請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95212完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江莉琦 | zh_TW |
| dc.contributor.advisor | Li-Chi Chiang | en |
| dc.contributor.author | 李旻靜 | zh_TW |
| dc.contributor.author | Min Jing Li | en |
| dc.date.accessioned | 2024-09-02T16:08:21Z | - |
| dc.date.available | 2024-09-03 | - |
| dc.date.copyright | 2024-09-02 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | Abbaspour, K. C. (2015). SWAT-CUP SWATCalibration and Uncertainty Programs. Eawag.
Abu El-Nasr, A., Arnold, J. G., Feyen, J., & Berlamont, J. (2005). Modelling the hydrology of a catchment using a distributed and a semi-distributed model. Hydrological Processes, 19(3), 573–587. https://doi.org/10.1002/HYP.5610 Ahialey, E. K., Kabo–Bah, A. T., & Gyamfi, S. (2023). Impacts of LULC and climate changes on hydropower generation and development: A systematic review. Heliyon, 9(11), e21247. https://doi.org/10.1016/J.HELIYON.2023.E21247 Arnold, J. G., Allen, P. M., & Bernhardt, G. (1993). A comprehensive surface-groundwater flow model. Journal of Hydrology, 142(1–4), 47–69. https://doi.org/10.1016/0022-1694(93)90004-S Bailey, R., & Park, S. (2019). SWAT-MODFLOW Tutorial Version 3 Documentation for preparing and running SWAT-MODFLOW simulations In Association With. Bailey, R. T., Wible, T. C., Arabi, M., Records, R. M., & Ditty, J. (2016). Assessing regional-scale spatio-temporal patterns of groundwater–surface water interactions using a coupled SWAT-MODFLOW model. Hydrological Processes, 30(23), 4420–4433. https://doi.org/10.1002/hyp.10933 Cai, Y., Yin, Y., Kuang, X., Hao, Y., Liu, J., & Zheng, C. (2023). Review: Specific storage in aquitards. Hydrogeology Journal 2023 31:8, 31(8), 1999–2019. https://doi.org/10.1007/S10040-023-02706-6 Chathuranika, I. M., Gunathilake, M. B., Baddewela, P. K., Sachinthanie, E., Babel, M. S., Shrestha, S., Jha, M. K., & Rathnayake, U. S. (2022). Comparison of Two Hydrological Models, HEC-HMS and SWAT in Runoff Estimation: Application to Huai Bang Sai Tropical Watershed, Thailand. Fluids 2022, Vol. 7, Page 267, 7(8), 267. https://doi.org/10.3390/FLUIDS7080267 Chowdhury, F., Gong, J., Rau, G. C., & Timms, W. A. (2022). Multifactor analysis of specific storage estimates and implications for transient groundwater modelling. Hydrogeology Journal, 30(7), 2183–2204. https://doi.org/10.1007/S10040-022-02535-Z/FIGURES/7 Dao Nguyen Khoi. (2015). COMPARISION OF THE HEC-HMS AND SWAT HYDROLOGICAL MODELS IN SIMULATING THE STREAMFLOW. Journal of Science and Technology 53 (5A). https://www.researchgate.net/publication/301232180_COMPARISION_OF_THE_HECHMS_AND_SWAT_HYDROLOGICAL_MODELS_IN_SIMULATING_THE_STREAMFLOW Dibaj, M., Javadi, A. A., Akrami, M., Ke, K. Y., Farmani, R., Tan, Y. C., & Chen, A. S. (2021). Coupled three-dimensional modelling of groundwater-surface water interactions for management of seawater intrusion in Pingtung Plain, Taiwan. Journal of Hydrology: Regional Studies, 36, 100850. https://doi.org/10.1016/J.EJRH.2021.100850 Eshtawi, T., Evers, M., Tischbein, B., & Diekkrüger, B. (2016). Integrated hydrologic modeling as a key for sustainable urban water resources planning. Water Research, 101, 411–428. https://doi.org/10.1016/J.WATRES.2016.05.061 Freeze, R. A., & Cherry, J. A. (1979). Groundwater. https://fc79.gw-project.org/english/chapter-2/ Gyamfi, C., Ndambuki, J. M., Anornu, G. K., & Kifanyi, G. E. (2017). Groundwater recharge modelling in a large scale basin: an example using the SWAT hydrologic model. Modeling Earth Systems and Environment, 3(4), 1361–1369. https://doi.org/10.1007/S40808-017-0383-Z/METRICS Harter, T., & Morel-Seytoux, H. (2013). Groundwater Model Software Evaluation for California California Water and Environmental Modeling Forum Promoting Excellence and Consensus in Water and Environmental Modeling Peer Review of the IWFM, MODFLOW and HGS Model Codes: Potential for Water Management Applications in California’s Central Valley and Other Irrigated Groundwater Basins. Ibrikci, H., Cetin, M., Karnez, E., Kirda, C., Topcu, S., Ryan, J., Oztekin, E., Dingil, M., Korkmaz, K., & Oguz, H. (2012). Spatial and Temporal Variability of Groundwater Nitrate Concentrations in Irrigated Mediterranean Agriculture. Communications in Soil Science and Plant Analysis, 43(1–2), 47–59. https://doi.org/10.1080/00103624.2012.631413 Kim, N. W., Chung, I. M., Won, Y. S., & Arnold, J. G. (2008). Development and application of the integrated SWAT-MODFLOW model. Journal of Hydrology, 356(1–2), 1–16. https://doi.org/10.1016/J.JHYDROL.2008.02.024 Leonard J. Lane. (1983). Transmission Losses United States Department of Agriculture Natural Resources Conservation Service. Line Conan, C., Bouraoui, F., Turpin, N., De Marsily, G., & Bidoglio, G. (2003). Modeling Flow and Nitrate Fate at Catchment Scale in Brittany (France). Journal of Environmental Quality, 32(6), 2026–2032. https://doi.org/10.2134/JEQ2003.2026 Mannschatz, T., Wolf, T., & Hülsmann, S. (2016). Nexus Tools Platform: Web-based comparison of modelling tools for analysis of water-soil-waste nexus. Environmental Modelling & Software, 76, 137–153. https://doi.org/10.1016/J.ENVSOFT.2015.10.031 Mohammad, M. E., Al-Ansari, N., & Knutsson, S. (2016). Annual Runoff and Sediment in Duhok Reservoir Watershed Using SWAT and WEPP Models. Engineering, 08(07), 410–422. https://doi.org/10.4236/ENG.2016.87038 Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Transactions of the ASABE, 58(6), 1763–1785. https://doi.org/10.13031/TRANS.58.10715 Moriasi, D. N., Wilson, B. N., Douglas-Mankin, K. R., Arnold, J. G., Gowda, P. H., & Moriasi, D. N. (2012). Hydrologic and Water Quality Models: Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1241–1247. https://doi.org/10.13031/2013.42265 Motallebian, M., Ahmadi, H., Raoof, A., & Cartwright, N. (2019). An alternative approach to control saltwater intrusion in coastal aquifers using a freshwater surface recharge canal. Journal of Contaminant Hydrology, 222, 56–64. https://doi.org/10.1016/J.JCONHYD.2019.02.007 Nandgude, N., Singh, T. P., Nandgude, S., & Tiwari, M. (2023). Drought Prediction: A Comprehensive Review of Different Drought Prediction Models and Adopted Technologies. Sustainability 2023, Vol. 15, Page 11684, 15(15), 11684. https://doi.org/10.3390/SU151511684 Narula, K. K., & Gosain, A. K. (2013). Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin. Science of The Total Environment, 468–469, S102–S116. https://doi.org/10.1016/J.SCITOTENV.2013.01.022 Nguyen, V. T., & Dietrich, J. (2018). Modification of the SWAT model to simulate regional groundwater flow using a multicell aquifer. Hydrological Processes, 32(7), 939–953. https://doi.org/10.1002/HYP.11466 Niswonger, R. G., Geological Survey, U. S., & Panday, S. (2011). MODFLOW-NWT, A Newton Formulation for MODFLOW-2005 Section A, Groundwater Book 6, Modeling Techniques Groundwater Resources Program. http://www.usgs.gov/pubprod Ou, X., Hu, Y., Li, X., Guo, S., & Liu, B. (2021). Advancements and challenges in rill formation, morphology, measurement and modeling. CATENA, 196, 104932. https://doi.org/10.1016/J.CATENA.2020.104932 Park, S., Nielsen, A., Bailey, R. T., Trolle, D., & Bieger, K. (2019). A QGIS-based graphical user interface for application and evaluation of SWAT-MODFLOW models. Environmental Modelling & Software, 111, 493–497. https://doi.org/10.1016/J.ENVSOFT.2018.10.017 Paul, P. K., Zhang, Y., Ma, N., Mishra, A., Panigrahy, N., & Singh, R. (2021). Selecting hydrological models for developing countries: Perspective of global, continental, and country scale models over catchment scale models. Journal of Hydrology, 600, 126561. https://doi.org/10.1016/J.JHYDROL.2021.126561 Ranatunga, K., Nation, E. R., & Barratt, D. G. (2008). Review of soil water models and their applications in Australia. Environmental Modelling & Software, 23(9), 1182–1206. https://doi.org/10.1016/J.ENVSOFT.2008.02.003 Rock, G., & Kupfersberger, H. (2018). 3D modeling of groundwater heat transport in the shallow Westliches Leibnitzer Feld aquifer, Austria. Journal of Hydrology, 557, 668–678. https://doi.org/10.1016/J.JHYDROL.2017.12.060 Saleh, A., & Du, B. (2004). Evaluation Of Swat And Hspf Within Basins Program For The Upper North Bosque River Watershed In Central Texas. Transactions of the ASAE, 47(4), 1039–1049. https://doi.org/10.13031/2013.16577 Saturated-Unsaturated Transport (SUTRA). (2010). https://www.appsolutelydigital.com/ModelPrimer/chapter3_section2.html Sith, R., Watanabe, A., Nakamura, T., Yamamoto, T., & Nadaoka, K. (2019). Assessment of water quality and evaluation of best management practices in a small agricultural watershed adjacent to Coral Reef area in Japan. Agricultural Water Management, 213, 659–673. https://doi.org/10.1016/J.AGWAT.2018.11.014 Sophocleous, M. A., Koelliker, J. K., Govindaraju, R. S., Birdie, T., Ramireddygari, S. R., & Perkins, S. P. (1999). Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas. Journal of Hydrology, 214(1–4), 179–196. https://doi.org/10.1016/S0022-1694(98)00289-3 Surinaidu, L., Muthuwatta, L., Amarasinghe, U. A., Jain, S. K., Ghosh, N. C., Kumar, S., & Singh, S. (2016). Reviving the Ganges Water Machine: Accelerating surface water and groundwater interactions in the Ramganga sub-basin. Journal of Hydrology, 540, 207–219. https://doi.org/10.1016/J.JHYDROL.2016.06.025 Tang, T., Strokal, M., van Vliet, M. T. H., Seuntjens, P., Burek, P., Kroeze, C., Langan, S., & Wada, Y. (2019). Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide. Current Opinion in Environmental Sustainability, 36, 39–48. https://doi.org/10.1016/J.COSUST.2018.10.004 Vats, O. P., Sharma, B., Stamm, J., & Bhattacharjya, R. K. (2020). Groundwater Circulation Well for Controlling Saltwater Intrusion in Coastal aquifers: Numerical study with Experimental Validation. Water Resources Management, 34(11), 3551–3563. https://doi.org/10.1007/S11269-020-02635-Z/FIGURES/6 Waseem, M., Kachholz, F., & Tränckner, J. (2018a). Suitability of common models to estimate hydrology and diffuse water pollution in North-eastern German lowland catchments with intensive agricultural land use. Frontiers of Agricultural Science and Engineering, 5(4), 420–431. https://doi.org/10.15302/J-FASE-2018243 Waseem, M., Kachholz, F., & Tränckner, J. (2018b). Suitability of common models to estimate hydrology and diffuse water pollution in North-eastern German lowland catchments with intensive agricultural land use. Frontiers of Agricultural Science and Engineering, 5(4), 420–431. https://doi.org/10.15302/J-FASE-2018243 Xie, H., & Lian, Y. (2013). Uncertainty-based evaluation and comparison of SWAT and HSPF applications to the Illinois River Basin. Journal of Hydrology, 481, 119–131. https://doi.org/10.1016/J.JHYDROL.2012.12.027 Yang, J., Reichert, P., Abbaspour, K. C., Xia, J., & Yang, H. (2008). Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of Hydrology, 358(1–2), 1–23. https://doi.org/10.1016/J.JHYDROL.2008.05.012 Yuan, L., Sinshaw, T., & Forshay, K. J. (2020). Review of Watershed-Scale Water Quality and Nonpoint Source Pollution Models. Geosciences, 10(25), 1. https://doi.org/10.3390/GEOSCIENCES10010025 Zhang, Q., & Wang, H. (2020). Assessment of sources and transformation of nitrate in the alluvial-pluvial fan region of north China using a multi-isotope approach. Journal of Environmental Sciences, 89, 9–22. https://doi.org/10.1016/J.JES.2019.09.021 中興工程顧問股份有限公司,2007,濁水溪沖積扇地面地下水聯合運用管理模式建立與機制評估。 多采工程顧問有限公司,2019,地下水可用水量調查分析-濁水溪沖積扇。 國立交通大學土木工程系,2009,地下水補注潛勢評估與地下水模式建置 (1/4),主辦單位: 經濟部地質調查及礦業管理中心。 國立陽明交通大學、國立中央大學、嘉南藥理大學,2021,地表補注潛勢評估與地下地質架構分析(1/4),主辦單位:經濟部地質調查及礦業管理中心。 江崇榮、黃智昭、陳瑞娥,2006,以地下水歷線分析法評估濁水溪沖積扇之地下水收支,經濟部中央地質調查所彙刊,第19號,61–89頁。 李振皓、許清荃、林俶寬,2000,濁水溪沖積扇多層地下水調配與管理之研究,台灣水利學報,第48卷,第4期,41-52頁。 徐年盛、江崇榮、汪中和、劉振宇、劉宏仁、黃建霖,2011,多類灌溉型式下地下水系統抽水量與補注量之估算,農業工程學報,第58卷,第1期,69-90頁 葉明生、簡金龍、李文生,2020,地下水環境限制水位與可用水量分析 -以濁水溪沖積扇為例. 農業工程學報,第66卷,第2期,43–51頁。 黃智昭、陸挽中、張閔翔,2015,濁水溪沖積扇地下水補注地質敏感區之劃定,經濟部中央地質調查所彙刊,第28號,55-91頁。 易恩,2020,利用SWAT-MODFLOW評估氣候變遷下菲律賓Marikina集水區地表水與地下水資源變化時空分布,國立臺灣海洋大學,碩士論文。 游沛芷,2020,應用地面地下水耦合數值模式推估地面地下交互作用量-以台中盆地為例,國立交通大學,碩士論文。 李心惟,2014,結合HEC-RAS 與MODFLOW於濁水溪沖積扇地下水與地層下陷模擬,國立成功大學,碩士論文。 林聖婷,2012,濁水溪沖積扇補注量與抽水量空間分佈模式建立. 國立台灣大學,碩士論文。 陳易暄,2019,合歡山集水區水文特徵及其對氣候變化衝擊影響評估之研究,國立成功大學,碩士論文。 蔡清研,2007,濁水溪沖積扇整合模式下之 MODFLOW,國立中正大學,碩士論文。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95212 | - |
| dc.description.abstract | 濁水溪流域和濁水溪沖積扇位於台灣中部,是重要的水資源區,涵蓋山地、丘陵和平原,對農業和經濟發展至關重要,隨著經濟發展和人類活動增加,水資源需求和污染負荷增大,工業廢水和生活污水排放,導致營養鹽進入水體,可能污染地表和地下水,這些污染物通過地表逕流和入滲進入地下水系統,對水質管理構成挑戰,水文過程中的地表逕流、河川和地下水交換以及污染物的傳輸和分布有著重要影響。
本研究針對地表水和地下水在水文循環中之互動,特別是降雨產生之地表逕流如何影響地下水系統進行研究,為了全面考量降雨所產生之地面與河川逕流以及降雨入滲機制,整合了SWAT模式和MODFLOW模式,並進一步加入RT3D模式來模擬在濁水溪流域內不同土地利用類型下,營養鹽中NO3-N與PO4-P之傳輸和化學反應。SWAT模式與MODFLOW模式之模擬期間是皆從2000年至2021年,其中在SWAT模式中暖機期為2年(2000-2001年),採用日模擬,MODFLOW模式以日為單位,時間間距採用月做切分,由於在耦合模式中,SWAT模式有設定暖機期,並不會給MODFLOW模式資料,因此MODFLOW模式的檢定從2002年開始。 研究主要目標包括:(1) 建立SWAT-MODFLOW模式,模擬推估濁水溪沖積扇之降雨補注量、河川與含水層交換量;(2) 評估 SWAT-MODFLOW-RT3D模式之適用性,通過模式率定與驗證,確保模式能夠反應流域內之水文過程;(3) 了解不同土地利用類型下NO3-N與PO4-P在地表水和地下水中之運輸,系統分析其遷移、轉化和最終歸宿。研究成果探討包括SWAT流量模擬結果、MODFLOW率定驗證結果、河川與含水層交換量和NO3-N與PO4-P傳輸結果等。 研究結果顯示,SWAT模式在9個測站中流量模擬表現,根據Moriasi et al.(2015)標準統計值大多滿意(satisfactory),其中,率定期R2平均在0.71,NSE平均在0.55,且PBIAS大部分在45%以下,而驗證期R2平均在0.67,NSE平均在0.63,PBIAS大部分在45%左右。經率定後,單純的MODFLOW模式的水頭誤差大多在2.5 m以內,年平均抽水量為26.48億噸,年平均補注量為27.23億噸。而耦合後的SWAT-MODFLOW模式,SWAT模式推估之年平均補注量約14.77億噸,年平均補注量約為年平均降雨量0.36倍。河川與含水層的交換率方面,在扇頂與扇尾區域主要是河川入滲至含水層,而在扇央區域則主要是含水層出滲至河川。SWAT-MODFLOW-RT3D 模式結果顯示,NO3-N 和PO4-P濃度隨時間和空間顯著變化,PO4-P的濃度兩者呈現相似的動態,相較於 NO3-N,PO4-P因為容易被土壤吸附和固化,其濃度遠低於 NO3-N,而NO3-N 具有較高的溶解度和移動性,因此濃度較高。 本研究提供了詳細之SWAT-MODFLOW-RT3D模式架構建置方法,可作為其他流域進行水文與環境研究時之模擬方法,具有應用潛力,建議未來在研究上可加強模式改進、長期監測及跨部門協作,以推動水資源的可持續利用與保護,確保區域經濟與生態環境的協調發展,尤其是在氣候變遷的背景下,研究應進一步探討極端天氣事件對水資源和水質的影響,並納入更多的環境變量和人類活動影響,以提升模型的預測能力和適用性,將能更有效地應對未來的挑戰,保障水資源的可持續管理與利用。 | zh_TW |
| dc.description.abstract | The Zhuoshui River Basin and Zhuoshui River alluvial fan, located in central Taiwan, are crucial water resource areas. The basin encompasses mountainous, hilly, and plain, with diverse topography and abundant water resources, essential for agricultural production and economic development. With economic development and increased human activities, the demand and utilization of water resources have imposed a significant load. The demand for water resources and pollution loads have increased, leading to the discharge of industrial wastewater and domestic sewage. This discharge introduces nutrients such as nitrogen and phosphorus into water bodies, potentially contaminating surface and groundwater. These pollutants enter the groundwater system through surface runoff and infiltration, posing significant challenges for water quality management. The hydrological processes of surface runoff, river flow, groundwater exchange, and the transport and distribution of pollutants are critical factors affecting water quality management.
This study focuses on the interaction between surface water and groundwater in the hydrological cycle, particularly how surface runoff generated by rainfall affects the groundwater system. To comprehensively consider surface and river runoff and the infiltration mechanisms caused by rainfall, the study integrates the SWAT and MODFLOW models, further incorporating the RT3D model to simulate the transport and chemical reactions of NO3-N and soluble phosphorus under different land use types within the Zhuoshui River Basin. The simulation period for both the SWAT and MODFLOW models spans from 2000 to 2021, with a warm-up period of 2 years (2000-2001) for the SWAT model, using daily simulations. The MODFLOW model operates using daily units, with a time step of monthly intervals. Since the SWAT model has a 2-year warm-up period (2000-2001) that does not provide data to the MODFLOW model, the calibration period for the MODFLOW model begins in 2002. The main objectives include the following. The first objective is to establish the SWAT-MODFLOW model to estimate rainfall recharge and river-aquifer exchange in the Zhuoshui River alluvial fan. The second objective is to evaluate the applicability of the SWAT-MODFLOW-RT3D model by calibrating and validating the model to ensure it accurately reflects hydrological processes within the study area. The third objective is to understand the transport of NO3-N and dissolved phosphorus(PO4-P) in surface and groundwater under different land use types, systematically analyzing their dynamic movement, transformation, and ultimate fate. The results indicate that the flow simulation performance of the SWAT model at nine stations is generally satisfactory based on the statistical criteria established by Moriasi et al. (2015). During the calibration period, the mean R² was 0.71, the mean NSE was 0.55, and most PBIAS values were below 45%. In the validation period, the mean R² was 0.67, the mean NSE was 0.63, and most PBIAS values were approximately 45%. The groundwater head error in the MODFLOW model was mostly within 2.5 meters. The annual average pumping volume was 2.65 billion tons, and the annual average recharge volume was 2.72 billion tons. The SWAT model estimated an average annual recharge volume of approximately 1.47 billion cubic meters, which is about 0.36 times the average annual rainfall. Regarding river-aquifer exchange rates, infiltration from the river to the aquifer was the main process in the fan top and tail regions, while exfiltration from the aquifer to the river was the primary process in the fan middle region The SWAT-MODFLOW-RT3D model results show significant temporal and spatial variations in NO3-N and PO4-P concentrations, with PO4-P exhibiting similar dynamics. Compared to NO3-N, PO4-P is more readily adsorbed and solidified by the soil, resulting in lower concentrations, whereas NO3-N, due to its higher solubility and mobility, exhibits higher concentrations. This study provides detailed methods for constructing the SWAT-MODFLOW-RT3D framework, serving as a reference for hydrological and environmental research in other watersheds and demonstrating potential for application. It is recommended that future research focus on model improvements, long-term monitoring, and interdepartmental collaboration to promote sustainable use and protection of water resources, ensuring the coordinated development of regional economies and ecological environments. Especially in climate change, further investigation into the impact of extreme weather events on water resources and quality is needed. Incorporating more environmental variables and human activity impacts will enhance the model's predictive capabilities and applicability. Through these efforts, we can more effectively address future challenges and ensure water resources' sustainable management and utilization. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-02T16:08:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-02T16:08:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 I
ABSTRACT III 圖次 VII 表次 IX 名詞定義 X 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究流程 2 第二章 文獻回顧 5 2.1 水文模式 5 2.2 地下水數值模式 12 2.3 SWAT-MODFLOW模式之相關研究 16 2.4 濁水溪相關地表地下水流模擬 19 第三章 研究方法 20 3.1 SWAT水文模式理論概述 20 3.1.1 地面逕流量及水文平衡 20 3.1.2 淺層與深層地下水 23 3.1.3 硝酸鹽氮 25 3.1.4 SWAT-CUP 參數檢定 26 3.2 MODFLOW 地下水數值模式理論概述 28 3.2.1 MODFLOW 模式模組 30 3.2.2 MODFLOW率定流程 32 3.2.3 補注量與抽水量分析 32 3.3 RT3D 理論概述 34 3.4 SWAT-MODFLOW-RT3D模式 35 3.4.1 SWAT-MODFLOW 模式理論概述 36 3.4.2 SWAT-MODFLOW模式建置流程 37 3.4.3 SWAT-MODFLOW-RT3D模式建置流程 37 第四章 研究區域概述與模式建置 39 4.1 研究區域 39 4.1.1 濁水溪沖積扇地質架構 39 4.1.2 水文地質參數 42 4.1.3 地下水位資料補遺與校正 44 4.2 SWAT 輸入資料整合 46 4.2.1 氣候及水文測站資料前處理 47 4.2.2 整合土地利用圖資 48 4.2.3 土壤資料補遺 50 4.3 MODFLOW模式建置 51 4.3.1 模擬區域水文地質架構 51 4.3.2 模式邊界條件與網格劃分 52 4.3.3 水文地質參數與初始條件 53 4.3.4 河川模組設定 56 4.4 SWAT-MODFLOW-RT3D模式建置 57 第五章 結果與討論 59 5.1 SWAT水文模式率定與驗證 59 5.1.1 流量參數敏感度分析 60 5.1.2 流量率定與驗證 61 5.2 MODFLOW模式率定與驗證 64 5.2.1 模式率定結果 64 5.2.2 模式驗證與補注量與抽水量推估 69 5.3 河川水位模擬 73 5.4 河川與含水層交換量 74 5.5 補注量推估 78 5.5.1 SWAT模式推估之補注量與區域降雨量比較 78 5.5.2 SWAT-MODFLOW模式中SWAT模式補注深度 80 5.6 地下水位模擬差異 81 5.7 營養鹽傳輸 83 5.7.1 SWAT模式中土地利用對營養鹽之影響 83 5.7.2 SWAT-MODFLOW-RT3D中營養鹽結果 85 第六章 結論與建議 93 6.1 結論 93 6.2 建議 94 參考文獻 95 附錄A 各流量測站率定與驗證圖 附A-1 附錄B 流量參數率定範圍表 附B-1 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 營養鹽傳輸 | zh_TW |
| dc.subject | MODFLOW | zh_TW |
| dc.subject | RT3D | zh_TW |
| dc.subject | 濁水溪沖積扇 | zh_TW |
| dc.subject | 濁水溪流域 | zh_TW |
| dc.subject | SWAT | zh_TW |
| dc.subject | nutrient transport | en |
| dc.subject | Zhuoshui River Basin | en |
| dc.subject | Zhuoshui River alluvial fan | en |
| dc.subject | SWAT | en |
| dc.subject | MODFLOW | en |
| dc.subject | RT3D | en |
| dc.title | 研析濁水溪流域地表-地下水文與營養鹽之時空分布:SWAT-MODFLOW模式之應用 | zh_TW |
| dc.title | Simulating the Spatiotemporal Distribution of Surface-Groundwater Hydrology and Nutrients in the Zhuoshui River Basin: Application of SWAT-MODFLOW model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡瑞彬;楊尊華;陳祐誠;陳豐文 | zh_TW |
| dc.contributor.oralexamcommittee | Jui-Pin Tsai;Tsun-Hua Yang;You-Cheng Chen;Feng-Wen Chen | en |
| dc.subject.keyword | 濁水溪流域,濁水溪沖積扇,SWAT,MODFLOW,RT3D,營養鹽傳輸, | zh_TW |
| dc.subject.keyword | Zhuoshui River Basin,Zhuoshui River alluvial fan,SWAT,MODFLOW,RT3D,nutrient transport, | en |
| dc.relation.page | 109 | - |
| dc.identifier.doi | 10.6342/NTU202403516 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物環境系統工程學系 | - |
| dc.date.embargo-lift | 2029-08-05 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 9.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
