請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9518完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周瑞仁(Jui-Jen Chou) | |
| dc.contributor.author | Kuo-Chih Hung | en |
| dc.contributor.author | 洪國智 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:26:31Z | - |
| dc.date.available | 2010-09-02 | |
| dc.date.available | 2021-05-20T20:26:31Z | - |
| dc.date.copyright | 2008-09-02 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-08-26 | |
| dc.identifier.citation | 1. 張志榮。2007。以結構方程模型重建基因網路。碩士論文。台北:國立台彎大學醫學工程研究所。
2. Duggan, S. P., W. M. Gallagher, E. J. Fox, M. M. Abdel-Latif, J. V. Revnold, and D. Kelleher. 2006. Low pH induces co-ordinate regulation of gene expression in oesophageal cells. Carcinogenesis. 27(2): 319-327. 3. Forster, J., I. Famili, P. Fu, B. O. Palsson, and J. Nielsen. 2003. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13(2): 244-253. 4. Gasch, A. P., P. T. Spellman, C. M. Kao, O. H. Carmel, M. B. Eisem, G. Storz, D. Botstein, and P. O. Brown. 2000. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 11(12): 4241-4257. 5. Gille, C., S. Hoffmann, and H. Holzhuetter. 2007. METANNOGEN: Compiling features of biochemical reactions needed for the reconstruction of metabolic Networks. BMC systems Biology. 1(5). 6. Herrgard, M. J., S. S. Fong, and B. O. Palsson. 2006. Identification of genome-scale metabolic network models using experimentally measured flux profiles. PLOS Comp Biol. 2: 676-686. 7. Jöreskog, K. G. 1978. Structural analysis of covariance and correlation matrices. Psychometrika. 43: 443-477. 8. Jöreskog, K. G. and D. Sörbom. 2006. LISREL 8.8. Lincolnwood, IL. Scientific Software Inc. 9. Kim, S. Y., S. Imoto, and S. Miyano. 2003. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Briefings In Bioinformatics. 4(3): 228-235. 10. Kanehisa, M., S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh, S. Kawashima, T. Katayama, M. Araki, and M. Hirakawa. 2006. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34: 354-357. 11. Kim, J., D. G. Bates, I. Postlethwaite, P. Heslop-Harrison, and K. H. Cho. 2007. Least- squares methods for identifying biochemical regulatory networks from noisy measurements. BMC Bioinformatics. 8(8). 12. Luna, I. T., Y. Huang, Y. Yin, D. P. R. Padillo, and M. C. C. Perez. 2007. Uncovering gene regulatory networks from time-series microarray data with variational Bayesian structural expectation maximization. EURASIP Journal on Bioinformatics and System Biology. Article 71312. 13. Murphy, K., and S. Mian. 1999. Modeling gene expression data using dynamic Bayesian networks. Technical Report, University of California at Berkeley, Department of Computer Science. 14. Mehra, S., W. S. Hu, and G. Karypis. 2004. A Boolean algorithm for reconstructing the structure of regulatory networks. Metabolic Engs. 6: 326-339. 15. Novikov, E., and E. Barillot. 2008. Regulatory network reconstruction using an integral additive model with flexible kernel functions. BMC Systems Biology. 2(8). 16. Qiu, Li., S. Leng, Z. Wang, Y. Dai, Y. Zheng, and Z. Wang. 2007. Path analysis of biomarkers of exposure and early biological effects among coke-oven workers exposed to polycyclic aromatic hydrocarbons. Cancer Epidemiol Biomarkers Prev. 16(6). 17. Savageau, M. A. 1969a. Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. Journal of Theoretical Biology. 25: 365-369. 18. Savageau, M. A. 1969b. Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. Journal of Theoretical Biology. 25:370-379. 19. Spellman, P. T., G. Sherlock, M. Q. Zhang, R. I. Vishwanath, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Cell. 9(12): 3273-3297. 20. Segal, E., M. Shapira, A. Regev, and D. Pe'er, D. Botstein, D. Koller, and N. Friedman. 2003. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet. 34(2): 166-176. 21. Santos, C. A., D. Senalik, and P. W. Simon. 2005. Path analysis suggests phytoene accumulation is the key step limiting the carotenoid pathway in white carrot roots. Genet Mol Biol. 28: 287-293. 22. Sotiropoulos, V., and Y. Kaznessis. 2007. Synthetic tetracycline-inducible Regulatory networks: computer-aided design of dynamic phenotypes. BMC Systems Biology. 1(7). 23. Shieh, G. S., C. M. Chen, C. Y. Yu, J. Huang, W. F. Wang, and Y. C. Lo. 2008. Inferring transcriptional compensation interactions in yeast via stepwise structure equation modeling. BMC Bioinformations. 9(1): 134. 24. Teixeira, M. C., P. Monteiro, P. jain, S. Tenreiro, A. R. Fernandes, N. P. Mira, M. Alenquer, A. T. Freitas, A. L. Oliveira, and I. S. Correia. 2006. The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res. 34: 446-451. 25. Voit, E. O. 2000. Computational Analysis of Biochemical Systems. 1st ed., 37-192. New York: Cambridge University Press. 26. Van Berlo, R., E. P. van Someren, and M. J. T. Reinders. 2003. Studying the conditions for learning dynamic Bayesian networks to discover genetic regulatory networks. Simulation. 79(12): 689-702. 27. Wessels, L., E. P. Van Someren, and M. J. T. Reinders. 2001. A comparison of genetic network models, Biocomputing. 6: 508-519. 28. Wang, J., Y. Huang, M. Sanchez, Y. Wang, and J. M. Zhang. 2006. Reverse engineering yeast gene regulatory networks using graphical models. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). 2: 1088-1091. 29. Zou, M. and S. D. Conzen. 2005. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics. 21: 71-79. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9518 | - |
| dc.description.abstract | 本研究延伸路徑分析演算法(Path Analysis),並引用微陣列晶片之動態資料,應用於資料庫中基因調控網路之鑑別上,以提供使用者判定基因調控網路可信度之參考。此外本研究亦利用演算法所提供的模型修正指標,適度地修正缺失的網路。
貝式模型、布林模型、結構方程模式與微分方程模型為現今較常見的基因調控網路模型。這些模型的目的係重建基因調控網路。本研究與上述方法不同之處在於著重於現有基因網路的鑑別。方法為根據KEGG的靜態網路產生多組候選的靜態網路,並拓展成N階動態網路。再計算這些動態網路之四組網路評估指標,以獲得最佳評估指標數目最多之網路,將之認定為最佳網路。 為了驗證本方法的可行性,本研究初步擷取十組基因調控網路進行鑑別。所採用的基因調控網路與微陣列晶片資料分別取自於KEGG與NCBI資料庫。網路為cell cycle –yeast 之子網路,包括regulation of autophagy 、MAPK signaling networks,資料為Segal 等人所提供的微陣列晶片資料。此外,為了進一步的驗證本方法的可靠性,本研究也與SSEM演算法以及貝式建模相比較。 實驗結果顯示,十組測試基因調控網路中,共有七組基因調控網路被判定為最佳網路,鑑別率達70%。另在針對該七組最佳網路,分別產生一些缺陷網路進行修正,其修正率為43%。此外,本研究方法也與SSEM演算法及貝式建模比較,針對相同網路,本研究方法皆有較佳的網路鑑別性,對於各網路之有向性連結之判斷準確性至少達60%以上。 | zh_TW |
| dc.description.abstract | The study expands Path Analysis (PA), and adopts microarray time course data to identify gene regulatory networks (GRNs). It provides users degrees of confidence on GRNs in databases. In addition, defective networks can be modified based on modification indices in PA.
A couple of approaches, such as Bayesian, Boolean, structural equation modeling and differential equations model, are used for the reconstruction of gene regulatory networks in databases. We generate several alternative networks as candidates from original networks in KEGG database for comparison. Furthermore, the static networks are expanded to dynamic form (multiple orders). Finally, path analysis may suggest the best one in the network pool based on various performance indices. In other words, this approach can evaluate the existing networks in gene networks databases and provide users degrees of confidence on each network. The gene regulatory networks are form KEGG in this study, including sub-networks of cell cycle –yeast, e.g., regulation of autophagy and MAPK signaling networks, and corresponding microarray time course data are adopted from NCBI database. Furthermore, we compare our approach with SSEM algorithm and dynamic Bayesian model method. Seven out of ten original GRNs in KEGG are ranked the best networks by our approach, and 43 percent of defective networks generated from seven best original GRNs can be correctly modified. Besides, we obtain better results than SSEM algorithm and the dynamic Bayesian model method do to the same networks. The true positive rate on the directed links of networks is at least 60 percent. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:26:31Z (GMT). No. of bitstreams: 1 ntu-97-R94631012-1.pdf: 1217433 bytes, checksum: 0dc8bb93e8613532165dc757f9489781 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 誌謝....................................................i
摘要...................................................ii Abstract..............................................iii Table of Contents.......................................v List of Figures......................................viii List of Tables.......................................xiii Chapter 1 Introduction..................................1 Chapter 2 Literature Review.............................3 Chapter 3 Materials and Methods.........................6 3-1 Alternative networks................................8 3-2 Dynamic networks expanded from static networks......10 3-3 Data interpolated...................................11 3-4 Path analysis algorithm and parameter estimation...12 3-5 Performance indices................................15 3-6 Modification of networks...........................16 3-7 Network extension..................................18 3-8 Data generation for simulation.....................20 Chapter 4 Results and Discussion.......................22 4-1 Networks and data from S-system....................22 4-2 Identification of networks in KEGG.................24 4-2-1 Identification results of ten networks...........26 4-2-2 Results of modification..........................33 4-3 Network extension..................................41 4-3-1 Comparison with SSEM algorithm...................41 4-3-1-1 Comparison with SSEM algorithm on sub-network of cell cycle- yeast............43 4-3-1-2 Comparison with SSEM algorithm on sub-network of Focal adhesion network (1).............................50 4-3-1-3 Comparison with SSEM algorithm on sub-network of Focal adhesion network (2)............57 4-3-2 Comparison with dynamic Bayesian model method.....62 Chapter 5 Conclusions..................................75 REFERENCES.......................76 Appendix-A............................80 | |
| dc.language.iso | en | |
| dc.title | 利用動態路徑分析法進行基因調控網路鑑別與修復 | zh_TW |
| dc.title | Application of Dynamic Path Analysis for Identification and Modification of Gene Regulatory Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳倩瑜(Chien-Yu Chen),蕭介宗(Jai-Tsung Shaw),黃宣誠(Hsuan-Cheng Huang),阮雪芬(Hsueh-Fen Juan) | |
| dc.subject.keyword | 路徑分析法,基因調控網路,網路評估指標,修正指標, | zh_TW |
| dc.subject.keyword | Path Analysis,gene regulatory networks,performance index,modification index, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2008-08-26 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf | 1.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
