Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95207
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭光宇zh_TW
dc.contributor.advisorGuang-Yu Guoen
dc.contributor.author洪銓佑zh_TW
dc.contributor.authorChuan Yu Hungen
dc.date.accessioned2024-08-30T16:11:26Z-
dc.date.available2024-08-31-
dc.date.copyright2024-08-30-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citation[1] R. Y. Chiao, P. G. Kwiat, and A. M. Steinberg. Faster than Light? . Sci. Am., page 52, Aug. 1993.
[2] Y. Couder, S. Protière, E. Fort, and A. Boudaoud. Dynamical phenomena: walking and orbiting droplets. Nature, 437:208, 2005.
[3] Michael Faraday. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Proc. R. Soc. Lond., 3:349, 1837.
[4] S. Protiere, A. Boudaoud, and Y. Couder. Particle–wave association on a fluid interface. J. Fluid Mech., 554:85, 2006.
[5] J. Moláček and J. W. M. Bush. Drops walking on a vibrating bath: towards a hydro- dynamic pilot-wave theory. J. Fluid Mech., 727:612, 2013.
[6] D. M. Harris, J. Moukhtar, E. Fort, Y. Couder, and J. W. M. Bush. Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E, 88:011001, 2013.
[7] Yung-Yin Cheng. Quantum-like phenomena for walking droplets . National Tsing Hua University Doctoral Dissertation, 2020.
[8] Y. Couder and E. Fort. Single-Particle Diffraction and Interference at a Macroscopic Scale. Phys. Rev. Lett., 97:154101, 2006.
[9] Anders Andersen, Jacob Madsen, Christian Reichelt, Sonja Rosenlund Ahl, Benny Lautrup, Clive Ellegaard, Mogens T. Levinsen, and Tomas Bohr. Double-slit ex-periment with single wave-driven particles and its relation to quantum mechanics. Phys. Rev. E., 92:013006, 2015.
[10] H. Batelaan, E. Jones, W. Cheng-Wei Huang, and R. Bach. Momentum exchange in the electron double-slit experiment. J. Phys.: Conf. Ser, 701:012007, 2016.
[11] C. Ellegaard and M. T. Levinsen. Experimental investigation of walking drops: Wave field and interaction with slit structures. Phys. Rev. E., 109:035101, 2024.
[12] A. Eddi, E. Fort, F. Moisy, and Y. Couder. Unpredictable Tunneling of a Classical Wave-Particle Association. Phys. Rev. Lett., 102:240401, 2009.
[13] L. A. MacColl. Note on the Transmission and Reflection of Wave Packets by Potential Barriers. Phys. Rev., 40:621, 1932.
[14] M. Buttiker and R. Landauer. Traversal Time for Tunneling. Phys. Rev. Lett., 49:1739, 1982.
[15] S. Bandopadhyay and A. M. Jayannavar. Phase time for a tunneling particle. Int. J. Mod. Phys. B, 21:1681, 2007.
[16] E. H. Hauge and J. A. Støvneng. Tunneling times: a critical review. Rev. Mod. Phys., 61:917, 1989.
[17] L. Susskind and J. Glogower. Quantum mechanical phase and time operator. Phys. Phys. Fiz., 1:49, 1964.
[18] H. G. Winful. Tunneling time, the Hartman effect, and superluminality: A proposed resolution of an old paradox. Phys. Rep., 436:1, 2006.
[19] T. E. Hartman. Tunneling of a Wave Packet . J. Appl. Phys., 33:3427, 1962.
[20] H. G. Winful. Delay Time and the Hartman Effect in Quantum Tunneling. Phys. Rev. Lett., 91:2460401, 2003.
[21] A. I. Baz. Sov. J. Nucl. Phys., 4:182, 1967.
[22] A. I. Baz. Sov. J. Nucl. Phys., 5:161, 1967.
[23] M. Buttiker. Larmor precession and the traversal time for tunneling. Phys. Rev. B., 27:6179, 1983.
[24] R. Ramos, D.Spierings, I. Racicot, and A. M. Steinberg. Measurement of the time spent by a tunnelling atom within the barrier region. Nature, 583:529, 2020.
[25] A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao. Measurement of the single-photon tunneling time. Phys. Rev. Lett., 71:708, 1993.
[26] M. Anderson. Light seems to defy its own speed limit. New Scientist, 2007.
[27] H. Aichmann and G. Nimtz. On the Traversal Time of Barriers. Found Phys, 44:678, 2014.
[28] L. V. Keldysh. Ionization in the Field of a Strong Elecronmagne Wave. Sov. Phys. JETP, 20:1307, 1964.
[29] Miao Yu, Kun Liu, Min Li, Jiaqing Yan, Chuanpeng Cao, Jia Tan, Jintai Liang, Keyu Guo, Wei Cao, Pengfei Lan, Qingbin Zhang, Yueming Zhou, and Peixiang Lu. Full experimental determination of tunneling time with attosecond-scale streaking method. Nature., 11:215, 2022.
[30] Louis de Broglie. Recherches sur la théorie des Quanta. PhD Thesis, University of Paris, 1924.
[31] P. Ball. A common misunderstanding about wave-particle duality. Chemistry World, June 2024.
[32] James T. Cushing. Quantum tunneling times: A crucial test for the causal program? Found. Phys., 25:269, 1995.
[33] Jim Baggott. ‘Shut up and calculate’: how Einstein lost the battle to explain quantum reality. Nature, 629:29, 2024.
[34] de Broglie–Bohm theory. https://en.wikipedia.org/wiki/De_Broglie%E2%80%93Bohm_theory, June 20, 2024.
[35] Anil Ananthaswamy. Can We Gauge Quantum Time of Flight? Sci. Am., 326:1, 2022.
[36] D. Bohm. A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’Variables I. Phys. Rev., 85:166, 1952.
[37] J. Korringa. Early history of Multiple Scattering Theory for ordered systems. Phys. Rep., 238:341, 1994.
[38] Richard P. Feynman and Albert R. Hibbs. Quantum Mechanics and Path Integrals. McGraw-Hill, New York, 1965.
[39] Stone skipping. https://en.wikipedia.org/wiki/Stone_skipping, June 27, 2024.
[40] K-means clustering. https://en.wikipedia.org/wiki/K-means_clustering, June 29, 2024.
[41] Crank–Nicolson method. https://en.wikipedia.org/wiki/Crank%E2%80%93Nicolson_method, June 30, 2024.
[42] C. R. Leavens and G. C. Aers. Bohm Trajectories and the Tunneling Time Problem,page 105. Springer Berlin Heidelberg, Berlin, Heidelberg, 1993.
[43] Jascha Repp, Gerhard Meyer, and Karl-Heinz Rieder. Snell’s Law for Surface Electrons: Refraction of an Electron Gas Imaged in Real Space. Phys. Rev. Lett.,92:036803, 2004.
[44] C.R. Leavens. Traversal Times for Rectangular Barriers within Bohm’s Causal In-terpretation of Quantum Mechanics . Solid State Commun., 76:253, 1990.
[45] Wikipedia contributors. Elbow method (clustering). https://en.wikipedia.org/wiki/Elbow_
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95207-
dc.description.abstract近年來,由法國物理學家 Couder 與合作者們開啓了行走油滴 (walking droplet)的一系列研究。實驗上,他們發現在瀕臨產生法拉第波的頻率與振幅下,於矽油液面挑起的液滴可以因為共振,存活且以大致固定的速度行走。由於油滴在接觸液面時,會激起局部的(法拉第波 Faraday wave)漣漪,這個粒子與波緊密結合的個體,作爲一個複雜但卻完全古典的系統,許多現象(例如狹縫干涉與繞射、穿隧機率等)和量子系統極其相似。在這份論文中,我們將專注在油滴的穿隧時間(tunnelling time),除了探討 (1) 它如何隨(減低矽油深度,以致無法產生可以回饋給油滴能量的漣漪的)壓克力(相當於位能壁壘)寬度改變外,並紀錄 (2) 在同樣壁壘寬度下,穿隧時間的分佈,最終且分別藉由建構「水漂 (skipping stone)」模型與多重散射 (multiple scattering) 理論成功解釋兩者的行為。由於這兩個性質恰巧都是哥本哈根學派對於量子力學的詮釋無法置啄的,我們接下來推論:如果這些結論(如 Couder et al. 和其他科學家所宣稱)可以推廣到量子系統,根據過往被忽視的波姆力學 (Bohmmechanics),大膽提出需要引入什麼修正與新的觀念,才能解釋我們利用數值模擬從波姆力學得到的和實驗一致的結論。zh_TW
dc.description.abstractIn recent years, French physicist Couder and his collaborators have initiated a series of studies on walking droplets. Experimentally, they found that at frequencies and amplitudes close to the onset of Faraday waves, droplets on the surface of silicone oil can survive and walk at a roughly constant speed due to resonance. Droplets excite local ripples from the Faraday instability when they contact the liquid surface. This tightly coupled particle-wave entity, although a complex yet entirely classical system, exhibits many phenomena, such as slit interference and diffraction, and tunneling probability, that are strikingly similar to those of quantum systems.

In this thesis, we focus on the tunneling time of droplets. Specifically, we will explore (1) how it changes with the width of an acrylic barrier, which gives rise to the potential barrier when the depth of the silicone oil is reduced to prevent the generation of ripples that can feed energy back to the droplet, and (2) the distribution of tunneling times at the same barrier width. Ultimately, we successfully explain both behaviors by constructing a“skipping stone” model and a multiple scattering theory. Since these two characteristics are precisely the aspects that the Copenhagen interpretation of quantum mechanics cannot adequately address, we then infer: Provided that the behavior of walking droplets bears resemblance to that of quantum systems, as claimed by Couder et al. and other scientists, we boldly propose what modifications and new concepts need, based on the previously overlooked Bohmian mechanics, to explain the conclusions consistent with experiments obtained from our numerical simulations using Bohmian mechanics.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-30T16:11:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-30T16:11:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements. . . . . . . . . . i
摘要. . . . . . . . . . iii
Abstract. . . . . . . . . . v
Contents. . . . . . . . . . vii
List of Figures. . . . . . . . . . ix
Chapter 1 Introduction 1
1.1 Walking Droplets on an Oscillating Liquid Surface . . . . . . . . . . 1
1.2 Probability Distribution of Walking Droplets . . . . . . . . . . . . . 5
1.3 Diffraction and Interference of Walking Droplets . . . . . . . . . . . 6
1.4 Tunneling Probability of Walking Droplet . . . . . . . . . . . . . . . 8
1.5 Tunneling Time in Quantum Mechanics . . . . . . . . . . . . . . . . 8
1.5.1 Imaginary velocity . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.2 Phase Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.3 Larmor Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5.4 Experimental Verification of Phase time by Using Photons . . . . . 14
1.5.5 Experimental Measurement of Tunneling Time by Electrons . . . . 15
1.6 Double Solution Theory aka Pilot Wave Theory . . . . . . . . . . . . 16
1.7 Bohmian Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8 Can Tunneling Time of Walking Droplet Affect QM? . . . . . . . . . 19
Chapter 2 Experimental Setup 21
2.1 Tunneling Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Snell’s Law Experiment . . . . . . . . . . . . . . . . . . . . . . . . 23
Chapter 3 Theory 25
3.1 Multiple Scattering Theory . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Skipping-Stone Model for Tunneling Time . . . . . . . . . . . . . . 28
3.3 Revised Snell’s Law for Walking Droplets . . . . . . . . . . . . . . . 29
Chapter 4 Experiments and Bohmian Mechanics for Tunneling 33
4.1 Experimental Results for Tunneling . . . . . . . . . . . . . . . . . . 33
4.2 Tunneling Phenomenon in Bohmian Mechanics . . . . . . . . . . . . 40
4.3 Snell’s Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Chapter 5 Conclusion and Discussions 47
Chapter 6 Further Work 51
References 53
Appendix A — Different version of Skipping Stone Model 59
Appendix B — Another Model for Tunneling Time 63
Appendix C — K-means Algorithm and Elbow method 65
-
dc.language.isoen-
dc.subject波姆力學zh_TW
dc.subject行走的油滴zh_TW
dc.subject領航波理論zh_TW
dc.subjectPilot wave theoryen
dc.subjectWalking dropleten
dc.subjectBohmian mechanicsen
dc.title穿隧時間zh_TW
dc.titleTunneling Time for Walking Droplets on an Oscillating Liquid Surfaceen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor洪在明zh_TW
dc.contributor.coadvisorTzay-ming Hongen
dc.contributor.oralexamcommittee高涌泉;牟中瑜;杜其永zh_TW
dc.contributor.oralexamcommitteeYeong-Chuan Kao;Chung-Yu Mou;Kiwing Toen
dc.subject.keyword行走的油滴,波姆力學,領航波理論,zh_TW
dc.subject.keywordWalking droplet,Bohmian mechanics,Pilot wave theory,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202403063-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf9.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved