Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 元件材料與異質整合學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95193
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡振國zh_TW
dc.contributor.advisorJenn-Gwo Hwuen
dc.contributor.author王瑞賢zh_TW
dc.contributor.authorRui-Xian Wangen
dc.date.accessioned2024-08-29T16:32:29Z-
dc.date.available2024-08-30-
dc.date.copyright2024-08-29-
dc.date.issued2024-
dc.date.submitted2024-07-09-
dc.identifier.citation[1] R. H. Dennard, "Field-effect transistor memory," United States Patent Appl, 3,387,286. 4, 1968.
[2] S. Okhonin, M. Nagoga, J. M. Sallese, and P. Fazan, "A capacitor-less 1T-DRAM cell," IEEE Electron Device Letters, vol. 23, no. 2, pp. 85-87, 2002.
[3] C. Kuo, K. Tsu-Jae, and H. Chenming, "A capacitorless double gate DRAM technology for sub-100-nm embedded and stand-alone memory applications," IEEE Transactions on Electron Devices, vol. 50, no. 12, pp. 2408-2416, 2003.
[4] S. Navarro et al., "Reliability Study of Thin-Oxide Zero-Ionization, Zero-Swing FET 1T-DRAM Memory Cell," IEEE Electron Device Letters, vol. 40, no. 7, pp. 1084-1087, 2019.
[5] Y. J. Yoon, J. H. Seo, S. Cho, J.-H. Lee, and I. M. Kang, "A polycrystalline-silicon dual-gate MOSFET-based 1T-DRAM using grain boundary-induced variable resistance," Applied Physics Letters, vol. 114, no. 18, p. 183503, 2019.
[6] J. H. Seo et al., "Fabrication and Characterization of a Thin-Body Poly-Si 1T DRAM With Charge-Trap Effect," IEEE Electron Device Letters, vol. 40, no. 4, pp. 566- 569, 2019.
[7] M. A. Green, F. D. King, and J. Shewchun, "Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—I. Theory," Solid-State Electronics, vol. 17, no. 6, pp. 551-561, 1974.
[8] J. Shewchun, M. A. Green, and F. D. King, "Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—II. Experiment," Solid-State Electronics, vol. 17, no. 6, pp. 563-572, 1974.
[9] M. Y. Doghish and F. D. Ho, "A comprehensive analytical model for metal-insulator-semiconductor (MIS) devices," IEEE Transactions on Electron Devices, vol. 39, no. 12, pp. 2771-2780, 1992.
[10] J.-H. Chen, K.-C. Chen, and J.-G. Hwu, “Fringing field induced current coupling in concentric metal–insulator–semiconductor (MIS) tunnel diodes with ultra-thin oxide.” AIP Adv., 12, 045116, 2022.
[11] M. Y. Doghish and F. D. Ho, "A comprehensive analytical model for metal-insulator-semiconductor (MIS) devices: a solar cell application," IEEE Transactions on Electron Devices, vol. 40, no. 8, pp. 1446-1454, 1993.
[12] C. W. Liu, W. T. Liu, M. H. Lee, W. S. Kuo, and B. C. Hsu, "A novel photodetector using MOS tunneling structures," IEEE Electron Device Letters, vol. 21, no. 6, pp. 307-309, 2000.
[13] S. Yen-Hao and H. Jenn-Gwo, "An on-chip temperature sensor by utilizing a MOS tunneling diode," IEEE Electron Device Letters, vol. 22, no. 6, pp. 299-301, 2001.
[14] S. -W. Huang and J. -G. Hwu, "Three-Level MIS Antifuse Formed by Polarity-Dependent Dielectric Breakdown on 3.5-nm SiO2 for One-Time Programmable Application," IEEE Transactions on Electron Devices, vol. 70, no. 8, pp. 4133-4138, 2023.
[15] Y.-K. Lin, L. Lin, and J.-G. Hwu, “Minority carriers induced Schottky barrier height modulation in current behavior of metal-oxide-semiconductor tunneling diode,” ECS Journal of Solid State Science and Technology, 3.6, Q132, 2014,
[16] K. -C. Chen and J. -G. Hwu, "Schottky Barrier Height Modulation (SBHM) Induced Photon Current Gain in MIS(p) Tunnel Diodes for Low Operation Voltage," in IEEE Sensors Journal, vol. 22, no. 4, pp. 3164-3171, 2022.
[17] C. -W. Lee and J. -G. Hwu, "A Comprehensive Quantum-Mechanical Model for C-V and I-V Characteristics in Ultrathin MOS Structure and Experiment Verification," M.S. thesis, Dept. Elect. Eng. Nat. Taiwan Univ. Taipei, Taiwan, R.O.C., 2013.
[18] C. -S. Liao, W. -C. Kao and J. -G. Hwu, "Energy-Saving Write/Read Operation of Memory Cell by Using Separated Storage Device and Remote Reading with an MIS Tunnel Diode Sensor," in IEEE Journal of the Electron Devices Society, vol. 4, no. 6, pp. 424-429, Nov. 2016.
[19] K. -C. Chen, K. -W. Lin and J. -G. Hwu, "Role of Schottky Barrier Height Modulation on the Reverse Bias Current Behavior of MIS(p) Tunnel Diodes," in IEEE Access, vol. 9, pp. 163929-163937, 2021.
[20] T. -H. Hsu and J. -G Hwu, “Prolonged Transient Behavior of Ultrathin Oxide MIS-Tunneling Diode Induced by Deep Depletion of Surrounded Coupling Electrode,” IEEE Transactions on Electron Devices, vol. 67, no. 8, pp. 3411-3416, Aug, 2020.
[21] T. -H. Chen and J. -G. Hwu, " Roles of Inner and Outer Fringe and Asymmetric Coupling Effect in Concentric Double-MIS(p) Tunneling Diodes," ECS J. Transactions, 89.3: 121, 2019.
[22] W. -C. Kao, J. -Y. Chen, and J. -G. Hwu. "Transconductance sensitivity enhancement in gated-MIS (p) tunnel diode by self-protective effective local thinning mechanism." Applied Physics Letters, 109.6, 2016.
[23] S. -W. Huang and J. -G. Hwu, "Transient Current Enhancement in MIS Tunnel Diodes with Lateral Electric Field Induced by Designed High-Low Oxide Layers," in IEEE Transactions on Electron Devices, vol. 68, no. 12, pp. 6580-6585, Dec. 2021.
[24] S. -W. Huang and J. -G. Hwu, "Role of Proportion of Surrounding Gate on the Improved Transient Behavior of MIS Tunnel Diode with Ultra-Thin Metal Surrounded Gate (UTMSG)," ECS Transactions, 111.1: 93,2023.
[25] S. -W. Huang and J. -G. Hwu, "Capacitance Analysis of Transient Behavior Improved Metal-Insulator-Semiconductor Tunnel Diodes with Ultra Thin Metal Surrounded Gate," in IEEE Journal of the Electron Devices Society, vol. 9, pp. 1041-1048, 2021.
[26] G. C. Jain, A. Prasad and B. C. Chakravarty, “On the mechanism of the anodic oxidation of Si at constant voltage,” J. Electrochem. Soc., Vol. 126, pp. 89-92, 1979. [28] M. Grecea, C. Rotaru, N. Nastase, and G. Craciun, “Physical properties of SiO2 thin films obtained by anodic oxidation,” Journal of Molecular Structure, pp. 607-610, 1999.
[27] K. J. Yang and Chenming Hu, "MOS capacitance measurements for high-leakage thin dielectrics," in IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1500-1501, July 1999.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95193-
dc.description.abstract本論文探討了同心圓環閘極金屬-氧化層-半導體穿隧二極體在中心局部氧化層薄化製程後的暫態電流增強行為。在第一章中,我們首先回顧了傳統平面氧化層的金氧半穿隧二極體元件的基本電性,例如在逆偏壓條件下厚度與電流之間的關係等,並解釋耦合元件特性和局部氧化層薄化理論基礎。文獻回顧部分指出,這些特殊結構的金氧半穿隧二極體在瞬態電流強化行為為記憶體元件的應用提供了理論支持。在第二章中,我們製作了同心圓環電極結構的金氧半穿隧二極體並解釋製造流程,元件包含了內圓及外環結構。量測使用Agilent B1500A半導體裝置分析儀進行實驗數據的收集並分析其基本電特性,例如I-V和I-t曲線。本論文分析中心局部氧化層薄化製程前後的變化,特別是在暫態電流強化行為方面,發現在較厚氧元件在中心局部氧化層薄化後出現了明顯暫態電流強化行為。在此章節透過穩態及暫態量測結果分析其機制,並對元件進行可靠度測試。在第三章中,先透過SILVACO TCAD 軟體模擬元件的穩態及暫態電流,近一步解釋在較厚氧元件在中心局部氧化層薄化後的暫態電流強化行為。為說明其機制,擷取了元件模擬提供的暫態及穩態特性,如位移電流、穿隧電流和電子濃度等。為驗證內圓及外環之間耦合的必要性,我們提出在實驗中對耦合元件進行了閘極邊緣氧化層的移除,使其耦合效應減弱。結果發現在中心局部氧化層薄化後,元件未出現暫態電流強化行為,從而證實了耦合的必要性。最後,我們針對局部氧化層薄化效應進行實驗及TCAD模擬驗證,確認兩者結果的一致性。第四章總結了中心局部氧化層薄化後的耦合元件在暫態電流強化行為方面的表現,顯示其在動態記憶體應用中的潛力。此外,本章還探討了未來可能的研究方向和應用,提出了進一步優化這些元件性能的潛在策略,以及探索新的記憶體技術的可能性。這些討論不僅表明了中心局部氧化層薄化的重要性,也提供了未來的研究參考。zh_TW
dc.description.abstractThis thesis explores the transient current enhancement behavior of concentric gate metal-oxide-semiconductor (MIS) tunneling diodes (TD) following an oxide local thinning (OLT) process. In Chapter 1, we first review the basic electrical properties of traditional planar oxide MISTD devices, such as the relationship between thickness and current under reverse bias conditions, and explain the characteristics of coupled devices and the theoretical basis of OLT. The literature review highlights that these specialized structures provide theoretical support for memory device applications due to their enhanced transient current behavior. In Chapter 2, we fabricated concentric gate MISTD and described the manufacturing process, which includes both an inner circle and an outer ring structures. Using an Agilent B1500A semiconductor device analyzer, we collected and analyzed experimental data according to the electrical characteristics of such as I-V and I-t curves, and then examined the changes before and after the oxide local thinning process, particularly in terms of transient current enhancement behavior. Significant transient current enhancement was observed in devices with thicker oxide after OLT. This chapter analyzes the mechanisms through steady-state and transient measurement results and conducts reliability tests. In Chapter 3, we initially simulated the steady-state and transient currents of the devices using SILVACO TCAD simulation, further explaining the transient current enhancement behavior in devices with thicker oxide after central OLT. To elucidate the mechanisms, we extracted simulated transient and steady-state characteristics, such as displacement current, tunneling current, and electron concentration. To verify the necessity of coupling between the inner circle and the outer ring, we conducted experiments to remove the gate edge oxide layer of the coupled devices, which effectively reduced their coupling effect. The results showed that there was no transient current enhancement behavior even after central localized oxide thinning for this structure, thereby confirming the necessity of coupling. Finally, we conducted experiments and TCAD simulations on the localized oxide thinning effect to confirm the consistency of both results. Chapter 4 summarizes the performance of coupled devices in enhancing transient current behavior after central localized oxide thinning, demonstrating their potential in dynamic memory applications. Additionally, this chapter explores possible future research directions and applications, proposing potential strategies to further optimize the performance of these devices and explore new memory technologies. These discussions not only highlight the importance of central localized oxide thinning but also serve as a reference for future research.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-29T16:32:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-29T16:32:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES ix
Chapter 1 Introduction 1
1.1 Motivation 2
1.2 Fundamentals of Metal-Insulator-Semiconductor Tunnel Diodes 3
1.2.1 Oxide Thickness Influence on Reverse Bias Current 3
1.2.2 Perimeter Influence on Reverse Bias Current 4
1.3 Couple Devices 5
1.4 Oxide Local Thinning (OLT) 6
1.5 Memory Applications 7
1.6 Experimental Methodology 8
1.7 Summary 9
Chapter 2 Current Characteristics Analysis of Center Fresh and Center OLT Devices 19
2.1 Introduction 20
2.2 Experimental and TCAD Simulation Environment 20
2.3 Center Fresh and Center OLT Steady-State Currents 22
2.4 Center fresh and Center OLT Transient Currents 24
2.5 TCAD Simulation Results of Transient Current 27
2.6 Durability and Energy Consumption 28
2.7 Summary 28
Chapter 3 Transient Current Enhancement Mechanism of Centre Fresh and Centre OLT Devices 43
3.1 Introduction 44
3.2 TCAD Simulation of the Steady-State Currents in Center Fresh and Center OLT 45
3.3 TCAD Simulation of the Transient Currents in Center Fresh and Center OLT 47
3.4 Comparison of The Transient Behavior of Uncoupled Devices 52
3.5 OLT Effect 54
3.6 Summary 55
Chapter 4 Conclusion and Future Work 75
4.1 Conclusion 76
4.2 Future Work 77
REFERENCES 81
-
dc.language.isoen-
dc.subject局部氧化層薄化 (OLT)zh_TW
dc.subject穿隧二極體 (TD)zh_TW
dc.subject同心圓環耦合元件zh_TW
dc.subject記憶體應用zh_TW
dc.subject暫態行為zh_TW
dc.subject金氧半(MIS(p))zh_TW
dc.subjectMemory Applicationsen
dc.subjectTransient Behavioren
dc.subjectConcentric Coupled Devicesen
dc.subjectOxide Local Thinning (OLT)en
dc.subjectTunneling Diode (TD)en
dc.subjectMetal-Oxide-Semiconductor (MIS(p))en
dc.title中心局部氧化層薄化同心圓環閘金氧半穿隧二極體之暫態電流強化行為及其記憶體應用zh_TW
dc.titleEnhanced Transient Current Behavior and Its Memory Application in Concentric Gate Metal-Insulator-Semiconductor Tunnel Diodes with Center Oxide Local Thinningen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳肇欣;吳幼麟zh_TW
dc.contributor.oralexamcommitteeChao-Hsin Wu;You-Lin Wuen
dc.subject.keyword金氧半(MIS(p)),穿隧二極體 (TD),局部氧化層薄化 (OLT),同心圓環耦合元件,記憶體應用,暫態行為,zh_TW
dc.subject.keywordMetal-Oxide-Semiconductor (MIS(p)),Tunneling Diode (TD),Oxide Local Thinning (OLT),Concentric Coupled Devices,Memory Applications,Transient Behavior,en
dc.relation.page85-
dc.identifier.doi10.6342/NTU202401613-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-09-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept元件材料與異質整合學位學程-
顯示於系所單位:元件材料與異質整合學位學程

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved