Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95200
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵zh_TW
dc.contributor.advisorChun-Han Koen
dc.contributor.author李博翔zh_TW
dc.contributor.authorBo-Xiang Leeen
dc.date.accessioned2024-08-30T16:09:07Z-
dc.date.available2024-08-31-
dc.date.copyright2024-08-30-
dc.date.issued2024-
dc.date.submitted2024-08-13-
dc.identifier.citation1. Accounting and Statistics Office, Ministry of Transportation and Communications, ROC. (2023). Trucking Carrier Survey Report.
2. Altaf M., Alaoul W. S., Musarat M.A. and Qureshi A. H. (2023). Life cycle cost analysis (LCCA) of construction projects: sustainability perspective. Environmental, Developmental and Sustainability, 25, 12071-12118. https://doi.org/10.1007/s10668-022-02579-x

3. Arous S., Koubaa A., Bouafif H., Bouslimi B., Braghiroli F.L. and Bradai C. (2021). Effect of Pyrolysis Temperature and Wood Species on the Properties of Biochar Pellets. Energies, 14(20), 6529. https://doi.org/10.3390/en14206529

4. Arous S. Mharssi M., Bouafif H., Bouslimi B., Bradai C. and Koubaa A. (2020). Effect of Steam Explosion and Torrefaction Treatments of Wood Chips on the Heating Value of Pellets. Advances in Mechanical Engineering, Materials and Mechanics. https://doi.org/10.1007/978-3-030-52071-7_24

5. Arshanitsa A., Akishin Y., Zile E., Sizhbite T., Solodovnik V. and Telysheva G. (2016). Mocriwave treatment combined with conventional heating of plant biomass pellets in a rotated reactor as a high rate process for solid biofuel manufacture. Renewable Energy, 91, 386-396. https://doi.org/10.1016/j.renene.2016.01.080

6. Attard, T. M., Arshadi, M., Nilsson, C., Budarin, V. L., Valencia-reyes, E., Clark, J. H., & Hunt, A. J. (2016). Impact of Supercritical Extraction on Solid Fuel Wood Pellet Properties and Off-Gassing during Storage. Green Chemistry, 18, 2682–2690. https://doi.org/10.1039/c5gc02479j

7. Asian Development Bank. (2013). Cost-Benefit Analysis for Development: A Practical Guide. Philippines.

8. Alfon, I., & Andrews, P. (1999). Cost-Benefit Analysis in Financial Regulation: How to Do It and How It Adds Value. Occasional Paper Series, 3.

9. Abraham D. M., Associate Member, ASCE and Dickinson R. J. (1998). Disposal Costs for Environmentally Regulated Facilities: LCC Approach. Journal of Construction Engineering and Management, 124(2), 148-154. https://doi.org/10.1061/(ASCE)0733-9364(1998)124:2(146)

10. Balboni, B. M., Braga, B. a., Batista, A. S., Garcia, J. N., & Silva, L. D. (2022). Wood Properties and Growth of Cunninghamia Lanceolata: A Natural Alternative for Treated Pinus Sp. Timber. Revista Ibero-Americana de Ciências Ambientais, 13, 1–9. http://doi.org/10.6008/CBPC2179-6858.2022.007.0001

11. Balahbib A., Omari N. E., Hachlafi N. EL., Lakhdar F., Menyiy N. El, Salhi N., Mrabti H. N., Bakrim S., Zengin G. and Bouyahya A. (2021). Health beneficial and pharmacological properties of p-cymene. Food and Chemical Toxicology, 153, 112259. https://doi.org/j.fct.2021.112259

12. Bala-Litwiniak A. and Radomiak H. (2019). Possibility of the Utilization of Waste Glycerol as an Addition to Wood Pellets. Waste and Biomass Valorization, 10, 2193-2199. https://doi.org/10.1007/s12649-018-0260-7

13. Boyd J. and Banzhaf S. (2007). What Are Ecosystem Services? The Need for Standardized Environmental Accounting Units. Ecological Economics, 63(2-3), 616-626. https://doi.org/10.1016/j.ecolecon .2007.01.002

14. Brzozowska, K. (2007). Cots-Benefit Analysis in Public Project Appraisal. Engineering Economics, 3(53), 78-83.

15. Boadway, R. (2006). Principle of Cost-Benefit Analysis. Public Policy Review, 2(1), 1–44.

16. Chai L. and Saffron C.M. (2016). Comparing palletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost. Applied Energy, 163, 387-395. https://doi.org/10.1016/j.apenergy.2015.11.018

17. Castellano J.M., Gómez M., Fernández M., Esteban L.S. and Carrasco J.E. (2015). Study on the effects of raw materials composition and palletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses. Fuel, 139, 629-636. https://doi.org/10.1016/j.fuel.2014.09.033

18. Crawford N.C., Ray A.E., Yancey N.A. and Nagle N. (2015). Evaluating the palletization of “pure” and blended lignocellulosic biomass feedstocks. Fuel Processing Technology, 140, 46-56. https://doi.org/10.1016/j.fuproc.2015.08.023

19. Coates iv, J. C. (2015). Cost-Benefit Analysis of Financial Regulation: Case Studies and Implications. The Yale Law Journal, 882–1011.

20. Cochrane, J. H. (2014). Challenges for Cost-Benefit Analysis of Financial Regulation. The Journal of Legal Studies, 43(2), S63–S105.

21. Chen W., Vermaak I. and Viljoen A. (2013). Camphor-A Fumigant during the Black Death and a Coveted Fragrant Wood in ancient Egypt and Babylon- A Review. Molecules, 18, 5434-5454. http://doi.org/10.3390/molecules18055434

22. Cheng S., Chung M., Lin C., Chang S. and Wang Y. (2010). Evaluation of Essential Oils and Extracts of Different Plant Parts from Taiwania cryptomerioides against Phellinus noxius. Journal of the Experimental Forest of National Taiwan University, 24(2), 85-95. https://doi.org/10.6542/EFNTU.201006_24(2).0002

23. Cheng S., Chang H., Gu H., Ku C. and Chang S. (2006). Antifungal Activity of Essential Oils and Their Constituents from Black Heartwood-Type Cryptomeria Japonica. Quarterly Journal of Chinese Forestry, 39(4), 557-574.https://doi.org/10.30064/QJCF.200612.0011

24. Chang, S. T., Wang, S. Y., & Kuo, Y. H. (2003). Resources and Bioactive Substances from Taiwania (Taiwania Cryptomerioides). The Japan Wood Research Society, 49, 1–4.
25. Chuko C. (2003). The Transition of Wood Using in Wooden Craft Industry of Lu-Gang. Journal of Design, 8(3), 1-16. https://doi.org/10.6381/JD.200312.0001

26. Cheng S., Chang H., Chang S., Tsai K. and Chen W. (2003). Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larve. Bioresource Technology, 89, 99-102. https://doi.org/10.1016/S0960-8524(03)00008-7

27. Chang, S. T., Cheng, S. S., & Wang, S. Y. (2001). Antitermitic Activity of Essential Oils and Components from Taiwania (Taiwania Cryptomerioides). Journal of Chemical Ecology, 27(4), 717–724.

28. Chang S., Wang S. and Cheng S. (2000). Environmental effects on the color of sugi (Crytomeria japonia D. Don) heartwood. Journal of Wood Science, 46, 390-394. http://doi.org/10.1007/BF00776402

29. Dai D.C., Hu H. L., Wen J., Chen H., Chen G., & Cui X. L. (2024). Cunninghamia Lanceolata (Lambert) Hooker: A Promising Candidate for Phytoremediation of Cd-Contaminated Soils. Forests, 15(1), 115. https://doi.org/10.3390/f15010115

30. Directorate General of Budget, Accounting and Statics, Executive Yuan, ROC. (2023, December 10). Earnings Exploration & Information System. Retrieved from https://earnings.dgbas.gov.tw/view_payroll.aspx

31. Degieter M., Gellynck X., Goyal S., Ott D. and Steur H. D. (2022). Life cycle cost analysis of agri-food products: A systematic review. Science of the Total Environment, 850, 158012. https://doi.org/10.1016/j.scitotenv.2022.158012

32. Dwaikat L. N. and Ali K. N. (2018). Green buildings life cycle cost analysis and life cycle budget development: Practical applications. Journal of Building Engineering, 18, 303-311. https://doi.org/10.1016/j.jobe.2018.03.015

33. D’amato, A. W., Bradford, J. B., Fraver, S., & Palik, B. J. (2011). Forest Management for Mitigation and Adaptation to Climate Change: Insights from Long-Term Silviculture Experiments. Forest Ecology and Management, 262(5), 803–816. https://doi.org/10.1016/j.foreco.2011.05.014

34. Dayawansa, S., Umeo, K., Takamasa, H., Hori, E., Tabuchi, E., Nagashima, Y., Oosu, H., Yada, Y., Suzuki, T., Ono, T., & Nishijo, H. (2003). Autonomic Responses during Inhalation of Natural Fragrance of ‘“Cedrol”’ in Humans. Autonomic Neuroscience: Basic and Clinical,108, 79–86

35. Energy Administration, Ministry of Economic Affairs, ROC. (2023, December 10). National average price of gasoline and diesel. Petroleum Price Information Management and Analysis System. Retrieved from https://www2.moeaea.gov.tw/oil111/Gasoline/NationwideAvg

36. Ebissa, G., Fetene, A., & Desta, H. (2023). Comparative Analysis of Managing Plantation Forests: The Case of Keeping Plantation Forests for Carbon Credit and Industrial Profits in Oromia Region, Ethiopia. Heliyon, 9(4), e15151. https://doi.org/10.1016/j.heliyon.2023.e15151

37. Enerdata. (2023, November 24). Carbon Price Forecast under the EU ETS. Is the current design of the EU ETS suited for post-2030 deep decarbonisation? https://www.enerdata.net/publications/executive-briefing/carbon-price-projections-eu-ets.html

38. Emadi B., Iroba K.L. and Tabil L.G. (2017). Effect of polymer plastic binder on mechanical, storage and combustion characteristics of torrefied and pelletized herbaceous biomass. Applied Energy, 198, 312-319. https://doi.org/10.1016/j.apenergy.2016.12.027

39. Ferreira,O. O., Costa, V. G., Cruz, J. N., Kataoka, M. S. da S., Pinheiro, J. de J. V., Nascimento, L. D. do, Varela, E. L. P., Cascaes, M. M., Percário, S., Mali, S. N., Menezes, T. O. de A., de Oliveira, M. S., Andrade, E. H. de A.. (2024). Chemical Composition and In Vitro and In Silico Biological Activities of Myrciaria tenella (DC.) O. Berg (Myrtaceae) Essential Oil from Brazil, Journal of Food Biochemistry, (1) , 8 pages. https://doi.org/10.1155/2024/2848736

40. Flach, B., & Bolla, S. (2023). Wood Pellets Annual. United States Department of Agriculture. Foreign Agriculture Service. https://fas.usda.gov/data/european-union-wood-pellets-annual

41. Food and Agriculture Organization of the United Nations. (2023, December 10). Forestry Production and Trade. FAOSTAT. Retrieved from https://www.fao.org/faostat/en/#data/FO

42. Fu C. (2023). Taiwan Wood Pellets Market Brief - New Environment and Energy Priorities Realize Opportunity for 300 Million in US Wood Pellets. United States Department of Agriculture. Foreign Agriculture Service. https://fas.usda.gov/data/taiwan-taiwan-wood-pellets-market-brief-new-environmental-and-energy-priorities-realize

43. Forestry and Nature Conservation Agency, Executive Yuan, ROC. (2023). Forestry Statistics.

44. Fürtner D, Perdomo Echenique EA, Hörtenhuber SJ, Schwarzbauer P, Hesser F. (2022). Beyond Monetary Cost-Benefit Analyses: Combining Economic, Environmental and Social Analyses of Short Rotation Coppice Poplar Production in Slovakia. Forests, 13(2):349. https://doi.org/10.3390/f13020349

45. Franca W. T., Barros M. V., Salvador R., Francisco A. C., Moreira M. T. and Piekarski C. M. (2021). Integrating life cycle assessment and life cycle cost: a review of environmental-economic studies. The International Journal of Life Cycle Assessment, 26, 244-274. https://doi.org/10.1007/s11367-020-01857-y

46. Forestry and Nature Conservation Agency, Executive Yuan, ROC. (2020). The fourth forest resources surveys. https://www.forest.gov.tw/0002393

47. Fauzi R. T., Lavoie P., Sorelli L., Heidari M. D. and Amor B. (2019). Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment. Sustainability, 11, 636. https://do.org/10.3390/su11030636

48. Frodeson, S., Henriksson, G., and Berghel, J. (2018). Pelletizing pure biomass substances to investigate the mechanical properties and bonding mechanisms. BioResources. 13(1), 1202-1222.

49. Fung, L. E. (1993). Wood Properties of New Zealand-Grown Cunninghamia Lancelata. New Zealand Journal of Forestry Scinence, 23(3), 324–338.

50. Flanagan R., Kendell A., Norman G. and Robinson G. D. (1987). Life cycle costing and risk management. Construction Management and Economics, 5(4), 553-571. https://doi.org/10.1080/01446193.1987.10462093

51. Gardoni P., Guevara-Lopez F. and Contento A. (2016). The Life Profitability Method (LPM): A financial approach to engineering decisions. Structural Safety, 63, 11-20. https://doi.org/10.1016.j.strusafe.2016.06.006

52. Graham S., Ogunfayo I., Hall M.R., Sanpe C., Quick W., Weatherstone S. and Eastwick C. (2016). Changes in mechanical properties of wood pellets during artificial degradation in a laboratory environment. Fuel Processing Technology, 148, 395-402. https://doi.org/10.1016/j.fuproc.2016.03.020

53. Gluch P. and Baumann G. (2004). The life cycle costing (LCC) approach: a conceptual discussion of its usefulness for environmental decision-making. Building and Environment, 39(5), 571-580. https://doi.org/10.1016/j.buildenv.2003.10.008

54. Hsu, K. P., Su, Y. C., & Ho, C. L. (2020). Chemical Compositions and In Vitro Antiphytopathogenic Fungi Activities of the Leaf and Cones Essential Oils of Cunninghamia Lanceolata from Taiwan. Natural Product Communications, 15(8). https://doi.org/10.1177/1934578X20936971

55. Hall M. R. (2019). The sustainability Price: Expanding Environmenatl Life Cycle Costing to include the costs of poverty and climate change. The International Journal of Life Cycle Assessment, 24, 223-236. https://doi.org/10.1007/s11367-018-1520-2

56. Hosseinizand H., Sokhansanj S. and Lim C.J. (2018). Co-pelletization of microalgae Chlorella vulgaris and pine sawdust to produce solid fuels. Fuel Processing Technology, 177, 129-139. https://doi.org/10.1016/j.fuproc.2018.04.015

57. Huang Y., Finell M., Larsson S., Wang X., Zhang J., Wei R. and Liu L. (2017). Biofuel pellets made at low moisture content — Influence of water in the binding mechanism of densified biomass. Biomass and Bioenergy, 98, 8-14. https://doi.org/10.1016/j.biombioe.2017.01.002

58. Hui L., Zhao G. and Zhao J. (2015). δ-cadinene inhibits the growth of ovarian cancer cells via caspase-dependent apoptosis and cell cycle arrest. Int J Clin Exp Pathol, 8(6), 6046-56. PMID: 26261482; PMCID: PMC4525816.

59. He, X., Lau, A. K., Sokhansanj, S., Lim, C. J., Bi, X. T., & Melin, S. (2014). Investigating Gas Emissions and Dry Matter Loss from Stored Biomass Residues. Fuel, 134, 159–165. https://doi.org/10.1016/j.fuel.2014.05.061

60. Hoogmartens R., Passel S.V., Acker K.V. and Dubois M. (2014). Bridging the gap between LCA, LCC and CBA as sustainability assessment tools. Environmental Impact Assessment Review, 48, 27-33. https://doi.org/10.1016/j.eiar.2014.05.001

61. Ho P. (2007). Study on the cytotoxic mechanism of Taiwanin A. [Doctoral dissertation, National Yang-Ming University]. National Digital Library of Theses and Dissertation in Taiwan. https://hdl.handle.net/11296/b2899h

62. Hanley N., Mourato S. and Wright R. E. (2001). Choice Modelling Approaches: A Superior Alternative for Environmental Valuation? Journal of Economic Surveys, 15(3), 435-462. http://dor.org/10.1111/1467-6419.00145

63. Intergovernmental Panel on Climate Change. (2023). IPCC Sixth Assessment Report.

64. Jyoti, P., Meena, K. R., Sharma, A., Kapoor, R., Sharma, T., & Kanwar, S. S. (2018). Anti-Microbial and Anti-Oxidant Properties of Cunninghamia Lanceolata. Insight Pharmaceutical Sciences, 8(1), 21–27. https://doi.org/10.5567/IPHARMA-IK.2018.21.27

65. Jara A., Daracan V. & Acda M. (2016). TECHNO-FINANCIAL ANALYSIS OF WOOD PELLET PRODUCTION IN THE PHILIPPINES. Journal of Tropical Forest Science, 28(4), 517–526.

66. Jiang L., Yuan X., Xiao Z., Liang J., Li H., Cao L., Wang H., Chan X. and Zeng G. (2016). A comparative study of biomass pellet and biomass-sludge mixed pellet: Energy input and pellet properties. Energy Conversion and Management, 126, 509-515. https://doi.org/10.1016/j.encoman.2016.08.035

67. Jeong, H. U., Kwon, S. S., Kong, T. Y., Kim, J. H., & Lee, H. S. (2014). Inhibitory Effects of Cedrol, β-Cedrene, and Thujopsene on Cytochrome P450 Enzyme Activities in Human Liver Microsomes. Journal of Toxicology and Environmental Health, Part A, 77(22–24), 1522–1532. https://doi.org/10.1080/15287394.2014.955906

68. Jen I. (1994). Outlook and Historical Review of Chinese Fir (Cunninghamia lanceolata) Timber Production in the Taiwan Private Forests. Bulletin of Taiwan Forestry Research Institute, 9(3), 235-240. https://doi.org/10.7075/BTFRI.199409.0235

69. Kurdyukov V. and Ovcharenko A. (2023). Assessing the economic efficiency of green investments in the context of sustainable development of the territory. Green Finance, 5(3), 343-372. https://doi.org/10.3934/GF.2023014

70. Khaleel, C., Tabanca, N. & Buchbauer, G. (2018). α-Terpineol, a natural monoterpene: A review of its biological properties. Open Chemistry, 16(1), 349-361. https://doi.org/10.1515/chem-2018-0040

71. Komori T., Tamura Y., Mitsui, M. Matsui, J. Uei, D., & Aoki S. (2016). A Preliminary Study to Investigate Relaxation and Sleep-Inducing Effects of Cedrol. The Open Access Journal of Science and Technology, 4. https://doi.org/10.11131/2016/101228

72. Karatas A. and EI-Rayes K. (2014). Optimal Trade-Offs between Social Quality of Life and Life-Cycle Cost in Housing Units. Journal of Construction Engineering and Management, 140(12). https://doi.org/10.1061/(ASCE)CO.1943-7862.0000895

73. Kim C., Lee T., Oh I., Nam K., Kim K. H., Oh K., Shin J., Mar W. (2013). Mast Cell Stabilizing Effect of (-)-Elema-1, 3, 11(13)-trien-12-ol and Thujopsene from Thujopsis dolabrata Is Mediated by Down-Regulation of Interleukin-4 Secretion in Antigen-RBL-2H3 Cells. Biological and Pharmaceutical Bulletin, 36(3), 339-345. https://doi.org/10.1248/bpb.b12-00375

74. Klöpffer W. and Ciroth A. (2011). Is LCC relevant in a sustainability assessment? The International Journal of Life Cycle Assessment, 16, 99-101. https://doi.org/10.1007/s11367-011-0249-y

75. Kuosmanen T. and Kortelainen M. (2007). Valuing environmental factors in cost-benefit analysis using data envelopment analysis. Ecological Economics, 62(1), 56-65. http://doi.org/10.1016/j.ecolecon.2007.01.004

76. Kreuze J. G. and Newell G. E. (1994). ABC and Life-Cycle Costing for Environmental Expenditures. Management Accounting, 75(8), 38-42. https://link.gale.com/apps/doc/A15133598/AONE?u=866ntu&sid=googleScholar&xid=39a88df1

77. Lima, A., Arruda, F., Janeiro, A., Medeiros, J., Baptista, J., Madruga, J., & Lima, E. (2023). Biological activities of organic extracts and specialized metabolites from different parts of Cryptomeria japonica (Cupressaceae) – A critical review. Phytochemistry, 206, 113520. https://doi.org/10.1016/j.phytochem.2022.113520

78. Liu W.Y., Lu Y.H., & LinC.C. (2023). Assessing Carbon Abatement Costs Considering Forest Carbon Sequestration and Carbon Offset Mechanism: Evidence from Taiwan. Forest Science, 69(4), 382–396. https://doi.org/10.1093/forsci/fxad011

79. Lin, B., & Ge, J. (2020). To Harvest or Not to Harvest? Forest Management as a Trade-off between Bioenergy Production and Carbon Sink. Journal of Cleaner Production, 268. https://doi.org/10.1016/j.jclepro.2020.122219

80. Liu, J., Cheng, W., Jiang, X., Khan, M., Zhang, Q., & Cai, H. (2020). Effect of Extractives on the Physicochemical Properties of Biomass Pellets: Comparison of Pellets from Extracted and Non-extracted Sycamore Leaves. BioResources, 15(1), 544-556.

81. Liu E. (2018). Life Cycle and Health Risk Assessment of Residue-based bioenergy. [master’s thesis, National Taiwan University]. https://doi.org/10.6342/NTU201803525

82. Liu Z., Mi B., Jiang Z., Fei B., Cai Z. and Liu X. (2016). Improved bulk density of bamboo pellets as biomass for energy production. Renewable Energy, 86, 1-7. https://doi.org/10.1016/j.renene.2015.08.011

83. Lippke, B., Oneil, E., Harrison, R., Skog, K., Gustavsson, L., & Sathre, R. (2011). Life Cycle Impacts of Forest Management and Wood Utilization on Carbon Mitigation: Knowns and Unknowns. Carbon Management, 2(3), 303–333. https://doi.org/10.4155/cmt.11.24

84. Loh, H. p., Lyons, J., & White, iii, C. W. (2002). Process Equipment Cost Estimation Final Report

85. Malik, A. S. (2019). Cost-Benefit analysis in the context of long horizon projects—a need for a social and holistic approach. Green Finance, 1(3), 249-263. https://doi.org/10.3934/GF.2019.3.249

86. Mukai, A., Takahashi, K., Kofujita, H. et al. Antitermite and antifungal activities of thujopsene natural autoxidation products. Eur. J. Wood Prod. 77, 311–317 (2019). https://doi.org/10.1007/s00107-018-1370-4

87. Mukhtar Y. M., Adu-Frimpong M., Xu M. and Yu J. (2018). Biochemical significance of limonene and its metabolites: future prospects for designing and developing highly potent anticancer drugs. Biosci Rep., 38(6), BSR20181253. https://doi.org/10.1042/BSR20181253

88. Muazu R.I. and Stegemann J.A. (2017). Biosolids and microalgae as alternative binders for biomass fuel briquetting. Fuel, 194, 339-347. https://doi.org/10.1016/j.fuel.2017.01.019

89. Mittlefehldt S. (2016). Seeing forests as fuel: How conflicting narratives have shaped woody biomass energy development in the United States since the 1970s. Energy Research & Social Science, 14, 13-21. https://doi.org/10.1016/j.erss.2015.12.023

90. Monedero E., Portero H. and Lapuerta M. (2015). Pellet blends of poplar and pine sawdust: Effects of material composition, additive, moisture content and compression die on pellet quality. Fuel Processing Technology, 132, 15-23. https://doi.org/10.1016/j.fuproc.2014.12.013

91. Moreau V. and Weidema B. P. (2015). The Computational structure of environmental life cost cycle costing. The International Journal of Life Cycle Assessment, 20, 1359-1363. https://doi.org/10.1007/s11367-015-0952-1

92. Moreira, B. R. de a., Cruz, V. H., Junior, M. R. b., Lopes, P. R. m., & Silva, R. P. da. (2014). Fuel-Flexible Biomass off-Gassing: The Impact of Antioxidant Spent Coffee Grains on Emissions of CO2, CO, CH4, and VOCs, Physical Deposits, and Combustion in Wood Pellets. Industrial Crops and Products, 208, 117748. https://doi.org/10.1016/j.indcrop.2023.117748

93. New Zealand government. (2019, May 1). Climate Change Response Zero Carbon Amendment Bill: Summary. https://environment.govt.nz/publications/climate-change-response-zero-carbon-amendment-bill-summary/

94. Nguyen Q.N., Cloutier A., Achim A. and Stevanovic T. (2015). Effect of process parameters and raw material characteristics on physical and mechanical properties of wood pellets made from sugar maple particles. Biomass and Bioenergy, 80, 338-349. https://doi.org/10.1016/j.biombioe.2015.06.010

95. Nilsen, N. p. K., Gardner, D. J., & Felby, C. (2010). Effect of Extractives and Storage on the Pelletizing Process of Sawdust. Fuel, 89(1), 94–98. https://doi.org/10.1016/j.fuel.2009.06.025

96. Nielsen N.P.K., Gardner D.J., Poulsen T. and Felby C. (2009). Importance of temperature, moisture content, and species for the conversion process of wood residues into fuel pellets. Wood and Fiber Science, 41(4), 414-425.

97. Nielsen N.P.K., Nørgaard L., Strobel B.W. and Felby C. (2009). Effect of storage on extractives from particle surfaces of softwood and hardwood raw materials for wood pellets. European Journal of Wood and Wood Products, 67, 19-26. https://doi.org/10.1007/s00107-008-0250-8

98. Norman G. (2007). Life cycle costing. Property Management, 8(4), 344-356. https://doi.org/10.1108/EUM0000000003380

99. Norris G. A. (2001). Integrating Economic Analysis into LCA. Environmental Quality Management, 10(3), 59-64. https://doi.org/10.1002/tqem.1006

100. Orfanidou V. S., Rachaniotis N. P., Tsoulfas G. T. and Chondrokoukis G. P. (2023). Life Cycle Costing Implementation in Green Public Procurement: A Case Study from the Green Public Sector. Sustainability, 15(3), 2817. https://doi.org/10.3390/su15032817

101. O’Mahony Tadhg (2021). Cost-Benefit Analysis and the environment: The time horizon is of the essence. Environmental Impact Assessment Review, 89, 106587. https://dor.org/10.1016/j.eiar.2021.106587

102. Ong H.C., Mahlia T.M.I., Masjuki H.H. and Honnery D. (2012). Life cycle cost and sensitivity analysis of palm biodiesel production. Fuel, 98, 131-139. https://sx.doi.org/10.1016/j.fuel.2012.03.031

103. Po Chuan EnterPrising Co., LTD. (2023, December 10). Retrieved from http://www.bachelor.com.tw/?gclid=Cj0KCQiA7OqrBhD9ARIsAK3UXh2oFGRVXToprakT78ez9SB5gwBeWYk7hGoKHE6YOo11Xm3iM75rNfYaAlZYEALw_wcB

104. Pattanaik L., Padhi S. K., Hariprasad P. and Naik S. N. (2020). Life cycle cost analysis of natural indigo dye production from Indigofera tinctoria L. plant biomass: a case study of India. Clean Technologies and Environmental Policy, 22, 1639-1654. https://doi.org/10.1007/s10098-020-01914-y

105. Pradhan, P., Gadkari, P., Mahajani, S. M., & Arora, A. (2019). A Conceptual Framework and Techno-Economic Analysis of a Pelletization-Gasification Based Bioenergy System. Applied Energy, 249, 1–13. https://doi.org/10.1016/j.apenergy.2019.04.129

106. Pekovic S., Grolleau G. and Mzoughi N. (2018). Environmental investigations: Too much of a good thing? International Journal of Production Economics, 197, 297-302. https://doi.org/10.1016/j.ijpe.2018.01.012

107. Price, C. (2018). Declining Discount Rate and the Social of Carbon: Forestry Consequences. Journal of Forest Economics, 31, 39–45. https://doi.org/10.1016/j.jfe.2017.05.003

108. Peng J., Bi X.T., Lim C.J., Peng H., Kim C.S., Jia D. and Zuo H. (2015). Sawdust as an effective binder for making torrefied pellets. Applied Energy, 157, 491-498. https://doi.org/10.1016/j.apenergy.2015.06.024

109. Pirraglia, A., Gonzalez, R., & Saloni, D. (2010). Techno-Economical Analysis of Wood Pellets Production for U.S. Manufacturers. BioResources, 5(4), 2374–2390. https://doi.org/10.15376/biores.5.4.2374-2390

110. RICHi. (2024, May 1). Biomass Wood Pellet Plant. Retrieved from https://www.cn-pellet.com/pellet-plant/wood-biomass-pellet-plant/

111. Rodrigues S.L. and Silva E.A. (2024). Implementation of environmental life cycle costing: Procedures, challenges, and opportunities. The International Journal of Life Cycle Assessment, 29, 803-837. https://doi.org/10.1007/s11367-023-02268-5

112. Rivera-tenorio, M., & Moya, R. (2020). Potential for Pellet Manufacturing with Wood Waste from Construction in Costa Rica. Waste Management & Research, 38(8), 886–895. https://doi.org/10.1177/0734242X19893022

113. Rudolfsson M., Stelte W. and Lestander T.A. (2015). Process optimization of combined biomass torrefaction and pelletization for fuel pellet production — A parametric study. Applied Energy, 140, 378-384. https://doi.org/10.1016/j.apenergy.2014.11.041

114. Raymer, A.K., Gobakken, T., & Solberg, B. (2011). Optimal Forest Management with Carbon Benefits Included. Silva Fennica, 45(3), 395–414. https://doi.org/10.14214/sf.109

115. Sambeth S.K., Chang S.S., Samad N.A.F.A. and Saleh S. (2022). Pelletization of torrefied palm kernel shell by using different binding agents. Materials Today: Proceeding, 57, 1116-1122. https://doi.org/10.1016/j.matpr.2021.09.490

116. Stachowicz P. and Stolarski M.J. (2024). Pellets from mixture of short rotation coppice with forest-derived biomass: Production costs and energy intensity. Renewable Energy, 225, 120250. https://doi.org/10.1016/j.renene.2024.120250

117. Schneifer-Marin E. P. (2022). An Economic-Ecological Life Cycle Perspective for the Building Design Process. [Doctoral dissertation, Universität München zur Erlangung einer, Germany].

118. Siwale W., Frodeson S., Finell M., Arshadi M., Jonsson C., Henriksson G. and Berghel J. (2022). Understanding Off-Gassing of Biofuel Wood Pellets Produced from Pure Microcrystalline Cellulose with Different Additive Oils. Energies, 15(6), 2281. https://doi.org/10.3390/en15062281

119. Sedlmayer, I., Bauer-emhofer, W., Gaslinger, W., Hofbauer, H., Schmidl, C., & Wopienka, E. (2020). Off-Gassing Reduction of Stored Wood Pellets by Adding Acetylsalicylic Acid. Fuel Processing Technology, 198, 106218. https://doi.org/10.1016/j.fuproc.2019.106218

120. Siebert A., Bezama A., O’Keeffe S. and Thrän D. (2018). Social life cycle assessment indicates and indicators to monitor the social implications of wood-based products. Journal of Cleaner Production, 172, 4074-4084. https://doi.org/10.1016/j.jciepro.2017.02.146

121. Su Y.C., Hsu K.P. and Ho C.L. (2018). Composition, in Vitro Cytotoxicity, Anti-Mildew and Anti-Wood-Decay Fungal Activities of the Bark Essential Oil of Cunninghamia Lanceolata Var. Konishii from Taiwan. Natural Product Communications, 13(6), 775–778. https://doi.org/10.1177/1934578X1801300632

122. Schmidt, E., Huong, L.T., Dai, D.N., Thang, T.D., Warner, J. and Jirovetz, L. (2016). Analysis and Olfactory Description of Four Essential Oils from Vietnam. Natural product communications, 11(10), 1551–1554.

123. Ståhl M., Berghel J. and Williams H. (2016). Energy efficiency, greenhouse gas emissions and durability when using additives in the wood fuel pellet chain. Fuel Processing Technology, 152, 350-355. https://doi.org/10.1016/j.fuproc.2016.06.031

124. Samuelsson, R., Larsson, S. H., Thyrel, M., & Lestander, T. A. (2012). Moisture Content and Storage Time Influence the Binding Mechanisms in Biofuel Wood Pellets. Applied Energy, 99, 109–115. https://doi.org/10.1016/j.apenergy.2012.05.004

125. Su Y., Hsu K., Wang E.I. and Ho C. (2012). Composition, Anticancer, and Antimicrobial Activities in Vitro of the Heartwood Essential Oil of Cunninghamia Lanceolata Var. Konishii from Taiwan. Natural Product Communications, 7(9), 1245–1247.

126. Stele W., Holm J.K., Sandai A.R., Barsberg S., Ahrenfeldt J. and Henriksen U.B. (2011). A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass and Bioenergy, 35(2), 910-918. https://doi.org/10.1016/j.biombioe.2010.11.003

127. Stevens J. and Gardner D.J. (2010). Enhancing the fuel value of wood pellets with the addition of lignin. Wood and Fiber Science, 42(4), 439-443.

128. Shieh J. and Wu H. (2007). Antimite Activity of the Essential Oil from Cunninghamia lanceolata Heartwood. Taiwan Journal of Forest Science, 22(1), 45-56.

129. Su Y.C., Ho C.L., & Wang E.I. (2006). Analysis of Leaf Essential Oils from the Indigenous ve Conifers of Taiwan. Flavour and Fragrance Journal, 21(3), 447–452. https://doi.org/10.1002/ffj.1685

130. Shieh, J., & Sumimoto, M. (1992). Identification of the Volatile Components in the Leaves and Wood of Cunninghamia Lanceolata. 九州大学大学院農学研究院紀要, 36(3•4), 301–310. https://doi.org/10.5109/23992

131. Tsung chang machinery Co., Ltd. (2024, May 1). Introduction for pelletizer. Retrieved from https://www.tcmco.com.tw/woodpellets/

132. Taiwan Power Company。(2023, December 10). Electricity Costs. Retrieved from https://www.taipower.com.tw/tc/page.aspx?mid=196

133. Tang Z., Chen H., Zhang M., Fan Z., Zhong Q., Chen W., Yun Y. and Chen W. (2022). Antibacterial Mechanism of 3-Carene against the Meat Spoilage Bacterium Pseudomonas lundensis and its Application in Pork during Refrigerated Storage. Foods, 11(1), 92. https://doi.org/10.3390/foods11010092

134. Takeda, A., Watanuki, E., & Koyama, S. (2017). Effects of Inhalation Aromatherapy on Symptoms of Sleep Disturbance in the Elderly with Dementia. Evidence-Based Complementary and Alternative Medicine, 2017. https://doi.org/10.1155/2017/1902807

135. Tam V.W.Y., Senaratne S., Le K.N, Shen L., Perica J., Chethana I.M. and Illankoon S. (2017). Life-cycle cost analysis of green-building implementation using timber applications. Journal of Cleaner Production, 147, 458-469. https://doi.org/10.1016/j.jclepro.2017.01.128

136. The Market Potential for Mechanically Stress Rated Lumber. (1982). WOODBRIDGE, REED AND ASSOCIATES LTD.

137. Ulrich G. D. (1984). A Guide to Chemica Engineering Process Design and Economics. John Wiley & Sons. New York.

138. Ontl T.A., Janowiak M.K., Swanston C.W., Daley J., Handler S., Cornett M., Hagenbuch S., Handrick C., Mccarthy L. and Patch N. (2020) Forest Management for Carbon Sequestration and Climate Adaptation, Journal of Forestry, 118(1), 86–101, https://doi.org/10.1093/jofore/fvz062

139. United nations framework convention on climate change. Retrieved from https://unfccc.int/zh

140. Vivian, M. A., Silva, A. M. O., Modes, K. S., Dobner Júnior, M., Silva Júnior, F. G. (2021). Características da madeira de Cunninghamia lanceolata (Chinese fir). Scientia Forestalis, 49(131), e3581. https://doi.org/10.18671/scifor.v49n131.01

141. Walsh P. R., Dunne H. and Nikoubakht-Tak O. (2023). Fostering the use of sustainable design to reduce energy use and GHG emissions at Canadian universities: a life cycle cost analysis approach. International Journal of Sustainability in Higher Education. https://doi.org/10.1108/IJSHE-12-2022-0409

142. Wang, K., Zhang, Y., Sekeli, G., & Hopke, P. K. (2019). Economic Analysis of a Field Monitored Residential Wood Pellet Boiler Heating System in New York State. Renewable Energy, 133, 500–511. http://doi.org/10.1016/j.renene.2018.10.026

143. Wen, H. F., Deng, X. W., Zhang, Y. F., Wei, X. C., Wang, G. J., Zjou, B., Xiang, W. H., & Zhu, N. H. (2018). Cunninghamia Lanceolata Variant with Red-Heart Wood: A Mini-Review. Denrobiology, 79, 156–167. http://dx.doi.org/10.12657/denbio.079.014

144. Wood R. and Hertwich E. G. (2013). Economic modelling and indicators in life cycle sustainability assessment. The International Journal of Life Cycle Assessment, 18, 1710-1721. https://doi.org/10.1007/s11367-012-0463-2

145. Whitehead David. (2011). Forests as Carbon Sinks—Benefits and Consequences. Tree Physiology, 31(9), 893–902. https://doi.org/10.1093/treephys/tpr063

146. Wang, S., Wang, Y., Tseng, Y., Lin, C. & Liu, C. (2006). Analysis of fragrance compositions of precious coniferous woods grown in Taiwan. Holzforschung, 60(5), 528-532. https://doi.org/10.1515/HF.2006.087

147. Wu C. (2005). Analyses and Identification of Antifungal Compounds Isolated from the Heartwood of Taiwania cryptomerioides and Their Mechanism. [doctoral dissertation, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2005.02789

148. Xin H., Zhai X., Zheng X., Zhang L., Wang T., & Wang Z. (2012). Anti-Inflammatory and Analgesic Activity of Total Flavone of Cunninghamia Lanceolata. Molecules, 17(8), 8842–8850. https://doi.org/10.3390/molecules17088842

149. Yang J., Lee S., Jang S., Kim K. and Park M. (2023). Inhibition of Melanogenesis by Essential Oils from the Citrus Cultivars Peels. Int. J. Mol. Sci., 24(4), 4207. https://doi.org/10.3390/ijms24044207

150. Yoshimoto, A., Asante, P., & Itaka, S. (2018). Incorporating Carbon and Bioenergy Concerns into Forest Management. Current Forestry Reports, 4, 150–160. https://doi.org/10.1007/s40725-018-0080-9

151. Zhang Y., Jiang X., Cui C. and Skitmore M. (2022). BIM-based approach for the integrated assessment of life cycle carbon emission intensity and life cycle costs. Building and Environment, 226, 109691. https://doi.org/10.1016/j.buildenv.2022.109691

152. 環境省。(2021, October 22)。気候変動適応計画について。気候変動適応計画/フォローアップ。Retrieved from https://www.env.go.jp/earth/earth/tekiou/page_00004.html

153. J-クレジット制度事務局. J-クレジット制度. https://japancredit.go.jp/

154. J-クレジット制度事務局. (2024). J-クレジット制度について (データ集).

155. Ministry of Environment. (2023). National Climate Change Adaptation Action Plan (for year 112-115).

156. 株式会社FTカーボン. (2023). 輸入バイオマス燃料の状況.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95200-
dc.description.abstract臺灣森林面積占全島面積60.71 %,若能好好妥善利用森林除了可以減緩氣候變遷並振興森林產業。然而,長期的觀念導致森林利用相關知識非常式微,甚至反對砍伐森林去做更進一步的利用。因此,為了能夠讓大眾了解永續森林管理需要一個量化的績效去吸引大眾的目光。產量最多的木材分別為柳杉、杉木(即福杉)以及臺灣杉,分別佔總產量的47.76、17.34以及7.82 %。本研究以模擬這三種樹種進行加工成規格材、木顆粒以及萃取抽出物的成本效益評估,觀察臺灣森林產業的發展可行性。
在分析中資料利用文獻、政府統計數據及市場價值等來源進行評估,並藉由淨現值(NPV)、內部報酬率(IRR)、修正後內部報酬率(MIRR)、還本期間(PP)、折現還本期間(DPP)等共5種方法評估假設狀況能否進行投資,再透過營業槓桿(OL)評估營業風險,最後藉由生命週期成本(LCC)建議成本改善。
分析表明規格材與精油萃取製程兩者相配合是適合臺灣林業發展的模式,不管收穫量為多少且木材利用率為33 % - 53 % 時,能創造利潤。精油萃取製程的OL相較於規格材小很多,但兩者都能夠穩定獲利。規格材的損益木材利用率為33 %,最低銷售價格為NT$ 11,599;精油則是53 % 以及NT$ 19。木顆粒製程由於無法透過提高售價去吸引投資者,因此需要調整運送、人力與電力成本。規格材的主要步驟成本為鋸木、乾燥以及加工,而精油萃取製程為包裝、蒸餾以及冷卻和分離,將這些成本改善有助於創造利潤。
zh_TW
dc.description.abstractThe forest area in Taiwan constitutes 60.71% of the entire island. Properly utilizing these forests can help mitigate climate change and revitalize the forest industry. However, long-standing perceptions have led to a significant decline in knowledge related to forest utilization, and there is even opposition to felling trees for further use. Therefore, to make the public understand sustainable forest management, it is necessary to have a quantified performance metric to attract public attention. The most productive timber species are Japanese cedar, cypress (also known as Chian fir), and Taiwania, accounting for 47.76%, 17.34%, and 7.82% of the total output, respectively. This study simulates the cost-benefit assessment of processing these three tree species into lumber, wood pellets, and extracted products to observe the feasibility of developing Taiwan's forest industry.
In the analysis, data from literature, government statistics, and market values were used for evaluation. The feasibility of investment under hypothetical conditions was assessed using five methods: Net Present Value (NPV), Internal Rate of Return (IRR), Modified Internal Rate of Return (MIRR), Payback Period (PP), and Discounted Payback Period (DPP). Operational risks were then evaluated through Operating Leverage (OL), and finally, Life Cycle Cost (LCC) was used to suggest cost improvements.
The analysis indicates that the combination of lumber and essential oil extraction processes is suitable for the development of Taiwan's forestry industry. Profits can be generated regardless of the harvest volume and when the wood utilization rate is between 33% and 53%. The OL of the essential oil extraction process is much lower than that of lumber, but both can achieve stable profitability. The breakeven wood utilization rate for lumber is 33%, with a minimum selling price of NT$ 11,599; for essential oils, it is 53% and NT$ 19. Due to the inability of the wood pellet process to attract investors through price increases, adjustments in transportation, labor, and electricity costs are necessary. The main cost steps for lumber are sawing, drying, and processing, while for essential oil extraction, they are packaging, distillation, and cooling and separation. Improving these costs can help create profits.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-30T16:09:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-30T16:09:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents
謝辭 I
中文摘要 II
Abstract III
Table of Contents V
Lists of Tables VII
Lists of Figures VII
Lists of Appendixes VIII
1. Introduction 1
2. Literature Review 8
2.1 Cunninghamia lanceolata (Lamb.) Hook 8
2.2 Cryptomeria japonica 12
2.3 Taiwania cryptomerioides 15
2.4 Wood Pellets 18
2.5 Cost Benefit Analysis (CBA) and Life Cycle Costs (LCC) 27
3. Method 42
3.1 Process Flow Chart 42
3.1.1 Dimensional Lumber Process 42
3.1.2 Wood Pellets Process 44
3.1.3 Essential Oil Extraction Process 46
3.2 Sale Price (SP) and Production Volume (PV) 48
3.2.1 SP and PV for Dimensional Lumber 49
3.2.2 SP and PV for Wood Pellets 50
3.2.3 SP and PV for Essential Oil 53
3.3 Production Costs 56
3.3.1 Production costs of dimensional lumber 57
3.3.2 Production costs of wood pellets 61
3.3.3 Production costs of essential oil extraction 64
3.3 Net Present Value (NPV) 68
3.4 Internal Rate of Return (IRR) 69
3.5 Modified Internal Rate of Return (MIRR) 70
3.6 Payback Period method (PP) and Discounted Payback Period method (DPP) 71
3.8 Operating Leverage (OL) 73
3.9 Life Cycle Cost (LCC) 73
4. Results 74
4.1 Results of NPV 74
4.2 Results of IRR and MIRR 80
4.3 Results of PP and DPP 84
4.4 Summary of accept the project or not. 88
4.5 Results of operating leverage 89
4.6 Breakeven point analysis 91
4.7 Life cycle costs analysis 98
5. Conclusions 101
References 103
Appendixes 121
-
dc.language.isoen-
dc.title造林木生產之成本效益分析zh_TW
dc.titleCost benefit analysis of production for plantation forestsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee官崇煜;潘述元;何率慈zh_TW
dc.contributor.oralexamcommitteeChung-Yu Guan;Shu-Yuan Pan;Shuay-Tsyr Hoen
dc.subject.keyword杉木,臺灣杉,日本柳杉,規格材,木顆粒,精油,成本效益分析,生命週期成本,zh_TW
dc.subject.keywordCunnunghamia lanceolata,Cryptomeria japonica,Taiwania cryptomerioides,dimensional lumber,wood pellet,essential oil,cost benefit analysis,life cycle cost,en
dc.relation.page154-
dc.identifier.doi10.6342/NTU202403839-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf2.53 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved