請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95190完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳賢燁 | zh_TW |
| dc.contributor.advisor | Hsien-Yeh Chen | en |
| dc.contributor.author | 林奕維 | zh_TW |
| dc.contributor.author | Yi-Wei Lin | en |
| dc.date.accessioned | 2024-08-29T16:31:34Z | - |
| dc.date.available | 2024-08-30 | - |
| dc.date.copyright | 2024-08-29 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-11 | - |
| dc.identifier.citation | 1. Imhof, A. and D. Pine, Ordered macroporous materials by emulsion templating. Nature, 1997. 389: p. 948-951.
2. Parlett, C.M., K. Wilson, and A.F. Lee, Hierarchical porous materials: catalytic applications. Chem Soc Rev, 2013. 42(9): p. 3876-93. 3. Wen, F. and W. Liu, Three-dimensional ordered macroporous materials for photocatalysis: design and applications. Journal of Materials Chemistry A, 2021. 9(34): p. 18129-18147. 4. Ma, X., et al., Adsorption of heavy metal ions using hierarchical CaCO3-maltose meso/macroporous hybrid materials: adsorption isotherms and kinetic studies. J Hazard Mater, 2012. 209-210: p. 467-77. 5. Sun, Z., et al., Hierarchically Ordered Macro-/Mesoporous Silica Monolith: Tuning Macropore Entrance Size for Size-Selective Adsorption of Proteins. Chemistry of Materials, 2011. 23(8): p. 2176-2184. 6. Ahmed, A., et al., Macroporous metal–organic framework microparticles with improved liquid phase separation. J. Mater. Chem. A, 2014. 2(24): p. 9085-9090. 7. Nakanishi, K. and N. Tanaka, Sol-gel with Phase Separation. Hierarchically Porous Materials Optimized for High-Performance Liquid Chromatography Separations. Accounts of Chemical Research, 2007. 40: p. 863-873. 8. Qin, K., et al., Biomimetic Silk Macroporous Materials for Drug Delivery Obtained via Ice-Templating. ACS Appl Bio Mater, 2022. 5(6): p. 2556-2566. 9. Thakar, H., et al., Biomolecule-Conjugated Macroporous Hydrogels for Biomedical Applications. ACS Biomater Sci Eng, 2019. 5(12): p. 6320-6341. 10. Li, H., et al., Effect of hierarchical meso–macroporous structures on the catalytic performance of silica supported cobalt catalysts for Fischer–Tropsch synthesis. Catalysis Science & Technology, 2017. 7(17): p. 3812-3822. 11. Weissenberger, T., et al., Preparation and Potential Catalytic Applications of Hierarchically Structured Zeolites with Macropores. Advanced Materials Interfaces, 2021. 8(4). 12. Dong, L., et al., Preparation, characterization, and application of macroporous activated carbon (MAC) suitable for the BAC water treatment process. Sci Total Environ, 2019. 647: p. 1359-1367. 13. Nam, H., S. Wang, and H.-R. Jeong, TMA and H 2 S gas removals using metal loaded on rice husk activated carbon for indoor air purification. Fuel, 2018. 213: p. 186-194. 14. Albrecht, W., et al., Preparation of aminated microfiltration membranes by degradable functionalization using plain PEI membranes with various morphologies. Journal of Membrane Science, 2007. 292(1-2): p. 145-157. 15. Braem, A., et al., Novel anti-infective implant substrates: controlled release of antibiofilm compounds from mesoporous silica-containing macroporous titanium. Colloids Surf B Biointerfaces, 2015. 126: p. 481-8. 16. Lew, K.S., et al., Macroporous bioceramics: a remarkable material for bone regeneration. J Biomater Appl, 2012. 27(3): p. 345-58. 17. Chiang, Y.-C., et al., Vapor construction and modification of stem cell-laden multicomponent scaffolds for regenerative therapeutics. Materials Today Bio, 2022. 13. 18. Loh, Q.L. and C. Choong, Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev, 2013. 19(6): p. 485-502. 19. Cieślik, M., et al., Silane–parylene coating for improving corrosion resistance of stainless steel 316L implant material. Corrosion Science, 2011. 53(1): p. 296-301. 20. Hogg, A., et al., Protective multilayer packaging for long-term implantable medical devices. Surface and Coatings Technology, 2014. 255: p. 124-129. 21. Grinberg, O., et al., Antibiotic nanoparticles embedded into the Parylene C layer as a new method to prevent medical device-associated infections. J Mater Chem B, 2015. 3(1): p. 59-64. 22. Brancato, L., et al., Surface Nanostructuring of Parylene-C Coatings for Blood Contacting Implants. Materials (Basel), 2018. 11(7). 23. Jung, Y.H., et al., A Compact Parylene-Coated WLAN Flexible Antenna for Implantable Electronics. IEEE Antennas and Wireless Propagation Letters, 2016. 15: p. 1382-1385. 24. Trantidou, T., et al., Parylene C-based flexible electronics for pH monitoring applications. Sensors (Basel), 2014. 14(7): p. 11629-39. 25. Marszalek, T., M. Gazicki-Lipman, and J. Ulanski, Parylene C as a versatile dielectric material for organic field-effect transistors. Beilstein J Nanotechnol, 2017. 8: p. 1532-1545. 26. Li, W., et al., Parylene-based integrated wireless single-channel neurostimulator. Sensors and Actuators A: Physical, 2011. 166(2): p. 193-200. 27. Gutierrez, C.A. and E. Meng, Parylene-Based Electrochemical-MEMS Transducers. Journal of Microelectromechanical Systems, 2010. 19(6): p. 1352-1361. 28. Tung, H.-Y., et al., Construction and control of 3D porous structure based on vapor deposition on sublimation solids. Applied Materials Today, 2017. 7: p. 77-81. 29. Tung, H.Y., et al., Vapor sublimation and deposition to build porous particles and composites. Nat Commun, 2018. 9(1): p. 2564. 30. Wu, C.Y., et al., Parylene-Based Porous Scaffold with Functionalized Encapsulation of Platelet-Rich Plasma and Living Stem Cells for Tissue Engineering Applications. ACS Appl Bio Mater, 2020. 3(10): p. 7193-7201. 31. Baryakova, T.H., et al., Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems. Nat Rev Drug Discov, 2023. 22(5): p. 387-409. 32. Hardenia, A., et al., Scientific Rationale for Designing Controlled Drug Delivery Systems, in Basic Fundamentals of Drug Delivery. 2019. p. 1-28. 33. Cheng, R., et al., Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 2013. 34(14): p. 3647-57. 34. Xiao, W., et al., Dual stimuli-responsive multi-drug delivery system for the individually controlled release of anti-cancer drugs. Chem Commun (Camb), 2015. 51(8): p. 1475-8. 35. Park, K., Controlled drug delivery systems: past forward and future back. J Control Release, 2014. 190: p. 3-8. 36. Numata, K., S. Yamazaki, and N. Naga, Biocompatible and biodegradable dual-drug release system based on silk hydrogel containing silk nanoparticles. Biomacromolecules, 2012. 13(5): p. 1383-9. 37. Gao, W., et al., Hydrogel Containing Nanoparticle-Stabilized Liposomes for Topical Antimicrobial Delivery. Nano, 2014. 8(3): p. 2900-2907. 38. Valo, H., et al., Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci, 2013. 50(1): p. 69-77. 39. Wang, Y., et al., A novel controlled release drug delivery system for multiple drugs based on electrospun nanofibers containing nanoparticles. J Pharm Sci, 2010. 99(12): p. 4805-11. 40. Manna, U. and S. Patil, Dual drug delivery microcapsules via layer-by-layer self-assembly. Langmuir, 2009. 25(18): p. 10515-22. 41. Sen, K., S. Banerjee, and M. Mandal, Dual drug loaded liposome bearing apigenin and 5-Fluorouracil for synergistic therapeutic efficacy in colorectal cancer. Colloids Surf B Biointerfaces, 2019. 180: p. 9-22. 42. Deepika, M.S., et al., Dual drug loaded PLGA nanospheres for synergistic efficacy in breast cancer therapy. Mater Sci Eng C Mater Biol Appl, 2019. 103: p. 109716. 43. Ma, C., et al., Thermally Responsive Hydrogel Blends: A General Drug Carrier Model for Controlled Drug Release. Angew Chem Int Ed Engl, 2015. 54(25): p. 7376-80. 44. Sun, W., et al., Quantitative Proteomics Analysis of Tissue Interstitial Fluid for Identification of Novel Serum Candidate Diagnostic Marker for Hepatocellular Carcinoma. Sci Rep, 2016. 6: p. 26499. 45. Zhang, J., et al., In-depth proteomic analysis of tissue interstitial fluid for hepatocellular carcinoma serum biomarker discovery. Br J Cancer, 2017. 117(11): p. 1676-1684. 46. Wiig, H., F.C. Luft, and J.M. Titze, The interstitium conducts extrarenal storage of sodium and represents a third compartment essential for extracellular volume and blood pressure homeostasis. Acta Physiol (Oxf), 2018. 222(3). 47. Cardoso, L., et al., Advances in assessment of bone porosity, permeability and interstitial fluid flow. J Biomech, 2013. 46(2): p. 253-65. 48. Bedussi, B., et al., Clearance from the mouse brain by convection of interstitial fluid towards the ventricular system. Fluids Barriers CNS, 2015. 12: p. 23. 49. Sansalone, V., et al., Interstitial fluid flow within bone canaliculi and electro-chemo-mechanical features of the canalicular milieu: a multi-parametric sensitivity analysis. Biomech Model Mechanobiol, 2013. 12(3): p. 533-53. 50. Ulrich, J.D., et al., In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis. Molecular Neurodegeneration, 2013. 8(13). 51. Markhus, C.E. and H. Wiig, Isolation of interstitial fluid from skeletal muscle and subcutis in mice using a wick method. Am J Physiol Heart Circ Physiol, 2004. 287(5): p. H2085-90. 52. Nilsson, A.K., et al., Lipid profiling of suction blister fluid: comparison of lipids in interstitial fluid and plasma. Lipids Health Dis, 2019. 18(1): p. 164. 53. Yang, J., et al., Microneedle-Integrated Sensors for Extraction of Skin Interstitial Fluid and Metabolic Analysis. Int J Mol Sci, 2023. 24(12). 54. Lu, T., et al., Biocompatible and Long-Term Monitoring Strategies of Wearable, Ingestible and Implantable Biosensors: Reform the Next Generation Healthcare. Sensors (Basel), 2023. 23(6). 55. Friedel, M., et al., Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat Biomed Eng, 2023. 7(12): p. 1541-1555. 56. Chiu, Y.-R., et al., Fabrication of Asymmetrical and Gradient Hierarchy Structures of Poly-p-xylylenes on Multiscale Regimes Based on a Vapor-Phase Sublimation and Deposition Process. Chemistry of Materials, 2020. 32(3): p. 1120-1130. 57. Christy, J., et al., Vapor Sublimation and Deposition Polymerization to Fabricate a Directional Scaffold for Guiding Tubular Dentin Regeneration. Advanced Functional Materials, 2024. 58. Lagreca, E., et al., Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater, 2020. 9(4): p. 153-174. 59. Jalo´n, E.G.d., et al., PLGA microparticles: possible vehicles for topical drug.pdf. International Journal of Pharmaceutics, 2001. 226: p. 181-184. 60. Ding, S., et al., Double emulsions prepared by two-step emulsification: History, state-of-the-art and perspective. J Control Release, 2019. 295: p. 31-49. 61. Florence, A.T. and D. Whitehill, Some Features of Breakdown in Water-in-Oil-in-Water Multiple Emulsions. Journal of Colloid and Interface Science, 1981. 79(1). 62. Mao, S., et al., Effects of process and formulation parameters on characteristics and internal morphology of poly(d,l-lactide-co-glycolide) microspheres formed by the solvent evaporation method. Eur J Pharm Biopharm, 2008. 68(2): p. 214-23. 63. Adepu, S. and S. Ramakrishna, Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules, 2021. 26(19). 64. Dash, S., et al., Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica, 2010. 67(3): p. 217-223. 65. Yoo, J. and Y.Y. Won, Phenomenology of the Initial Burst Release of Drugs from PLGA Microparticles. ACS Biomater Sci Eng, 2020. 6(11): p. 6053-6062. 66. Gallagher, K.M. and O.I. Corrigan, Mechanistic aspects of the release of levamisole hydrochloride from biodegradable polymers. Journal of Controlled Release, 2000. 69: p. 261-272. 67. Gasmi, H., et al., Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems. Int J Pharm, 2016. 514(1): p. 189-199. 68. Tamani, F., et al., Towards a better understanding of the release mechanisms of caffeine from PLGA microparticles. Journal of Applied Polymer Science, 2019. 137(25). 69. Tort, S., et al., Controlled drug release of parylene-coated pramipexole nanofibers for transdermal applications. Surface and Coatings Technology, 2021. 409. 70. Bruzauskaite, I., et al., Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology, 2016. 68(3): p. 355-69. 71. Nejatishahidein, N. and A.L. Zydney, Depth filtration in bioprocessing — new opportunities for an old technology. Current Opinion in Chemical Engineering, 2021. 34. 72. Ncube, P., et al., Consequences of pH change on wastewater depth filtration using a multimedia filter. Water Res, 2018. 128: p. 111-119. 73. Poll, H.U. and U. Schladitz, Penetration of plasma effects into textile structures. Surface and Coatings Technology, 2001. 142-144: p. 489-493. 74. Kim, S.H., et al., Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductively coupled oxygen plasma. Surface and Coatings Technology, 2005. 200(7): p. 2072-2079. 75. Waite, J.H., Polyphosphoprotein from the Adhesive Pads of Mytilus edulis. Biochemistry, 2001. 40: p. 2887-2893. 76. Ryou, M.H., et al., Mussel-inspired polydopamine-treated polyethylene separators for high-power li-ion batteries. Adv Mater, 2011. 23(27): p. 3066-70. 77. Kang, S.M., et al., One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angew Chem Int Ed Engl, 2010. 49(49): p. 9401-4. 78. Lee, H., et al., Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science, 2007. 318: p. 426-430. 79. Zhang, S., et al., Hydrophilic modification of PVDF porous membrane via a simple dip-coating method in plant tannin solution. RSC Advances, 2016. 6(75): p. 71287-71294. 80. Pan, L., et al., Tannic-Acid-Coated Polypropylene Membrane as a Separator for Lithium-Ion Batteries. ACS Appl Mater Interfaces, 2015. 7(29): p. 16003-10. 81. Zhang, Z.Y., et al., A biocompatible bacterial cellulose/tannic acid composite with antibacterial and anti-biofilm activities for biomedical applications. Mater Sci Eng C Mater Biol Appl, 2020. 106: p. 110249. 82. Koopmann, A.K., et al., Tannin-Based Hybrid Materials and Their Applications: A Review. Molecules, 2020. 25(21). 83. Mao, C., et al., Various approaches to modify biomaterial surfaces for improving hemocompatibility. Adv Colloid Interface Sci, 2004. 110(1-2): p. 5-17. 84. Shi, P., et al., A PEG-tannic acid decorated microfiltration membrane for the fast removal of Rhodamine B from water. Separation and Purification Technology, 2018. 207: p. 443-450. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95190 | - |
| dc.description.abstract | 多孔材料的優越性能和廣泛應用前景,結合先進的製程技術及環保需求,使其具有極佳的發展潛力。本研究中探討了在生物醫學領域中,利用氣相製程製備的多孔聚合物的發展及應用,在這之中特別針對多相分子運輸進行深入了解。透過獨特的氣相昇華和沉積技術 (Chemical Vapor Deposition, CVD),我們製造出了具有連通孔洞的宏孔材料Parylene C支架,並評估其在多重藥物釋放裝置以及過濾裝置應用上中的潛力。對於多重藥物釋放裝置,我們利用嵌入聚乳酸-甘醇酸(Poly(lactic-co-glycolic acid), PLGA) 微粒的Parylene C支架,並使用染料做為模擬的釋放分子,實現了多重藥物的控制和持續釋放。不僅如此,也透過Parylene C鍍膜技術搭載多孔Parylene C支架,實現了藥物的持續釋放。除此之外,我們還透過鎳鈦合金管搭載多孔Parylene C鍍膜,建構出一個過濾裝置,並評估其過濾懸浮液的過濾效率,以利後續進行生物體內的組織液蒐集應用。在本篇研究中指出,多孔Parylene C支架在多重藥物釋放系統以及生物醫學應用中的過濾程序中具有極佳的多功能性及有效性。 | zh_TW |
| dc.description.abstract | The superior performance and wide application prospects of porous materials make their development prospects very promising. This study explores the development and application of the vapor-fabricated interconnected macroporous material, Parylene C, in biomedical fields, focusing on multiphasic molecular transport. The material, which was fabricated by using the chemical vapor deposition (CVD) process, was evaluated for its potential in multiple drug release devices and filtration applications. The multiple drug release device was constructed using a Parylene C scaffold embedded with PLGA microparticles, enabling the controlled and sustained release of multiple drugs with dyes as simulated released molecules. Moreover, a sustained drug release device was fabricated with dense Parylene C film coating on the porous Parylene C scaffold. In addition, a filtration device that corresponds to porous Parylene C coating on the nitinol tube was also developed and tested for its efficiency in filtering suspension fluids. The research demonstrates the versatility and effectiveness of Parylene C in enhancing multiple drug release systems, sustained drug release systems, and filtration processes in biomedical applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-29T16:31:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-29T16:31:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
摘要 II Abstract III Contents IV List of Figures VI List of Tables VIII Chapter 1 Introduction 1 1.1 Macroporous Materials 1 1.2 Parylene 3 1.3 Multiple Drug Release Device 6 1.4 Interstitial Fluid Collection 8 Chapter 2 Material and Methods 12 2.1 Principles of Multiple Drug Release Device Fabrication 12 2.2 Principles of Sustained Drug Release Device Fabrication 13 2.3 Principles of Filtration Device Fabrication 14 Chapter 3 Experimental Section 16 3.1 Analytical Instruments and Material Characterizations 16 3.1.1 Optical Microscope 16 3.1.2 Fluorescence Microscope 16 3.1.3 Scanning Electron Microscope 16 3.1.4 Laser Scanning Confocal Microscope 17 3.1.5 UV-vis spectrophotometer 17 3.1.6 3D Laser Confocal Microscope 17 3.1.7 Mercury Intrusion Porosimeter 18 3.1.8 Particle Size Analyzer by Dynamic Light Scattering Method 18 3.1.9 Fourier Transform Infrared Spectroscopy (ATR) 18 3.1.10 Contact Angle Goniometer 19 3.2 Multiple Drug Release Device 19 3.2.1 Materials 19 3.2.2 Double Emulsion of PLGA Microparticles 20 3.2.3 Multiple Drug Release Device Fabrications 21 3.2.4 Multiple Drug Release Device for Fluorescence Observation 22 3.2.5 Drug Release Experiment 23 3.3 Sustained Drug Release Device 24 3.3.1 Materials 24 3.3.2 Sustained Drug Release Device Fabrications 24 3.3.3 Drug Release Experiments 25 3.4 Filtration Device 26 3.4.1 Materials 26 3.4.2 Porous Filtration Device Fabrication 26 3.4.3 In-vitro Filtration Efficiency Evaluation 28 3.4.4 Hydrophilic Modification of the Filtration Device 28 Chapter 4 Results and Discussion 30 4.1 Multiple Drug Release Device 30 4.1.1 Characteristics of the Multiple Drug Release Device 30 4.1.2 Release Profiles of the Multiple Drug Release Device 34 4.2 Sustained Drug Release Device 42 4.2.1 Characteristics of the Sustained Drug Release Device 42 4.2.2 Release Profiles of the Sustained Drug Release Device 43 4.3 Filtration Device 45 4.3.1 Filtration Efficiency of the Filtration Device 45 4.3.2 Hydrophilic Modification of the Filtration Device 54 Chapter 5 Conclusion 65 5.1 Recent Study Conclusion 65 5.2 Future Work 66 References 68 | - |
| dc.language.iso | en | - |
| dc.subject | 宏孔材料 | zh_TW |
| dc.subject | 聚一氯對二甲苯 | zh_TW |
| dc.subject | 化學氣相沉積 | zh_TW |
| dc.subject | 多重藥物釋放裝置 | zh_TW |
| dc.subject | 藥物緩釋裝置 | zh_TW |
| dc.subject | 過濾裝置 | zh_TW |
| dc.subject | sustained drug release device | en |
| dc.subject | macroporous material | en |
| dc.subject | Parylene C | en |
| dc.subject | multiple drug release device | en |
| dc.subject | filtration device | en |
| dc.subject | chemical vapor deposition (CVD) | en |
| dc.title | 氣相多孔高分子材料中的多相分子運輸在生醫領域中的應用 | zh_TW |
| dc.title | Multiphasic Molecular Transport in Vapor-Fabricated Porous Polymers for Biomedical Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳俊吉;劉定宇 | zh_TW |
| dc.contributor.oralexamcommittee | Chen-Chi Wu;Ting-Yu Liu | en |
| dc.subject.keyword | 宏孔材料,聚一氯對二甲苯,化學氣相沉積,多重藥物釋放裝置,藥物緩釋裝置,過濾裝置, | zh_TW |
| dc.subject.keyword | macroporous material,Parylene C,chemical vapor deposition (CVD),multiple drug release device,sustained drug release device,filtration device, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202401629 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 3.37 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
