisco-Angel Moreno, David Zuñiga-Noël, Davide Scaramuzza, and Javier Gonzalez-Jimenez, “PL-SLAM: A Stereo SLAM System Through the Combination of Points and Line Segments,” IEEE Transactions on Robotics, Vol. 35, No. 3, pp. 734–746, Jun. 2019.
[28: Guan et al. 2023] Weipeng Guan, Peiyu Chen, Yuhan Xie, and Peng Lu, “PL-EVIO: Robust Monocular Event-Based Visual Inertial Odometry With Point and Line Features,” IEEE Transactions on Automation Science and Engineering, pp. 1–17, 2023.
[29: Sun et al. 2018] Qinxuan Sun, Jing Yuan, Xuebo Zhang, and Fengchi Sun, “RGB-D SLAM in Indoor Environments With STING-Based Plane Feature Extraction,” IEEE/ASME Transactions on Mechatronics, Vol. 23, No. 3, pp. 1071–1082, Jun. 2018.
[30: Gelen & Atasoy 2023] Aykut G. Gelen and Ayten Atasoy, “An Artificial Neural SLAM Framework for Event-Based Vision,” IEEE Access, Vol. 11, pp. 58436–58450, 2023.
[31: Yang & Scherer 2019] Shichao Yang and Sebastian Scherer, “Monocular Object and Plane SLAM in Structured Environments,” IEEE Robotics and Automation Letters, Vol. 4, No. 4, pp. 3145–3152, Oct. 2019.
[32: Liu & Miura 2021] Yubao Liu and Jun Miura, “RDMO-SLAM: Real-Time Visual SLAM for Dynamic Environments Using Semantic Label Prediction With Optical Flow,” IEEE Access, Vol. 9, pp. 106981–106997, 2021.
[33: Ran et al. 2021] Teng Ran, Liang Yuan, Jianbo Zhang, Dingxin Tang, and Li He, “RS-SLAM: A Robust Semantic SLAM in Dynamic Environments Based on RGB-D Sensor,” IEEE Sensors Journal, Vol. 21, No. 18, pp. 20657–20664, Sep. 2021.
[34: Kalman 1960] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic Engineering, Vol. 82, No. 1, pp. 35–45, Mar. 1960.
[35: Bloesch et al. 2015] Michael Bloesch, Sammy Omari, Marco Hutter, and Roland Siegwart, “Robust visual inertial odometry using a direct EKF-based approach,” 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 298–304, Sep. 2015.
[36: Solà 2015] Joan Solà, “Quaternion kinematics for the error-state KF,” Mar. 2015.
[37: Chamorro et al. 2022] William Chamorro, Joan Solà, and Juan Andrade-Cetto, “Event-Based Line SLAM in Real-Time,” IEEE Robotics and Automation Letters, Vol. 7, No. 3, pp. 8146–8153, Jul. 2022.
[38: Mueggler et al. 2018] Elias Mueggler, Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza, “Continuous-Time Visual-Inertial Odometry for Event Cameras,” IEEE Transactions on Robotics, Vol. 34, No. 6, pp. 1425–1440, Feb. 2018.
[39: Grompone von Gioi et al. 2010] Rafael Grompone von Gioi, Jeremie Jakubowicz, Jean-Michel Morel, and Gregory Randall, “LSD: A Fast Line Segment Detector with a False Detection Control,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 4, pp. 722–732, Apr. 2010.
[40: Akinlar & Topal 2011] Cuneyt Akinlar and Cihan Topal, “EDLines: A real-time line segment detector with a false detection control,” Pattern Recognition Letters, Vol. 32, No. 13, pp. 1633–1642, Oct. 2011.
[41: Lee et al. 2014] Jin Han Lee, Sehyung Lee, Guoxuan Zhang, Jongwoo Lim, Wan Kyun Chung, and Il Hong Suh, “Outdoor place recognition in urban environments using straight lines,” 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5550–5557, May 2014.
[42: Duda & Hart 1972] Richard O. Duda and Peter E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Communications of the ACM, Vol. 15, No. 1, pp. 11–15, Jan. 1972.
[43: Ester et al. 1996] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” Second International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, pp. 226–231, Aug. 2, 1996.
[44: Fischler & Bolles 1981] Martin A. Fischler and Robert C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Communications of the ACM, Vol. 24, No. 6, pp. 381–395, Jun. 1981.
[45: Garrido-Jurado et al. 2014] S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J. Marín-Jiménez, “Automatic generation and detection of highly reliable fiducial markers under occlusion,” Pattern Recognition, Vol. 47, No. 6, pp. 2280–2292, Jun. 2014.
[46: Mueen & Keogh 2016] Abdullah Mueen and Eamonn Keogh, “Extracting Optimal Performance from Dynamic Time Warping,” 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California USA, pp. 2129–2130, Aug. 13, 2016.
[47: Horn 1987] Berthold K. P. Horn, “Closed-form solution of absolute orientation using unit quaternions,” Journal of the Optical Society of America A, Vol. 4, No. 4, p. 629, Apr. 1987.
[48: Limitd 2007] Trimble Navigation Limitd, “GPS: The First Global Navigation Satellite System,” Trimble, 2007
[49: Penn State] Penn State, “17. Satellite Ranging,” Penn State's Online Geospatial Education. [Online]. Available: https://www.e-education.psu.edu/natureofgeoinfo/book/export/html/1796.
[50: Tesla] Tesla, “Tesla Vision Update: Replacing Ultrasonic Sensors with Tesla Vision,” [Online]. Available: https://www.tesla.com/support/transitioning-tesla-vision
[51: It's Only Electric] It's Only Electric, “Tesla Vision vs Parking sensors - Was it worth the wait?” YouTube. [Online]. Available: https://www.youtube.com/watch?v=-w1NS_eDz5k
[52: Savarese & Bohg 2023] Silvio Savarese, Jeannette Bohg, “CS231A: Computer Vision, From 3D Reconstruction to Recognition.” Stanford University, 2023. [Online]. Available: https://web.stanford.edu/class/cs231a/
[53: Collins 2007] Robert Collins, “CSE486 Computer Vision I.” Penn State University, 2007. [Online]. Available: https://www.cse.psu.edu/~rtc12/CSE486/
[54: Wikipedia] “Homogeneous coordinates,” Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Homogeneous_coordinates
[55: Intel] “Depth Camera D455,” Intel. [Online]. Available: https://www.intelrealsense.com/depth-camera-d455/
[56: OpenCV] “OpenCV: Detection of ArUco Markers.” OpenCV. [Online]. Available: https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
[57: Mur-Artal] Mur-Artal, “evaluate_ate_scale.” Github. [Online]. Available: https://github.com/raulmur/evaluate_ate_scale
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95323-
dc.description.abstract科技發展迅速,機器人已經可以獨自執行各種複雜的任務,不需要額外的人為參與,從而提升我們日常生活的便利性。為了讓機器人能夠自主執行任務,機器人必須能夠感知周遭的環境,以便在場景中移動與避開障礙物。
本論文提出一個單眼視覺里程計,用於機器人在都市環境的定位。透過線段偵測、合併、分群與排除異常值,偵測出畫面中建築物外牆上的水平與垂直結構線,並透過矩形幾何約束,從偵測到的線條在三維空間中建立網格平面,經由追蹤建立的網格平面來估測機器人的位置。為了讓本論文所提出的演算法能在即時條件下執行,加入了可靠性測試,透過重投影特徵將估測資料做降取樣處理,進而提升運算的效率。
本論文透過模擬、室內與室外的實驗驗證了演算法的效能,展示在實際的都市環境中定位的能力。
zh_TW
dc.description.abstractNowadays, mobile robots can perform complex tasks independently, reducing the requirement for human involvement and thus significantly improving the convenience of our everyday lives. To perform tasks independently, mobile robots need to determine their location, sense its surroundings for navigation and avoid obstacles.
This thesis proposes a monocular visual odometry for a mobile robot localization in urban environments. The proposed algorithm detects the horizontal and vertical structural lines on a building facade using image processing techniques including line segment detection, segments merging, clustering and outlier removal. Then, the rectangular geometric constraint is applied to form the grid mesh plane in 3-D space using the detected line features, and the mobile robot position is estimated by tracking the plane in camera images. For the proposed algorithm to operate in the real-time, a reliability testing is involved to enhance the calculation efficiency by downsampling data via feature reprojection.
The proposed algorithm in this thesis has validated the performance through simulations and both indoor and outdoor experiments, demonstrating its capability for localization in noisy urban environments.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-05T16:09:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-05T16:09:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Problem Formulation 4
1.3 Contribution 4
1.4 Organization of the Thesis 6
Chapter 2 Background and Literature Survey 7
2.1 Type of Visual Sensors 7
2.2 Data Processing Methods 9
2.3 Estimation Methods 11
Chapter 3 Related Algorithms 12
3.1 Pinhole Camera Model 12
3.2 Line Representation 14
3.3 Density-Based Spatial Clustering of Applications with Noise 15
3.4 Random Sample Consensus 16
Chapter 4 Proposed Algorithm 19
4.1 Overview 19
4.2 Line Segments Detection and Merging 22
4.3 Extract Line Features from Grid Mesh Plane 26
4.3.1 Depth Estimation with Rectangular Constraint 26
4.3.2 Target Plane Detection and Line Features Extraction 29
4.4 Plane Tracking with RANSAC 32
4.4.1 Feature Matching 32
4.4.2 Motion Estimation with RANSAC 32
4.5 Update States 35
4.5.1 Reliability Testing 35
4.5.2 Update Existing Features 36
4.5.3 Add New Features 37
4.5.4 Remove Invalid Features 37
Chapter 5 Synthetic and Real-World Experiments 38
5.1 Evaluate Performance in Simulation 38
5.1.1 Synthetic Scenes 38
5.1.2 Evaluate Performance Using Dynamic Time Warping 45
5.1.3 Estimate Without and With Reliability Testing 47
5.1.4 Summary of Performance in Simulation 60
5.2 Real-World Experiments Executed in Real-Time 61
5.2.1 Experiments Setup 61
5.2.2 Indoor Hallway Experiments 63
5.2.3 Outdoor Building Facade Experiments 69
5.2.4 Summary of Real-World Experiments 77
Chapter 6 Conclusions and Future Works 79
6.1 Conclusions 79
6.2 Future Works 80
References 82
Appendix A Estimated Results of Indoor Hallway Experiments 89
-
dc.language.isoen-
dc.subject線特徵zh_TW
dc.subject視覺里程計zh_TW
dc.subject影像處理zh_TW
dc.subject單眼視覺zh_TW
dc.subject幾何約束zh_TW
dc.subjectgeometric constrainten
dc.subjectmonocular visionen
dc.subjectimage processingen
dc.subjectline featuresen
dc.subjectvisual odometryen
dc.title基於網格平面的線特徵與矩形幾何約束之單眼視覺里程計zh_TW
dc.titleMonocular Visual Odometry Based on Line Features on Grid Mesh Plane and Rectangular Geometric Constrainten
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王富正;江明理zh_TW
dc.contributor.oralexamcommitteeFu-Cheng Wang;Ming-Li Chiangen
dc.subject.keyword視覺里程計,線特徵,幾何約束,單眼視覺,影像處理,zh_TW
dc.subject.keywordvisual odometry,line features,geometric constraint,monocular vision,image processing,en
dc.relation.page98-
dc.identifier.doi10.6342/NTU202402036-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-07-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf7.76 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved