請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95321
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 羅立 | zh_TW |
dc.contributor.advisor | Li Lo | en |
dc.contributor.author | 陳威綸 | zh_TW |
dc.contributor.author | Wei-Lun Chen | en |
dc.date.accessioned | 2024-09-05T16:09:19Z | - |
dc.date.available | 2024-09-06 | - |
dc.date.copyright | 2024-09-05 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-14 | - |
dc.identifier.citation | Aldridge, D., Beer, C., & Purdie, D. (2012). Calcification in the planktonic foraminifera Globigerina bulloides linked to phosphate concentrations in surface waters of the North Atlantic Ocean. Biogeosciences, 9(5), 1725-1739.
Bé, Harrison, S. M., & Lott, L. (1973). Orbulina universa d'Orbigny in the Indian Ocean.Micropaleontology, 19(2), 150-192. Bé, A. (1980). Gametogenic calcification in a spinose planktonic foraminifer, Globigerinoides sacculifer (Brady). Marine Micropaleontology, 5, 283-310. Belanger, C. L. (2022). Volumetric analysis of benthic foraminifera: Intraspecific test size and growth patterns related to embryonic size and food resources. Marine Micropaleontology, 176, 102170. Berger, W. H. (1969). Kummerform foraminifera as clues to oceanic environments. AAPG bulletin, 53(3), 706-706. Bijma, J., Faber, W. W., & Hemleben, C. (1990). Temperature and salinity limits for growth an survival of some planktonic foraminifers in laboratory cultures. Journal of foraminiferal research, 20(2), 95-116. Bijma, J., & Hemleben, C. (1994). Population dynamics of the planktic foraminifer Globigerinoides sacculifer (Brady) from the central Red Sea. Deep Sea Research Part I: Oceanographic Research Papers, 41(3), 485-510. Birch, H., Coxall, H. K., Pearson, P. N., Kroon, D., & O'Regan, M. (2013). Planktonic foraminifera stable isotopes and water column structure: Disentangling ecological signals. Marine Micropaleontology, 101, 127-145. Brady, H. B. (1877). II.—Supplementary note on the Foraminifera of the Chalk (?) of the New Britain Group. Geological Magazine, 4(12), 534-536. Brombacher, A., Searle-Barnes, A., Zhang, W., & Ezard, T. H. (2022). Analysing planktonic foraminiferal growth in three dimensions with foram3D: an R package for automated trait measurements from CT scans. Journal of Micropalaeontology, 41(2), 149-164. Brummer, G.-J. A., Hemleben, C., & Spindler, M. (1987). Ontogeny of extant spinose planktonic foraminifera (Globigerinidae): A concept exemplified by Globigerinoides sacculifer (Brady) andG. Ruber (d'Orbigny). Marine Micropaleontology, 12, 357-381. Burke, J. E., Renema, W., Schiebel, R., & Hull, P. M. (2020). Three-dimensional analysis of intera/intraspecific variation in ontogenetic growth trajectories of planktonic foraminifera. Marine Micropaleontology, 155, 101794. Caromel, A. G., Schmidt, D. N., Fletcher, I., & Rayfield, E. J. (2016). Morphological change during the ontogeny of the planktic foraminifera. Journal of Micropalaeontology, 35(1), 2-19. Caromel, A. G., Schmidt, D. N., Phillips, J. C., & Rayfield, E. J. (2014). Hydrodynamic constraints on the evolution and ecology of planktic foraminifera. Marine Micropaleontology, 106, 69-78. Chen, C.-Y. (2006). Exploring the Extinction of Globigerinoides fistulosus from the Perspective of ‘Heterochrony’ [Unpublished Master's Thesis]National Taiwan University. Chen, C.-Y. (2008). A study on the disappearance of Globigerinoides fistulosus and its relationship to the hydrological change of the tropical pacific [Unpublished Undergraduate's Thesis] National Taiwan University. Chen, W.-L., Kang, J.-C., Kimoto, K., Song, Y.-F., Yin, G.-C., Swisher, R. E., Lu, C.-H., Kuo, L.- W., Huang, J.-J. S., & Lo, L. (2023). μ-Computed tomographic data of fossil planktonic foraminifera from the western Pacific Ocean: a dataset concerning two biostratigraphic events during the Early Pleistocene. Frontiers in Ecology and Evolution, 11, 1171891. Chuang, C.-K., Lo, L., Zeeden, C., Chou, Y.-M., Wei, K.-Y., Shen, C.-C., Mii, H.-S., Chang, Y.- P., & Tung, Y.-H. (2018). Integrated stratigraphy of ODP Site 1115 (Solomon Sea, southwestern equatorial Pacific) over the past 3.2 Ma. Marine Micropaleontology, 144, 25-37. d'Orbigny, A. D. (1846). Foraminifères fossiles du bassin tertiaire de Vienne (Autriche): découverts par Joseph de Hauer. McLean Paleontological Laboratory. de Boyer Montégut, C., Mignot, J., Lazar, A., & Cravatte, S. (2007). Control of salinity on the mixed layer depth in the world ocean: 1. General description. Journal of Geophysical Research: Oceans, 112(C6). Depuydt, P., Barras, C., Toucanne, S., Fossile, E., & Mojtahid, M. (2023). Implication of size fraction on benthic foraminiferal-based paleo-reconstructions: A case study from the Bay of Biscay (NE Atlantic). Marine Micropaleontology, 181, 102242. Duan, B., Li, T., & Pearson, P. N. (2021). Three dimensional analysis of ontogenetic variation in fossil globorotaliiform planktic foraminiferal tests and its implications for ecology, life processes and functional morphology. Marine Micropaleontology, 165, 101989. Elderfield, H., Vautravers, M., & Cooper, M. (2002). The relationship between shell size and Mg/Ca, Sr/Ca, δ18O, and δ13C of species of planktonic foraminifera. Geochemistry, Geophysics, Geosystems, 3(8), 1-13. Emerson, S., Hedges, J., & Heinrich, D. (2003). Sediment Diagenesis and benthic flux, treatise on geochemistry. In: Elsevier: Amsterdam. Görög, Á., Szinger, B., Tóth, E., & Viszkok, J. (2012). Methodology of the micro-computer tomography on foraminifera. Palaeontologia Electronica, 15(1). Grigoratou, M., Monteiro, F. M., Ridgwell, A., & Schmidt, D. N. (2021). Investigating the benefits and costs of spines and diet on planktonic foraminifera distribution with a trait-based ecosystem model. Marine Micropaleontology, 166, 102004. Hammer, Ø., & Harper, D. A. (2001). Past: paleontological statistics software package for educaton and data anlysis. Palaeontologia Electronica, 4(1). Hay, W. W., & Sandberg, P. A. (1967). The scanning electron microscope, a major break-through for micropaleontology. Micropaleontology, 407-418. Hemleben, C., Spindler, M., & Anderson, O. R. (2012). Modern planktonic foraminifera. Springer Science & Business Media. Hemleben, C., Spindler, M., Breitinger, I., & Ott, R. (1987). Morphological and physiological responses of Globigerinoides sacculifer (Brady) under varying laboratory conditions. Marine Micropaleontology, 12, 305-324. Hori, M., Shirai, K., Kimoto, K., Kurasawa, A., Takagi, H., Ishida, A., Takahata, N., & Sano, Y. (2018). Chamber formation and trace element distribution in the calcite walls of laboratory cultured planktonic foraminifera (Globigerina bulloides and Globigerinoides ruber). Marine Micropaleontology, 140, 46-55. Iwasaki, S., Kimoto, K., Sasaki, O., Kano, H., & Uchida, H. (2019). Sensitivity of planktic foraminiferal test bulk density to ocean acidification. Scientific reports, 9(1), 9803. Kahn, N., & Swift, E. (1978). Positive buoyancy through ionic control in the nonmotile marine dinoflagellate Pyrocystis noctiluca Murray ex Schuett 1. Limnology and Oceanography, 23(4), 649-658.65 LeRoy, L. W. (1939). Some small foraminifera, ostracode and otoliths from the Neogene(“Miocene”) of the Rokan-Tapanoeli area, Central Sumatra. Natuurkundig Tijdschrift voor Nederlandsch-Indië, 99, 215. Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1). Lukas, R., & Lindstrom, E. (1991). The mixed layer of the western equatorial Pacific Ocean. Journal of Geophysical Research: Oceans, 96(S01), 3343-3357. Olsson, R. (1972). Growth changes in the Globorotalia fohsi lineage. Eclogae Geologicae Helvetiae, 65(1), 165-184. Olsson, R. K. (1973). What is a kummerform planktonic foraminifer? Journal of Paleontology, 327-329. OriginLab Corporation, N., MA, USA. (Version 2021). Origin(Pro). In Poole, C. R., & Wade, B. S. (2019). Systematic taxonomy of the Trilobatus sacculifer plexus and descendant Globigerinoidesella fistulosa (planktonic foraminifera). Journal of Systematic Palaeontology, 17(23), 1989-2030. Reuss, A. v. (1850). Neues Foraminiferen aus den schicten des Osterreichischen Tertiarbeckens. Denkschriften der Akademie des Wissenschaften Wein, 1, 365-390. Russell, A. D., Hönisch, B., Spero, H. J., & Lea, D. W. (2004). Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera. Geochimica et Cosmochimica Acta, 68(21), 4347-4361. Schlitzer, R. (2023). Ocean Data View. odv.awi.de Schmidt, D. N., Renaud, S., Bollmann, J., Schiebel, R., & Thierstein, H. R. (2004). Size distribution of Holocene planktic foraminifer assemblages: biogeography, ecology and adaptation. Marine Micropaleontology, 50(3-4), 319-338. Schubert, R. J. (1910). Ueber Foraminiferen und einen Fischotolithen aus dem fossilen Globigerinenschlamm von Neu-Guinea. Verhandlungen der Geologischen Reichsanstalt, Wien, 1910, 318-328. Signes, M., Bijma, J., Hemleben, C., & Ott, R. (1993). A model for planktic foraminiferal shell growth. Paleobiology, 19(1), 71-91.66 Spero, H. J., Bijma, J., Lea, D. W., & Bemis, B. E. (1997). Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 390(6659), 497-500. Spero, H. J., Lerche, I., & Williams, D. F. (1991). Opening the carbon isotope" vital effect" black box, 2, Quantitative model for interpreting foraminiferal carbon isotope data. Paleoceanography, 6(6), 639-655. Spezzaferri, S., Kucera, M., Pearson, P. N., Wade, B. S., Rappo, S., Poole, C. R., Morard, R., & Stalder, C. (2015). Fossil and genetic evidence for the polyphyletic nature of the planktonic foraminifera" Globigerinoides", and description of the new genus Trilobatus. PloS one, 10(5), e0128108. Takagi, H., Kimoto, K., Fujiki, T., & Moriya, K. (2018). Effect of nutritional condition on photosymbiotic consortium of cultured Globigerinoides sacculifer (Rhizaria, Foraminifera). Symbiosis, 76, 25-39. Takahashi, K., Cortese, G., Frost, G. M., Gerbaudo, S., Goodliffe, A. M., Ishikawa, N.,Lackschewitz, K. S., Perembo, R. C., Resig, J. M., & Siesser, W. G. (2001). 4. Summary of revised age assignments for ODP Leg 180. In: Huchon, P., Taylor, B., Klaus, A.(Eds.), Proceedings ODP, Scientific Results [Online]. Available from World Wide Web:{http://www-odp. tamu. edu/publications/180_SR/152/152. htm}, Taylor, B., Huchon, , P., K., A.,, & al., e. (1999). Chapter 9: Site 1115. Proceedings of the Ocean Drilling Program, Init. Reports 180, 180, 1-226. Vanadzina, K., & Schmidt, D. N. (2022). Developmental change during a speciation event: evidence from planktic foraminifera. Paleobiology, 48(1), 120-136. Wade, B. S., Pearson, P. N., Berggren, W. A., & Pälike, H. (2011). Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth-Science Reviews, 104(1-3), 111-142. Walsby, A. E., Hayes, P. K., Boje, R., & Stal, L. J. (1997). The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. The New Phytologist, 136(3), 407-417. Wara, M. W., Ravelo, A. C., & Delaney, M. L. (2005). Permanent El Niño-like conditions during the Pliocene warm period. Science, 309(5735), 758-761. Webster, P. J., & Lukas, R. (1992). TOGA COARE: The coupled ocean–atmosphere response experiment. Bulletin of the American Meteorological Society, 73(9), 1377-1416. Wei, K.-Y. (1987). Multivariate morphometric differentiation of chronospecies in the late Neogene planktonic foraminiferal lineageGloboconella. Marine Micropaleontology, 12, 183-202 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95321 | - |
dc.description.abstract | Globigerinoidesella fistulosa 是一已滅絕的熱帶浮游性有孔蟲物種,大約在 330 萬到 170 萬 年前生存於全球熱帶海域。其滅絕事件與現代西太平洋暖池(WPWP)的形成和初步擴張 之發生時間重合且可能有潛在的連結。了解其古生態學有助於檢驗氣候誘導的假說,並進 一步增進我們對古氣候與生物圈間相互作用的認識。迄今為止,該物種的生態位仍存在許 多不確定性,如其生物量與光合共生藻之互動關係。在本研究中,我們採用了三維形態計 量方法嘗試重建了該物種的生態位,包括使用 μ-CT 重建進行體積和表面分析。基於前人 研究對其祖先和親緣物種 Trilobatus sacculifer plexus 之生態特性已有較多的著墨,我們將 G. fistulosa 和其親緣物種 T. sacculifer plexus 進行比較,以更好地理解前者。3D 立體型態 分析結果表明,G. fistulosa 的生物量和殼體表面積較 T. sacculifer plexus 更大,這可能歸 因於混合層較深處相對豐富的營養供應,並因此形成較強的共生光合作用。此外,表面積 與總體積(S-V)之比值提供了檢驗兩種物種在個體發育過程中的表面積變化的機會。與 T. sacculifer plexus 相比,G. fistulosa 通常在相似的體型下具有較高的 S-V 比值,且不同個 體間的 S-V 比值差異也更大。對於 G. fistulosa,較高的 S-V 比值(可能是由於較扁平、不 規則的殼體型態和指狀突起所致,此假設需要更多理論研究確認)增加了殼體表面容納更 多刺的空間。此型態特徵可能會抵消在假設上殼體較高的殼體密度和總密度所帶來的沉降 力。我們對 G. fistulosa 生態學的解釋基於先前對其殼體地球化學的研究,其表明根據 Mg/Ca 比率和 δ18O 數據,G. fistulosa 的造殼深度可能比其祖先 T. sacculifer plexus 更深。 | zh_TW |
dc.description.abstract | Globigerinoidesella fistulosa is an extinct planktonic foraminifera species occurred around 3.3- 1.7 million years ago (Ma) in global tropical ocean. Its extinction event coincided and may be triggered by the formation and expansion of the modern Western Pacific Warm Pool (WPWP). Understanding its paleoecology would help testing the climate-induced hypothesis and further our knowledge to the climate-ecology interaction. So far, much uncertainty still exists about its ecological niche, such as biomass and photosymbiotic ecology. In this study, we performed 3D morphometric method to reconstruct the species’ ecological niche, including volumetric and surface analysis using μ-CT reconstructions. Based on the previous studies on the ecology of modern Trilobatus sacculifer, a comparison between G. fistulosa and its relative T. sacculifer can be made here to better understand the former. The results of 3D analysis indicate larger biomass and surface area of G. fistulosa compared to T. sacculifer, which could be attributed to relatively abundant nutrient supply and enhanced symbiotic photosynthesis in the deeper part of the water column. Moreover, the surface area to total volume (S-V) ratio provides chance to inspect the variation of surface area through ontogeny of the two species. Compared to T. sacculifer, G. fistulosa generally registers higher S-V ratio under similar body size, as well as higher variation. For G. fistulosa, the higher surface area per total volume (might resulted from the flat, irregular gross morphology and protuberance. More theoretical studies would be required to confirm the hypothesis) might bring about a larger potential for spines across the surface space. The morphological traits would likely counteract the settling force provided by the hypothesized increase in shell test and overall density. Our interpretations toward the ecology of G. fistulosa is based on the previous study of shell geochemistry, as it implies the calcification depth of G. fistulosa might been deeper in depth than its ancestor T. sacculifer based on the Mg/Ca ratio and δ18O data. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-05T16:09:19Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-09-05T16:09:19Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Master’s Thesis Acceptance Certificate I
Acknowledgement (In Chinese) II Abstract IV Abstract (In Chinese) V Contents VI Figures X Tables XIII Chapter 1: Introduction 1 Chapter 2: Materials and Methods 6 2.1 Studied materials 6 2.2 ODP Hole 1115B 9 2.3 Age model 10 2.4 μ-CT reconstruction and protocols of projection X-ray microscopy 12 2.5 3D morphometrics13 2.6 Descriptive statistics, Box plot and histogram 14 2.7 Two-sample student t-test 15 2.8 Bathymetric profile of nutrients and salinity 15 Chapter 3: Results 16 3.1 Total volume 16 3.1.1 Distribution of G. fistulosa (Fis form) 16 3.1.2 Distribution of T. sacculifer (Normal form) 16 3.1.3 Distribution of T. sacculifer (Sac-like form) 16 3.1.4 Comparison between G. fistulosa (Fis form) and T. sacculifer (Normal and Sac-like forms) 17 3.2 Surface area 20 3.2.1 Distribution of G. fistulosa (Fis form) 20 3.2.2 Distribution of T. sacculifer (Normal form) 20 3.2.3 Distribution of T. sacculifer (Sac-like form) 20 3.2.4 Comparison between G. fistulosa and T. sacculifer (Fis, Normal and Sac-like forms) 21 3.3 Surface-total volume (S-V) ratio 25 3.3.1 Distribution of G. fistulosa (Fis form) 25 3.3.2 Distribution of T. sacculifer (Normal form) 25 3.3.3 Distribution of T. sacculifer (Sac-like form) 25 3.3.4 Comparison between G. fistulosa and T. sacculifer (Fis, Normal and Sac-like forms) 26 3.4 Total volume-surface area relationship 30 3.5 Total volume-SV ratio relationship 34 3.6 Total volume distribution across different size fractions for the three forms 38 3.7 Surface area distribution across different size fractions for the three forms 42 3.8 Surface-total volume (S-V) ratio distribution across different size fractions for the three forms 46 Chapter 4: Discussion 49 4.1 Data variation 49 4.1.1 Total volume 49 4.1.2 Surface area 49 4.1.3 Surface-total volume (S-V) ratio 50 4.2 Data comparison and discussion with the previously reported data 51 4.2.1 Relative abundance data across different size fractions from Chen (2006) 51 4.2.2 Maximum test size-test surface area comparison from Poole and Wade (2019) 54 4.2.3 Total volume-S-V ratio comparison 56 4.3 Adaptive functional morphology of G. fistulosa (Fis form) 60 4.4 Trophic mode of G. fistulosa (Fis form) 61 4.5 Possible environmental controls for G. fistulosa (Fis form) 62 Chapter 5 Conclusion 66 References 68 Appendix 1 Result of two-sample t test for equal means 76 1.1 Result of V_Fis vs. V_Normal 77 1.2 Result of V_Fis vs. V_Sac-like 78 1.3 Result of V_Normal vs. V_Sac-like 79 1.4 Result of S_Fis vs. S_Normal 80 1.5 Result of S_Fis vs. S_Sac-like 81 1.6 Result of S_Normal vs. S_Sac-like 82 1.7 Result of SV_Fis vs. SV_Normal 83 1.8 Result of SV_Fis vs. SV_Sac-like 84 1.9 Result of SV_Normal vs. SV_Sac-like 85 Appendix 2 Descriptive statistics of total volume, surface area and Surface area to total volume (S-V) ratio 86 2.1 Table for descriptive statistical comparison of the total volume of Fis, Normal and Sac-like forms 86 2.2 Table for descriptive statistical comparison of the surface area of Fis, Normal and Sac-like forms 87 2.3 Table for descriptive statistical comparison of the S-V ratio of Fis, Normal and Sac-like forms 88 Appendix 3 Bathymetric profile of nutrients and salinity 89 3.1 Bathymetric profile of nitrate 89 3.2 Bathymetric profile of phosphate 90 3.3 Bathymetric profile of salinity 91 | - |
dc.language.iso | en | - |
dc.title | 以電腦斷層掃描影像測量浮游性有孔蟲之形態特徵 | zh_TW |
dc.title | Morphometric Characteristic of Planktonic Foraminifera using μ-Computed Tomographic data | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張詠斌;魏國彥;簡誌暐 | zh_TW |
dc.contributor.oralexamcommittee | Yuan-Pin Chang;Kuo-Yen Wei;Chi-Wei Chien | en |
dc.subject.keyword | 浮游性有孔蟲,早更新世,生態學,型態計量,μ-CT,西太平洋暖池, | zh_TW |
dc.subject.keyword | Planktonic foraminifera,early Pleistocene,ecology,morphometrics,μ-CT,the Western Pacific Warm Pool, | en |
dc.relation.page | 91 | - |
dc.identifier.doi | 10.6342/NTU202404142 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-14 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 11.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。