Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95319
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶瑞zh_TW
dc.contributor.advisorChing-Ray Changen
dc.contributor.author王孟謙zh_TW
dc.contributor.authorMeng-Chien Wangen
dc.date.accessioned2024-09-05T16:08:26Z-
dc.date.available2024-09-06-
dc.date.copyright2024-09-05-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation[1] Kostya S Novoselov, Andre K Geim, Sergei V Morozov, De-eng Jiang, Yanshui Zhang, Sergey V Dubonos, Irina V Grigorieva, and Alexandr A Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666–669, 2004.
[2] Xiaodong Xu, Wang Yao, Di Xiao, and Tony F Heinz. Spin and pseudospins in layered transition metal dichalcogenides. Nature Physics, 10(5):343–350, 2014.
[3] Sajedeh Manzeli, Dmitry Ovchinnikov, Diego Pasquier, Oleg V Yazyev, and Andras Kis. 2D transition metal dichalcogenides. Nature Reviews Materials, 2(8):115, 2017.
[4] HuiFang, Steven Chuang, TingChiaChang, Kuniharu Takei, Toshitake Takahashi, and Ali Javey. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano letters, 12(7):3788–3792, 2012.
[5] Lei Wang, Zhuo Wang, Hai-Yu Wang, Gustavo Grinblat, Yu-Li Huang, Dan Wang, Xiao-Hui Ye, Xian-Bin Li, Qiaoliang Bao, AndrewThye-Shen Wee, et al. Slow cooling and efficient extraction of C-exciton hot carriers in MoS2 monolayer. Nature communications, 8(1):1–8, 2017.
[6] Wenjuan Zhu, Tony Low, Yi-Hsien Lee, Han Wang, Damon B Farmer, Jing Kong, Fengnian Xia, and Phaedon Avouris. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nature communications, 5(1):3087, 2014.
[7] Kin Fai Mak, Changgu Lee, James Hone, Jie Shan, and Tony F Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Physical review letters, 105(13):136805, 2010.
[8] Agnieszka Kuc, Nourdine Zibouche, and Thomas Heine. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Physical review B, 83(24):245213, 2011.
[9] Andrea Splendiani, Liang Sun, Yuanbo Zhang, Tianshu Li, Jonghwan Kim, ChiYung Chim, Giulia Galli, and Feng Wang. Emerging photoluminescence in monolayer MoS2. Nano letters, 10(4):1271–1275, 2010.
[10] Yu Kobayashi, Shogo Sasaki, Shohei Mori, Hiroki Hibino, Zheng Liu, Kenji Watanabe, Takashi Taniguchi, Kazu Suenaga, Yutaka Maniwa, and Yasumitsu Miyata. Growth and optical properties of high-quality monolayer WS2 on graphite. Acs Nano, 9(4):4056–4063, 2015.
[11] Kin Fai Mak, Keliang He, Changgu Lee, Gwan Hyoung Lee, James Hone, Tony F Heinz, and Jie Shan. Tightly bound trions in monolayer MoS2. Nature materials, 12(3):207–211, 2013.
[12] Alexey Chernikov, Timothy C Berkelbach, Heather M Hill, Albert Rigosi, Yilei Li, Burak Aslan, David R Reichman, Mark S Hybertsen, and Tony F Heinz. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Physical review letters, 113(7):076802, 2014.
[13] Kostya S Novoselov,Andre K Geim, Sergei Vladimirovich Morozov, Dingde Jiang, Michail I Katsnelson, Irina V Grigorieva, SVb Dubonos, and AA Firsov. Two dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065):197-200, 2005.
[14] Mikhail I. Katsnelson. Graphene: Carbon in Two Dimensions. Cambridge University Press, 2012.
[15] Bevin Huang, Genevieve Clark, Efrén Navarro-Moratalla, Dahlia R Klein, Ran Cheng, Kyle L Seyler, Ding Zhong, Emma Schmidgall, Michael A McGuire, David HCobden, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 546(7657):270–273, 2017.
[16] Cheng Gong, Lin Li, Zhenglu Li, Huiwen Ji, Alex Stern, Yang Xia, Ting Cao, Wei Bao, Chenzhe Wang, Yuan Wang, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 546(7657):265–269, 2017.
[17] N David Mermin and Herbert Wagner. Absence of ferromagnetism or antiferromagnetism in one-or two-dimensional isotropic Heisenberg models. Physical Review Letters, 17(22):1133, 1966.
[18] Pierre C Hohenberg. Existence of long-range order in one and two dimensions. Physical Review, 158(2):383, 1967.
[19] CAF Vaz, JAC Bland, and G Lauhoff. Magnetism in ultrathin film structures. Reports on Progress in Physics, 71(5):056501, 2008.
[20] HJ Elmers, J Hauschild, H Höche, U Gradmann, H Bethge, D Heuer, and U Köhler. Submonolayer magnetism of Fe (110) on W (110): Finite width scaling of stripes and percolation between islands. Physical review letters, 73(6):898, 1994.
[21] Hans-Joachim Elmers, Jens Hauschild, and Ulrich Gradmann. Critical behavior of the uniaxial ferromagnetic monolayer Fe (110) on W (110). Physical Review B, 54(21):15224, 1996.
[22] U Gradmann, M Przybylski, HJ Elmers, and G Liu. Ferromagnetism in the thermodynamically stable monolayer Fe (110) on W (110), coated by Ag. Applied Physics A, 49:563–571, 1989.
[23] M Farle, K Baberschke, U Stetter, A Aspelmeier, and F Gerhardter. Thickness dependent curie temperature of Gd (0001)/W (110) and its dependence on the growth conditions. Physical Review B, 47(17):11571, 1993.
[24] CAF Vaz and JAC Bland. Dependence of the coercive field on the Cu overlayer thickness in thin Co/Cu (001) and Ni/Cu (001) fcc epitaxial films. Journal of Applied Physics, 89(11):7374–7376, 2001.
[25] F Huang, MT Kief, GJ Mankey, and RF Willis. Magnetism in the few-monolayers limit: A surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu (100) and Cu (111). Physical Review B, 49(6):3962, 1994.
[26] Daniel I Khomskii. Basic aspects of the quantum theory of solids: order and elementary excitations. Cambridge university press, 2010.
[27] Evgenii Mikhailovich Lifshitz and Lev Petrovich Pitaevskii. Statistical physics:theory of the condensed state, volume 9. Elsevier, 2013.
[28] MT Johnson, PJH Bloemen, FJA Den Broeder, and JJ De Vries. Magnetic anisotropy in metallic multilayers. Reports on Progress in Physics, 59(11):1409, 1996.
[29] D Sander. The correlation between mechanical stress and magnetic anisotropy in ultrathin films. Reports on Progress in Physics, 62(5):809, 1999.
[30] E du Trémolet de Lacheisserie. Definition and measurement of the surface magnetoelastic coupling coefficients in thin films and multilayers. Physical Review B, 51(22):15925, 1995.
[31] Louis Néel. Anisotropie magnétique superficielle et surstructures d’orientation. J. phys. radium, 15(4):225–239, 1954.
[32] U Gradmann and J Müller. Flat ferromagnetic, epitaxial 48Ni/52Fe (111) films of few atomic layers. physica status solidi (b), 27(1):313–324, 1968.
[33] Ulrich Gradmann and Joachim Müller. Very thin (2–200 Å) ferromagnetic NiFe films. Journal of Applied Physics, 39(2):1379–1381, 1968.
[34] P Bruno and J P Renard. Magnetic surface anisotropy of transition metal ultrathin films. Applied Physics A, 49:499–506, 1989.
[35] U Gradmann. Surface magnetism. Journal of magnetism and magnetic materials, 100(1-3):481–496, 1991.
[36] ZQ Qiu, J Pearson, and SD Bader. Two-dimensional Ising transition of epitaxial Fe films grown on Ag (100). Physical Review B, 49(13):8797, 1994.
[37] M Albrecht, T Furubayashi, M Przybylski, J Korecki, and U Gradman. Magnetic step anisotropies. Journal of magnetism and magnetic materials, 113(1-3):207–220, 1992.
[38] Jian Chen and JL Erskine. Surface-step-induced magnetic anisotropy in thin epitaxial Fe films on W (001). Physical review letters, 68(8):1212, 1992.
[39] U Bovensiepen, Hyuk J Choi, and ZQ Qiu. Step-induced magnetic anisotropy in vicinal Ni/Cu (001) and its effect on the spin-reorientation transition. Physical Review B, 61(5):3235, 2000.
[40] Hyuk J Choi, RK Kawakami, Ernesto J Escorcia-Aparicio, ZQ Qiu, J Pearson, JS Jiang, Dongqi Li, and SD Bader. Curie temperature enhancement and induced Pd magnetic moments for ultrathin Fe films grown on stepped Pd (001). Physical review letters, 82(9):1947, 1999.
[41] DS Chuang, CA Ballentine, and RC O'Handley. Surface and step magnetic anisotropy. Physical Review B, 49(21):15084, 1994.
[42] Ching-Ray Chang and YF Chiang. Magnetic surface anisotropy of a spin array. Physical Review B, 48(17):12783, 1993.
[43] Jae-Ung Lee, Sungmin Lee, Ji Hoon Ryoo, Soonmin Kang,Tae Yun Kim, Pilkwang Kim, Cheol-Hwan Park, Je-Geun Park, and Hyeonsik Cheong. Ising-type magnetic ordering in atomically thin FePS3. Nano letters, 16(12):7433–7438, 2016.
[44] Yujun Deng, Yijun Yu, Yichen Song, Jingzhao Zhang, Nai Zhou Wang, Zeyuan Sun, Yangfan Yi, Yi Zheng Wu, Shiwei Wu, Junyi Zhu, et al. Gate-tunable room temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 563(7729):94-99, 2018.
[45] Jose L Lado and Joaquín Fernández-Rossier. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Materials, 4(3):035002, 2017.
[46] Changsong Xu, Junsheng Feng, Hongjun Xiang, and Laurent Bellaiche. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. npj Computational Materials, 4(1):57, 2018.
[47] Houlong L Zhuang, PRC Kent, and Richard G Hennig. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Physical Review B, 93(13):134407, 2016.
[48] Sarah Jenkins, Levente Rózsa, Unai Atxitia, Richard FL Evans, Kostya S Novoselov, and Elton JG Santos. Breaking through the Mermin-Wagner limit in 2D van der Waals magnets. Nature Communications, 13(1):6917, 2022.
[49] Rebecca C Thompson-Flagg, Maria JB Moura, and M Marder. Rippling of graphene. Europhysics Letters, 85(4):46002, 2009.
[50] Grgur Palle and Denis Karl Sunko. Physical limitations of the Hohenberg–Mermin–Wagner theorem. Journal of Physics A: Mathematical and Theoretical, 54(31):315001, 2021.
[51] Atsushi Koma. Van der Waals epitaxy-a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films, 216(1):72–76, 1992.
[52] Andre K Geim and Irina V Grigorieva. Van der Waals heterostructures. Nature, 499(7459):419–425, 2013.
[53] Sarah J Haigh, Ali Gholinia, Rashid Jalil, Simon Romani, Liam Britnell, Daniel C Elias, Konstantin S Novoselov, Leonid A Ponomarenko, Andre K Geim, and Roman Gorbachev. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nature materials, 11(9):764-767, 2012.
[54] Ahmet Avsar, Jun You Tan, T Taychatanapat, J Balakrishnan, GKW Koon, Y Yeo, J Lahiri, A Carvalho, AS Rodin, ECT O'farrell, et al. Spin–orbit proximity effect in graphene. Nature communications, 5(1):4875, 2014.
[55] Zhe Wang, Dong-Keun Ki, Hua Chen, Helmuth Berger, Allan H MacDonald, and Alberto F Morpurgo. Strong interface-induced spin–orbit interaction in graphene on WS2. Nature communications, 6(1):8339, 2015.
[56] D MacNeill, GM Stiehl, MHD Guimaraes, RA Buhrman, J Park, and DC Ralph. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nature Physics, 13(3):300–305, 2017.
[57] Qiming Shao, Guoqiang Yu, Yann-Wen Lan, Yumeng Shi, Ming-Yang Li, Cheng Zheng, Xiaodan Zhu, Lain-Jong Li, Pedram Khalili Amiri, and Kang L Wang. Strong Rashba-Edelstein effect-induced spin–orbit torques in monolayer transition metal dichalcogenide/ferromagnet bilayers. Nano letters, 16(12):7514–7520, 2016.
[58] Bogdan Karpiak, Aron W Cummings, Klaus Zollner, Marc Vila, Dmitrii Khokhriakov, Anamul Md Hoque, André Dankert, Peter Svedlindh, Jaroslav Fabian, Stephan Roche, et al. Magnetic proximity in a van der Waals heterostructure of magnetic insulator and graphene. 2D Materials, 7(1):015026, 2019.
[59] Chaolong Tang, Zhaowei Zhang, Shen Lai, Qinghai Tan, and Wei-bo Gao. Magnetic proximity effect in graphene/CrBr3 van der Waals heterostructures. Advanced Materials, 32(16):1908498, 2020.
[60] Yaning Wang, Xiang Gao, Kaining Yang, Pingfan Gu, Xin Lu, Shihao Zhang, Yuchen Gao, Naijie Ren, Baojuan Dong, Yuhang Jiang, et al. Quantum Hall phase in graphene engineered by interfacial charge coupling. Nature Nanotechnology, 17(12):1272–1279, 2022.
[61] Cheng Gong, Eun Mi Kim, Yuan Wang, Geunsik Lee, and Xiang Zhang. Multiferroicity in atomic van der Waals heterostructures. Nature communications, 10(1):2657, 2019.
[62] Wei Sun, Wenxuan Wang, Dong Chen, Zhenxiang Cheng, and Yuanxu Wang. Valence mediated tunable magnetism and electronic properties by ferroelectric polarization switching in 2D FeI2/In2Se3 van der Waals heterostructures. Nanoscale, 11(20):9931–9936, 2019.
[63] Wei Sun, Wenxuan Wang, Hang Li, Guangbiao Zhang, Dong Chen, Jianli Wang, and Zhenxiang Cheng. Controlling bimerons as skyrmion analogues by ferroelectric polarization in 2D van der Waals multiferroic heterostructures. Nature communications, 11(1):5930, 2020.
[64] Fumihiro Matsukura, Yoshinori Tokura, and Hideo Ohno. Control of magnetism by electric fields. Nature nanotechnology, 10(3):209–220, 2015.
[65] HA Kramers. L’interaction entre les atomes magnétogènes dans un cristal paramagnétique. Physica, 1(1-6):182–192, 1934.
[66] Michael A McGuire. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals, 7(5):121, 2017.
[67] Kyle L Seyler, Ding Zhong, Dahlia R Klein, Shiyuan Gao, Xiaoou Zhang, Bevin Huang, Efrén Navarro-Moratalla, Li Yang, David H Cobden, Michael A McGuire, et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nature Physics, 14(3):277–281, 2018.
[68] Nikhil Sivadas, Satoshi Okamoto, Xiaodong Xu, Craig J Fennie, and Di Xiao. Stacking-dependent magnetism in bilayer CrI3. Nano letters, 18(12):7658–7664, 2018.
[69] Shengwei Jiang, Lizhong Li, Zefang Wang, Kin Fai Mak, and Jie Shan. Controlling magnetism in 2D CrI3 by electrostatic doping. Nature nanotechnology, 13(7):549-553, 2018.
[70] Shengwei Jiang, Jie Shan, and Kin Fai Mak. Electric-field switching of two dimensional van der Waals magnets. Nature materials, 17(5):406–410, 2018.
[71] Peiheng Jiang, Cong Wang, Dachuan Chen, Zhicheng Zhong, Zhe Yuan, Zhong-Yi Lu, and Wei Ji. Stacking tunable interlayer magnetism in bilayer CrI3. Physical Review B, 99(14):144401, 2019.
[72] Seung Woo Jang, Min Yong Jeong, Hongkee Yoon, Siheon Ryee, and Myung Joon Han. Microscopic understanding of magnetic interactions in bilayer CrI3. Physical Review Materials, 3(3):031001, 2019.
[73] Dahlia R Klein, David MacNeill, Qian Song, Daniel T Larson, Shiang Fang, Mingyu Xu, Raquel A Ribeiro, Paul C Canfield, Efthimios Kaxiras, Riccardo Comin, et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nature Physics, 15(12):1255–1260, 2019.
[74] Zeyuan Sun, Yangfan Yi, Tiancheng Song, Genevieve Clark, Bevin Huang, Yuwei Shan, Shuang Wu, Di Huang, Chunlei Gao, Zhanghai Chen, et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature, 572(7770):497–501, 2019.
[75] John Hubbard. Electron correlations in narrow energy bands. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 276(1365):238–257, 1963.
[76] Philip W Anderson. New approach to the theory of superexchange interactions. Physical Review, 115(1):2, 1959.
[77] RK Nesbet. Antiferromagnetic superexchange effect. Physical Review, 119(2):658, 1960.
[78] Antoine Georges, Luca de’ Medici, and Jernej Mravlje. Strong correlations from Hund's coupling. Annu. Rev. Condens. Matter Phys., 4(1):137–178, 2013.
[79] J Zaanen, GA Sawatzky, and JW Allen. Band gaps and electronic structure of transition-metal compounds. Physical review letters, 55(4):418, 1985.
[80] Daniel I Khomskii. Transition metal compounds. Cambridge University Press, 2014.
[81] JB Goodenough and AL Loeb. Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels. Physical Review, 98(2):391, 1955.
[82] J.B. Goodenough. Magnetism and the Chemical Bond. Inorganic Chemistry Section / Interscience monographs on chemistry. Interscience Publishers, 1963.
[83] Junjiro Kanamori. Superexchange interaction and symmetry properties of electron orbitals. Journal of Physics and Chemistry of Solids, 10(2-3):87–98, 1959.
[84] John B Goodenough. Theory of the role of covalence in the perovskite-type manganites [La, M (II)] MnO3. Physical Review, 100(2):564, 1955.
[85] John B Goodenough. An interpretation of the magnetic properties of the perovskite type mixed crystals La1−xSrxCoO3−λ. Journal of Physics and chemistry of Solids, 6(2-3):287–297, 1958.
[86] Meng-Chien Wang and Ching-Ray Chang.Goodenough-Kanamori-Anderson Rules in CrI3/MoTe2/CrI3 van der Waals heterostructure. Journal of The Electrochemical Society, 169(5):053507, 2022.
[87] Nicolas Ubrig, Zhe Wang, Jérémie Teyssier, Takashi Taniguchi, Kenji Watanabe, Enrico Giannini, Alberto F Morpurgo, and Marco Gibertini. Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals. 2D Materials, 7(1):015007, 2020.
[88] Ahmet Avsar, Alberto Ciarrocchi, Michele Pizzochero, Dmitrii Unuchek, Oleg V Yazyev, and Andras Kis. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nature nanotechnology, 14(7):674–678, 2019.
[89] Ahmet Avsar, Cheol-Yeon Cheon, Michele Pizzochero, Mukesh Tripathi, Alberto Ciarrocchi, Oleg V Yazyev, and Andras Kis. Probing magnetism in atomically thin semiconducting PtSe2. Nature communications, 11(1):4806, 2020.
[90] Zhen Lin, Hui Yan, Jiwen Liu, and Yukai An. Defects engineering monolayer MoSe2 magnetic states for 2D spintronic device. Journal of Alloys and Compounds, 774:160–167, 2019.
[91] Frank Jensen. Introduction to computational chemistry. John wiley & sons, 2017.
[92] Pierre Hohenberg and Walter Kohn. Inhomogeneous electron gas. Physical review, 136(3B):B864, 1964.
[93] Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation effects. Physical review, 140(4A):A1133, 1965.
[94] Richard M. Martin. Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, 2004.
[95] Richard Phillips Feynman. Forces in molecules. Physical review, 56(4):340, 1939.
[96] Peter E Blöchl. Projector augmented-wave method. Physical review B, 50(24):17953, 1994.
[97] Georg Kresse and Daniel Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b, 59(3):1758, 1999.
[98] John P Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Physical review letters, 77(18):3865, 1996.
[99] Sergei L Dudarev, Gianluigi A Botton, Sergey Y Savrasov, CJ Humphreys, and Adrian P Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical Review B, 57(3):1505, 1998.
[100] Stefan Grimme. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of computational chemistry, 27(15):1787–1799, 2006.
[101] Peter E Blöchl, Ove Jepsen, and Ole Krogh Andersen. Improved tetrahedron method for Brillouin-zone integrations. Physical Review B, 49(23):16223, 1994.
[102] Hendrik J Monkhorst and James D Pack. Special points for Brillouin-zone integrations. Physical review B, 13(12):5188, 1976.
[103] Koichi Momma and Fujio Izumi. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of applied crystallography, 44(6):1272–1276, 2011.
[104] Wei-Bing Zhang, Qian Qu, Peng Zhu, and Chi-Hang Lam. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. Journal of Materials Chemistry C, 3(48):12457–12468, 2015.
[105] Yandong Ma, Ying Dai, Meng Guo, Chengwang Niu, Jibao Lu, and Baibiao Huang. Electronic and magnetic properties of perfect, vacancy-doped, and non metal adsorbed MoSe2, MoTe2 and WS2 monolayers. Physical Chemistry Chemical Physics, 13(34):15546–15553, 2011.
[106] Michael A McGuire, Hemant Dixit, Valentino R Cooper, and Brian C Sales. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chemistry of Materials, 27(2):612–620, 2015.
[107] Tôru Moriya. Anisotropic superexchange interaction and weak ferromagnetism. Physical review, 120(1):91, 1960.
[108] Jie Liu, Mengchao Shi, Jiwu Lu, and MP Anantram. Analysis of electrical-field dependent Dzyaloshinskii-Moriya interaction and magnetocrystalline anisotropy in a two-dimensional ferromagnetic monolayer. Physical review b, 97(5):054416, 2018.
[109] Sahar Izadi Vishkayi, Zahra Torbatian, Alireza Qaiumzadeh, and Reza Asgari. Strain and electric-field control of spin-spin interactions in monolayer CrI3. Physical Review Materials, 4(9):094004, 2020.
[110] Matthias Bode, M Heide, K Von Bergmann, P Ferriani, Stefan Heinze, G Bihlmayer, A Kubetzka, O Pietzsch, Stefan Blügel, and R Wiesendanger. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature, 447(7141):190-193, 2007.
[111] Albert Fert, Nicolas Reyren, and Vincent Cros. Magnetic skyrmions: advances in physics and potential applications. Nature Reviews Materials, 2(7):1–15, 2017.
[112] Yingying Wu, Senfu Zhang, Junwei Zhang, Wei Wang, Yang Lin Zhu, Jin Hu, Gen Yin, Kin Wong, Chi Fang, Caihua Wan, et al. Néel-type skyrmion in WTe2/Fe3GeTe2 van der Waals heterostructure. Nature communications, 11(1):3860, 2020.
[113] Can Onur Avci, Charles-Henri Lambert, Giacomo Sala, and Pietro Gambardella. Chiral coupling between magnetic layers with orthogonal magnetization. Physical review letters, 127(16):167202, 2021.
[114] Srdjan Stavrić, Paolo Barone, and Silvia Picozzi. Delving into the anisotropic interlayer exchange in bilayer CrI3. 2D Materials, 11(1):015020, 2023.
[115] Alberto Ciarrocchi, Ahmet Avsar, Dmitry Ovchinnikov, and Andras Kis. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nature communications, 9(1):919, 2018.
[116] Lei Zhang, Tong Yang, Muhammad Fauzi Sahdan, Arramel, Wenshuo Xu, Kai jian Xing, Yuan Ping Feng, Wenjing Zhang, Zhuo Wang, and Andrew TS Wee. Precise Layer-Dependent Electronic Structure of MBE-Grown PtSe2. Advanced Electronic Materials, 7(11):2100559, 2021.
[117] Jannik C Meyer, Andre K Geim, Mikhail I Katsnelson, Konstantin S Novoselov, Tim J Booth, and Siegmar Roth. The structure of suspended graphene sheets. Nature, 446(7131):60–63, 2007.
[118] Annalisa Fasolino, JH Los, and Mikhail I Katsnelson. Intrinsic ripples in graphene. Nature materials, 6(11):858–861, 2007.
[119] V Geringer, M Liebmann, T Echtermeyer, S Runte, M Schmidt, R Rückamp, MC Lemme,and M Morgenstern. Intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO2. Physical review letters, 102(7):076102, 2009.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95319-
dc.description.abstract自從2017年二維磁性在單層三碘化鉻(CrI3)和碲化鉻鍺(CrGeTe3)中被觀察到後,二維凡德瓦磁性系統由於其在基礎物理中的重要性和低功耗器件中的潛在應用,受到了廣泛的研究。特別是,含有二維磁性材料的凡德瓦異質結構為通過介面效應來操縱二維磁性的研究提供了一個新的平台。三碘化鉻因其有趣的層數相關和堆疊相關磁性現象而成為最被廣泛研究的二維凡德瓦磁性材料。在此論文中,我們使用第一性原理計算研究了由三碘化鉻和二維過渡金屬二硫族化物組成的凡德瓦異質結構中的層間磁耦合。在第三章中,我們發現儘管AB堆疊的雙層三碘化鉻表現出層間鐵磁耦合,但在三碘化鉻/二碲化鉬(MoTe2)/三碘化鉻三層結構中,兩層三碘化鉻之間的層間磁耦合變成了反鐵磁。由於凡德瓦異質結構中的層間磁耦合主要由超交換作用機制主導,我們基於超交換作用理論對這一結果進行了討論。我們將層間耦合的變化歸因於超交換路徑的改變。在第四章中,我們研究了三碘化鉻的固有磁性與二硒化鉬(MoSe2)和二硒化鉑(PtSe2)中的缺陷誘導磁性之間的層間磁耦合。我們的結果顯示,過渡金屬空缺誘導的磁矩與相鄰的鐵磁性三碘化鉻之間的層間磁耦合是鐵磁耦合。在最後一部分,受北京理工大學吳漢春教授的實驗結果啟發,我們探討了二硒化錸(ReSe2)/石墨烯中皺摺結構誘導磁性和缺陷誘導磁性的可能性。我們發現,單靠皺摺不能解釋在二硒化錸/石墨烯異質結構中觀察到的磁響應。zh_TW
dc.description.abstractSince the discovery of 2D magnetism in monolayer CrI3 and CrGeTe3 in 2017, 2D van der Waals (vdW) magnetic systems have been intensively studied because of their importance in fundamental physics and prospective applications in low-power devices. In particular, vdW heterostructures containing 2D magnetic materials have offered a new platform for studying the manipulation of 2D magnetism via interfacial effect. Chromium triiodide (CrI3) is the most intensively studied 2D vdW magnetic material for its interesting layer-dependent and stacking-dependent magnetism. In this dissertation, we investigate the interlayer magnetic coupling in vdW heterostructures composed of CrI3 and 2D transition metal dichalcogenides (TMDs) using first principle calculation. In Chapter 3, we found that while the AB stacking bilayer CrI3 exhibits interlayer ferromagnetic coupling, the interlayer magnetic coupling between two layers of CrI3 becomes antiferromagnetic in the CrI3/MoTe2/CrI3 trilayer structure. Since the interlayer magnetic coupling in vdW heterostructures is dominated by the superexchange mechanism, this result is discussed based on superexchange theory. We attribute the change of interlayer coupling to the modification of superexchange path. In Chapter 4, we investigate the interlayer magnetic coupling between intrinsic magnetism in CrI3 and defect-induced magnetism in molybdenum diselenide (MoSe2) and Platinum diselenide (PtSe2). Our result shows that the transition metal vacancy-induced magnetic moments couple ferromagnetically to the adjacent ferromagnetic CrI3. In the last part, motivated by the experimental results of our collaborator, Prof. Han-Chun Wu at the Beijing Institute of Technology, we explore the possibilities of wrinkle structure induced magnetism and defect-induced magnetism in ReSe2/graphene. We found that wrinkles alone cannot account for the observed magnetic response in ReSe2/graphene heterostructure.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-05T16:08:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-05T16:08:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 v
Abstract vii
List of Publications ix
Contents xi
List of Figures xiii
List of Tables xvii
Chapter 1 Introduction 1
1.1 2D vdW magnetic system 1
1.2 vdW heterostructures 6
1.3 Theory of superexchange interaction 7
1.4 Outline and motivation 17
Chapter 2 Method: Density functional theory 21
2.1 Kohn-sham density functional theory 21
2.2 Computational details 24
Chapter 3 Interlayer magnetic coupling in CrI3/MoTe2/CrI3 trilayer structure 27
3.1 Monolayer CrI3 27
3.2 CrI3/MoTe2 bilayer structure 31
3.3 CrI3/MoTe2/CrI3 trilayer structure 34
Chapter 4 Interlayer magnetic coupling in vdW heterostructure composed of CrI3 and defective TMD 45
4.1 Defect-induced magnetism in MoSe2 and PtSe2 45
4.2 Interlayer magnetic coupling in CrI3/Mo15Se32 heterostructure 51
4.3 Interlayer magnetic coupling in CrI3/Pt15Se32 heterostructure 53
Chapter 5 Magnetic properties of ReSe2/graphene vdW heterostructure 55
5.1 Wrinkled ReSe2/graphene heterostructure 55
5.2 Defective ReSe2/graphene heterostructure 60
References 65
-
dc.language.isoen-
dc.subject缺陷誘導磁性zh_TW
dc.subject二維凡德瓦磁性系統zh_TW
dc.subject第一原理計算zh_TW
dc.subject凡德瓦異質結構zh_TW
dc.subject層間磁交互作用zh_TW
dc.subject2D vdW magnetic systemen
dc.subjectfirst principle calculationen
dc.subjectinterlayer magnetic couplingen
dc.subjectvdW heterostructureen
dc.subjectdefect-induced magnetismen
dc.title缺陷和介面在二維磁性凡德瓦異質結構中的作用zh_TW
dc.titleThe role of defects and interface in 2D magnetic van der Waals heterostructuresen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee傅蕙如;馬遠榮;蔡政達;謝馬利歐zh_TW
dc.contributor.oralexamcommitteeHuei-Ru Fuh;Yuan-Ron Ma;Jeng-Da Chai;Mario Hofmannen
dc.subject.keyword二維凡德瓦磁性系統,層間磁交互作用,凡德瓦異質結構,第一原理計算,缺陷誘導磁性,zh_TW
dc.subject.keyword2D vdW magnetic system,interlayer magnetic coupling,vdW heterostructure,first principle calculation,defect-induced magnetism,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202403930-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf7.9 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved