Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95201
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶瑞zh_TW
dc.contributor.advisorChing-Ray Changen
dc.contributor.author卓建宏zh_TW
dc.contributor.authorChien-Hung Choen
dc.date.accessioned2024-08-30T16:09:31Z-
dc.date.available2024-08-31-
dc.date.copyright2024-08-30-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation[1] Errol G. Lewars. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics. Springer, Cham, 2024.
[2] Fernando A Rojas-Ruiz, Leonor Y Vargas-Méndez, and Vladimir V Kouznetsov. Challenges and perspectives of chemical biology, a successful multidisciplinary field of natural sciences. Molecules, 16(3):2672–2687, 2011.
[3] James P Hughes, Stephen Rees, S Barrett Kalindjian, and Karen L Philpott. Principles of early drug discovery. Brit. J. Pharmacol, 162(6):1239–1249, 2011.
[4] Gregory Sliwoski, Sandeepkumar Kothiwale, Jens Meiler, and Edward W Lowe. Computational methods in drug discovery. Pharmacol. Rev, 66(1):334–395, 2014.
[5] Donald A Neamen and Dhrubes Biswas. Semiconductor physics and devices. McGraw-Hill higher education, New York, 2011.
[6] Xiufeng Song, Jinlian Hu, and Haibo Zeng. Two-dimensional semiconductors: recent progress and future perspectives. J. Mater. Chem. C, 1(17):2952–2969, 2013.
[7] A Chaves, Javad G Azadani, Hussain Alsalman, DR Da Costa, R Frisenda, AJ Chaves, Seung Hyun Song, Young Duck Kim, Daowei He, Jiadong Zhou, et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater Appl, 4(1):29, 2020.
[8] Iulia M Georgescu, Sahel Ashhab, and Franco Nori. Quantum simulation. Rev. Mod. Phys, 86(1):153–185, 2014.
[9] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C Benjamin, and Xiao Yuan. Quantum computational chemistry. Rev. Mod. Phys, 92(1):015003, 2020.
[10] Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote, Peter D Johnson, Mária Kieferová, Ian D Kivlichan, Tim Menke, Borja Peropadre, Nicolas PD Sawaya et al. Quantum chemistry in the age of quantum computing. Chem. Rev, 119(19):10856–10915, 2019.
[11] N Cody Jones, James D Whitfield, Peter L McMahon, Man-Hong Yung, Rodney Van Meter, Alán Aspuru-Guzik, and Yoshihisa Yamamoto. Faster quantum chemistry simulation on fault-tolerant quantum computers. New. J. Phys, 14(11):115023, 2012.
[12] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M Chow, and Jay M Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242–246, 2017.
[13] Sheir Yarkoni, Elena Raponi, Thomas Bäck, and Sebastian Schmitt. Quantum annealing for industry applications: Introduction and review. Rep. Prog. Phys, 85(10):104001, 2022.
[14] Richard Y Li, Rosa Di Felice, Remo Rohs, and Daniel A Lidar. Quantum annealing versus classical machine learning applied to a simplified computational biology problem. npj. Quantum. Inf, 4(1):14, 2018.
[15] Hiroshi Sampei, Koki Saegusa, Kenshin Chishima, Takuma Higo, Shu Tanaka, Yoshihiro Yayama, Makoto Nakamura, Koichi Kimura, and Yasushi Sekine. Quantum annealing boosts prediction of multimolecular adsorption on solid surfaces avoiding combinatorial explosion. JACS Au, 3(4):991–996, 2023.
[16] Michael Streif, Florian Neukart, and Martin Leib. Solving quantum chemistry problems with a D-Wave quantum annealer. In Quantum Technology and Optimization Problems: First International Workshop, QTOP 2019, Munich, Germany, March 18, 2019, Proceedings 1, pages 111–122. Springer, 2019.
[17] Koki Kitai, Jiang Guo, Shenghong Ju, Shu Tanaka, Koji Tsuda, Junichiro Shiomi, and Ryo Tamura. Designing metamaterials with quantum annealing and factorization machines. Phys. Rev. Res, 2(1):013319, 2020.
[18] Tameem Albash and Daniel A Lidar. Decoherence in adiabatic quantum computation. Phys. Rev. A, 91(6):062320, 2015.
[19] Dennis Willsch, Madita Willsch, Carlos D Gonzalez Calaza, Fengping Jin, Hans De Raedt, Marika Svensson, and Kristel Michielsen. Benchmarking advantage and D-Wave 2000q quantum annealers with exact cover problems. Quantum. Inf. Process, 21(4):141, 2022.
[20] Maliheh Aramon, Gili Rosenberg, Elisabetta Valiante, Toshiyui Miyazawa, Hirotaka Tamura, and Helmut G Katzgraber. Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Front. Phys, 7:48, 2019.
[21] Hiroshi Nakayama, Junpei Koyama, Noboru Yoneoka, and Toshiyuki Miyazawa. Description: Third-generation digital annealer technology. Fujitsu Limited: Tokyo, Japan, 2021.
[22] Bruno Hideki Fukushima-Kimura, Noe Kawamoto, Eitaro Noda, and Akira Sakai. Mathematical aspects of the digital annealer’s simulated annealing algorithm. J. Stat. Phys, 190(12):190, 2023.
[23] D. Snelling, G. Shahane, W. Shipman, A. Balaeff, M. Pearce, and S. Keinan. A quantum-inspired approach to de-novo drug design, 2020. chemrxiv.12229232.v2.
[24] Marco Lucarini and Gian Franco Pedulli. Free radical intermediates in the inhibition of the autoxidation reaction. Chem. Soc. Rev, 39(6):2106–2119, 2010.
[25] Fred Glover, Gary Kochenberger, and Yu Du. Quantum bridge analytics I: a tutorial on formulating and using QUBO models. Ann. Oper. Res, 314:141–183, 2022.
[26] Ivo G Rosenberg. Reduction of bivalent maximization to the quadratic case. Cah. Cent. Etude. Rech. Opéra., 20:71–75, 1975.
[27] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum computation by adiabatic evolution, 2000. arXiv:quant-ph/0001106.
[28] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew Lundgren, and Daniel Preda. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 292(5516):472–475, 2001.
[29] Hongye Yu, Deyu Lu, Qin Wu, Tzu-Chieh Wei, et al. Geometric quantum adiabatic methods for quantum chemistry. Phys. Rev. Res, 4(3):033045, 2022.
[30] Ryan Babbush, Peter J Love, and Alán Aspuru-Guzik. Adiabatic quantum simulation of quantum chemistry. Sci. Rep, 4(1):6603, 2014.
[31] Huaixin Cao, Dianhui Wang, and Feilong Cao. An adiabatic quantum algorithm and its application to DNA motif model discovery. Inform. Sciences, 296:275–281, 2015.
[32] Philipp Hauke, Helmut G Katzgraber, Wolfgang Lechner, Hidetoshi Nishimori, and William D Oliver. Perspectives of quantum annealing: Methods and implementations. Rep. Prog. Phys, 83(5):054401, 2020.
[33] Satoshi Morita and Hidetoshi Nishimori. Mathematical foundation of quantum annealing. J. Math. Phys, 49(12), 2008.
[34] Mohammad HS Amin. Consistency of the adiabatic theorem. Phys. Rev. Lett, 102(22):220401, 2009.
[35] Wim Van Dam, Michele Mosca, and Umesh Vazirani. How powerful is adiabatic quantum computation? In Proceedings 42nd IEEE symposium on foundations of computer science, pages 279–287. IEEE, 2001.
[36] Jérémie Roland and Nicolas J Cerf. Quantum search by local adiabatic evolution. Phys. Rev. A, 65(4):042308, 2002.
[37] Jernej Rudi Finžgar, Martin JA Schuetz, J Kyle Brubaker, Hidetoshi Nishimori, and Helmut G Katzgraber. Designing quantum annealing schedules using Bayesian optimization. Phys. Rev. Res, 6(2):023063, 2024.
[38] Walter Vinci and Daniel A Lidar. Non-stoquastic Hamiltonians in quantum annealing via geometric phases. npj. Quantum. Inf, 3(1):38, 2017.
[39] Tameem Albash and Daniel A Lidar. Adiabatic quantum computation. Rev. Mod. Phys, 90(1):015002, 2018.
[40] D-Wave Systems Inc. Annealing implementation and controls. https://docs.dwavesys.com/docs/latest/c_qpu_annealing.html.
[41] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing. Science, 220(4598):671–680, 1983.
[42] Emile Aarts and Jan Korst. Simulated annealing and Boltzmann machines: a stochastic approach to combinatorial optimization and neural computing. John Wiley & Sons, Inc., 1989.
[43] Dimitris Bertsimas and John Tsitsiklis. Simulated annealing. Stat. Sci, 8(1):10–15, 1993.
[44] Christian P Robert, George Casella, and George Casella. Monte Carlo statistical methods, volume 2. Springer, 1999.
[45] Daniel Delahaye, Supatcha Chaimatanan, and Marcel Mongeau. Simulated annealing: From basics to applications, pages 1–35. Springer, 2019.
[46] JA Christiansen. Note on negative catalysis. J. Phys. Chem., 28(2):145–148, 1924.
[47] Hans LJ Bäckström. The chain-reaction theory of negative catalysis 1. J. Am. Chem. Soc, 49(6):1460–1472, 1927.
[48] H Bäckström. Homogenous catalysis: General discussion. Trans. Faraday Soc,24:697–735, 1928.
[49] Hubert N Alyea and Hans LJ Bäckström. The inhibitive action of alcohols on the oxidation of sodium sulfite. J. Am. Chem. Soc, 51(1):90–109, 1929.
[50] Rubén San Miguel-Chávez. Phenolic antioxidant capacity: A review of the state of the art, volume 8. IntechOpen, 2017.
[51] Jorge Marrero and Rafiqul Gani. Group-contribution based estimation of pure component properties. Fluid. Phase. Equilibr, 183:183–208, 2001.
[52] Zdeňka Kolská, Milan Zábranský, and Alena Randová. Group contribution methods for estimation of selected physico-chemical properties of organic compounds. IntechOpen, 2012.
[53] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P.Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young,F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson,D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada,M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox. Gaussian ̃16 Revision C.01, 2016. Gaussian Inc. Wallingford CT.
[54] Yan Zhao and Donald G Truhlar. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc, 120:215–241, 2008.
[55] Peter C St. John, Yanfei Guan, Yeonjoon Kim, Seonah Kim, and Robert S Paton. Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost. Nat. Commun, 11(1):2328, 2020.
[56] Arie MCA Koster, Stan PM Van Hoesel, and Antoon WJ Kolen. The partial constraint satisfaction problem: Facets and lifting theorems. Oper. Res. Lett, 23(3-5):89–97, 1998.
[57] Corinne Feremans, Martine Labbé, and Gilbert Laporte. Generalized network design problems. Eur. J. Oper. Res, 148(1):1–13, 2003.
[58] Amir Roshan Zamir, Afshin Dehghan, and Mubarak Shah. Gmcp-tracker: Global multi-object tracking using generalized minimum clique graphs. In Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part II 12, pages 343–356. Springer, 2012.
[59] Ernst Althaus, Oliver Kohlbacher, H-P Lenhof, and Peter Müller. A combinatorial approach to protein docking with flexible side-chains. In Proceedings of the fourth annual international conference on Computational molecular biology, pages 15–24, 2000.
[60] Hossein Salahshournia and Mehran Ghiaci. Pd-Pt/modified go as an efficient and selective heterogeneous catalyst for the reduction of nitroaromatic compounds to amino aromatic compounds by the hydrogen source. Appl. Organomet. Chem, 33(4):e4832, 2019.
[61] Erfei Wang, Kaixuan Chen, Yinan Chen, Jiawei Zhang, Xinrong Lin, and Mao Chen. Porous polymeric ligand promoted copper-catalyzed cn coupling of (hetero) aryl chlorides under visible-light irradiation. Sci. China. Chem, 64:17–21, 2021.
[62] Jiahang Lv, Binlin Zhao, Yu Yuan, Ying Han, and Zhuangzhi Shi. Boron-mediated directed aromatic C–H hydroxylation. Nat. Commun, 11(1):1316, 2020.
[63] Mona Hosseini Sarvari and Hashem Sharghi. Zinc oxide (zno) as a new, highly efficient, and reusable catalyst for acylation of alcohols, phenols and amines under solvent free conditions. Tetrahedron, 61(46):10903–10907, 2005.
[64] Lukas Ochmann, Michael Fuhrmann, Felix J Gössl, Alexander Makaveev, and Peter R Schreiner. All that metas─synthesis of dispersion energy donor-substituted benzenes. Org. Lett, 24(38):6968–6972, 2022.
[65] Kan Hatakeyama-Sato, Hiroki Adachi, Momoka Umeki, Takahiro Kashikawa, Koichi Kimura, and Kenichi Oyaizu. Automated design of Li+-conducting polymer by quantum-inspired annealing. Macromol. Rapid. Comm, 43(20):2200385, 2022.
[66] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci, 4(2):268–276, 2018.
[67] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular graph generation. In International conference on machine learning, pages 2323–2332. PMLR, 2018.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95201-
dc.description.abstract在眾多可能性中篩選分子是一項具挑戰性的任務。二次無約束二進制優化(QUBO) 求解器的出現,為解決這一類的問題提供了不同的替代方法。我們開發出了一種將 QUBO 求解器與密度泛函理論計算相結合的分子篩選流程。在這項概念性驗證的工作中,我們將問題聚焦於篩選酚類抑制劑,並將問題映射到 QUBO 形式。其中,酚類 O-H 鍵的鍵解離能是酚類抑制劑有效的關鍵指標。為此,我們的方法使用基團貢獻法將酚類 O-H 鍵的鍵解離能近似成 QUBO 形式。我們的結果顯示,QUBO 模型所近似出的鍵解離能數值與密度泛函理論計算所得出的數值之間有很強的關聯性,相關係數達到 0.82, 而斯皮爾曼相關係數達到了 0.86。如此的高相關性確保 QUBO 求解器能夠有效識別潛在候選分子。基於此 QUBO 模型,我們使用 D-Wave 量子退火器和富士通退火機器來篩選出候選分子。此外,我們還通過密度泛函理論的計算驗證 QUBO 求解器所篩選出的候選分子的有效性。這項工作提供了能結合基團貢獻法和 QUBO 求解器的前瞻應用方向。zh_TW
dc.description.abstractScreening molecules from numerous possibilities is a challenging task. The advent of quadratic unconstrained binary optimization (QUBO) solvers provides an alternative to address this issue. We have developed a process for screening molecules that integrates QUBO solvers with density functional theory (DFT) calculations. As a proof-of-concept, we map the problem of screening phenolic inhibitors onto the QUBO form. In our approach, we approximate the bond dissociation energy (BDE) of the phenolic O-H bond–a key indicator of effective polymeric inhibitors–within the QUBO model, relying on adapting the Group Contribution Method (GCM). Our results demonstrate a strong correlation between the BDE values predicted from the QUBO model and DFT calculations, achieving a correlation coefficient of 0.82 and Spearman’s coefficient of 0.86. This high correlation ensures the QUBO solver to identify potential candidates efficiently. We benchmarked the performance of the QUBO solvers–D-Wave quantum annealer and Fujitsu annealer–on solving this phenolic QUBO problem. We also provide the validation results of the screening candidates from the QUBO solvers through DFT calculations. Our work provides a promising direction for incorporating the GCM into QUBO solvers to tackle molecule screening problems.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-30T16:09:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-30T16:09:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract v
Contents vii
List of Figures xi
List of Tables xiii
Denotation xv
Chapter 1 Introduction . . 1
1.1 Motivation . . 1
1.2 Outline of the content . . 5
Chapter 2 Quadratic binary optimization. . 7
2.1 Overview . . 7
2.2 Problem formulations . . 7
2.2.1 Quadratic and Ising forms . . 8
2.2.2 Converting higher-order terms into quadratic terms . . 10
2.2.3 The structure of QUBO forms from the graph theory perspective . . 11
2.3 Binary optimization algorithms . . 12
2.3.1 Quantum adiabatic algorithm . . 13
2.3.2 Simulated-based annealing algorithm . . 15
Chapter 3 Screen phenol derivative . . 19
3.1 Overview . . 19
3.2 Theoretical background . . 19
3.2.1 Autoxidation and antioxidants . . 19
3.2.2 Group Contribution Method (GCM) . . 21
3.3 Quadratic optimization for inhibitor screening . . 23
3.3.1 GCM formulation for screening phenol inhibitors . . 24
3.3.2 Effective model formulation . . 27
3.3.3 The structure for this QUBO formulae and its complexity . . 29
Chapter 4 Numerical results . . 33
4.1 Overview . . 33
4.2 The validation of the QUBO model . . 33
4.2.1 The setting for the QUBO solvers . . 38
4.2.2 The candidates obtained by solving the QUBO model . . 39
Chapter 5 Discussion and Conclusion . . 45
Appendix A — The weight coefficient of the QUBO model . . 47
Appendix B — The 85 testing molecules . . 51
Appendix C — The statistics used in the numerical results . . 55
References . . 57
-
dc.language.isoen-
dc.subject二次無約束二進位優化zh_TW
dc.subject分子篩選zh_TW
dc.subject量子退火演算法zh_TW
dc.subjectmolecular screeningen
dc.subjectquadratic unconstrained binary optimizationen
dc.subjectquantum annealing algorithmen
dc.title二次二進位最佳化於分子篩選之應用zh_TW
dc.titleMolecular Screening with Quadratic Binary Optimizationen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee鄭原忠;管希聖;郭斯彥;于濂波;李宗憓zh_TW
dc.contributor.oralexamcommitteeYuan-Chung Cheng;Hsi-Sheng Goan;Sy-Yen Kuo;Lien-Po Yu;Tsung-Hui Lien
dc.subject.keyword二次無約束二進位優化,量子退火演算法,分子篩選,zh_TW
dc.subject.keywordquadratic unconstrained binary optimization,quantum annealing algorithm,molecular screening,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202403704-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-13-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved