請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95152完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧子彬 | zh_TW |
| dc.contributor.advisor | Tzu-Pin Lu | en |
| dc.contributor.author | 詹涵晴 | zh_TW |
| dc.contributor.author | Han-Ching Chan | en |
| dc.date.accessioned | 2024-08-29T16:20:08Z | - |
| dc.date.available | 2025-08-31 | - |
| dc.date.copyright | 2024-08-29 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | 1. Slamon, D.J., et al., Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. science, 1987. 235(4785): p. 177-182.
2. Updated ASCO guidelines for patients with HER2-positive breast cancer. Cancer, 2023. 129(1): p. 10-10. 3. Faderl, S., et al., The biology of chronic myeloid leukemia. New England Journal of Medicine, 1999. 341(3): p. 164-172. 4. Sawyers, C.L., Chronic myeloid leukemia. New England Journal of Medicine, 1999. 340(17): p. 1330-1340. 5. Druker, B.J., et al., Efficacy and Safety of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in Chronic Myeloid Leukemia. New England Journal of Medicine, 2001. 344(14): p. 1031-1037. 6. Quintás-Cardama, A. and J. Cortes, Molecular biology of bcr-abl1–positive chronic myeloid leukemia. Blood, 2009. 113(8): p. 1619-1630. 7. Sisodiya, S.M., Precision medicine and therapies of the future. Epilepsia, 2021. 62(S2): p. S90-S105. 8. Cluzeau, T., et al., Personalized Medicine for TP53 Mutated Myelodysplastic Syndromes and Acute Myeloid Leukemia. Int J Mol Sci, 2021. 22(18). 9. Daver, N.G., et al., Treatment outcomes for newly diagnosed, treatment-naïve TP53-mutated acute myeloid leukemia: a systematic review and meta-analysis. Journal of Hematology & Oncology, 2023. 16(1): p. 19. 10. Mantovani, F., D. Walerych, and G.D. Sal, Targeting mutant p53 in cancer: a long road to precision therapy. Febs j, 2017. 284(6): p. 837-850. 11. Chiang, C.-J., Y.-W. Wang, and W.-C. Lee, Taiwan’s Nationwide Cancer Registry System of 40 years: Past, present, and future. J Formos Med Assoc, 2019. 118(5): p. 856-858. 12. Gross, M., Riding the wave of biological data. Current Biology, 2011. 21(6): p. R204-R206. 13. Denny, J.C. and F.S. Collins, Precision medicine in 2030—seven ways to transform healthcare. Cell, 2021. 184(6): p. 1415-1419. 14. Mills, M.C. and C. Rahal, The GWAS Diversity Monitor tracks diversity by disease in real time. Nature Genetics, 2020. 52(3): p. 242-243. 15. Araghi, M., et al., Global trends in colorectal cancer mortality: projections to the year 2035. International Journal of Cancer, 2019. 144(12): p. 2992-3000. 16. National Health Promotion Administration Ministry of Health and Welfare. Taiwan Cancer Registry Annual Report of 2016. https://www.hpa.gov.tw/Pages/List.aspx?nodeid=269 [Accessed March 3, 2018]. 17. Edge, S.B. and C.C. Compton, The American Joint Committee on Cancer: the 7th Edition of the AJCC Cancer Staging Manual and the Future of TNM. Annals of Surgical Oncology, 2010. 17(6): p. 1471-1474. 18. Gray, R., et al., Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet, 2007. 370(9604): p. 2020-9. 19. Schippinger, W., et al., A prospective randomised phase III trial of adjuvant chemotherapy with 5-fluorouracil and leucovorin in patients with stage II colon cancer. British Journal Of Cancer, 2007. 97: p. 1021. 20. Varghese, A., Chemotherapy for Stage II Colon Cancer. Clinics in colon and rectal surgery, 2015. 28(4): p. 256-261. 21. Kneuertz, P.J., et al., Overtreatment of young adults with colon cancer: More intense treatments with unmatched survival gains. JAMA Surgery, 2015. 150(5): p. 402-409. 22. National Health Promotion Administration Ministry of Health and Welfare. Summary of healthcare expense for top 10 cancer in Taiwan https://www.nhi.gov.tw/Content_List.aspx?n=AE8F3C1B6EC35217&topn=23C660CAACAA159D [Accessed March 3, 2018]. 23. Benson, A.B., 3rd, et al., American Society of Clinical Oncology recommendations on adjuvant chemotherapy for stage II colon cancer. J Clin Oncol, 2004. 22(16): p. 3408-19. 24. Eheman, C.R., et al., Use of Adjuvant Chemotherapy among Stage II Colon Cancer Patients in 10 Population-Based National Program of Cancer Registries. Journal of registry management, 2016. 43(4): p. 179-186. 25. Chanrion, M., et al., A gene expression signature that can predict the recurrence of tamoxifen-treated primary breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 2008. 14(6): p. 1744-1752. 26. Navab, R., et al., Prognostic gene-expression signature of carcinoma-associated fibroblasts in non-small cell lung cancer. Proceedings of the National Academy of Sciences, 2011. 108(17): p. 7160. 27. Klein, E.A., et al., A 17-gene Assay to Predict Prostate Cancer Aggressiveness in the Context of Gleason Grade Heterogeneity, Tumor Multifocality, and Biopsy Undersampling. European Urology, 2014. 66(3): p. 550-560. 28. Saintigny, P., et al., Gene expression profiling predicts the development of oral cancer. Cancer prevention research (Philadelphia, Pa.), 2011. 4(2): p. 218-229. 29. van 't Veer, L.J., et al., Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002. 415: p. 530. 30. Wang, Y., et al., Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. The Lancet, 2005. 365(9460): p. 671-679. 31. Xu, G., et al., A 15-gene signature for prediction of colon cancer recurrence and prognosis based on SVM. Gene, 2017. 604: p. 33-40. 32. Zuo, S., G. Dai, and X. Ren, Identification of a 6-gene signature predicting prognosis for colorectal cancer. Cancer Cell International, 2019. 19(1): p. 6. 33. Gautier, L., et al., affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 2004. 20(3): p. 307-15. 34. Chawla, N.V., et al., SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 2002. 16: p. 321-357. 35. Tusher, V.G., R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(9): p. 5116-5121. 36. Díaz-Uriarte, R. and S. Alvarez de Andrés, Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 2006. 7(1): p. 3. 37. Degenhardt, F., S. Seifert, and S. Szymczak, Evaluation of variable selection methods for random forests and omics data sets. Brief Bioinform, 2019. 20(2): p. 492-503. 38. Loyola-González, O., et al., Study of the impact of resampling methods for contrast pattern based classifiers in imbalanced databases. Neurocomputing, 2016. 175: p. 935-947. 39. Polikar, R., Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 2006. 6(3): p. 21-45. 40. Breiman, L., Bagging predictors. Machine Learning, 1996. 24(2): p. 123-140. 41. Cortes, C. and V. Vapnik, Support-vector networks. Machine Learning, 1995. 20(3): p. 273-297. 42. Barretina, J., et al., The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012. 483(7391): p. 603-607. 43. Tibshirani, R., Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 1996. 58(1): p. 267-288. 44. Krämer, A., et al., Causal analysis approaches in ingenuity pathway analysis. Bioinformatics, 2014. 30(4): p. 523-530. 45. Sherman, B.T., et al., The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome biology, 2007. 8(9): p. R183. 46. Uhlen, M., et al., A pathology atlas of the human cancer transcriptome. Science, 2017. 357(6352). 47. Gemignani, F., et al., Polymorphisms of the Dopamine Receptor Gene and Colorectal Cancer Risk. Cancer Epidemiology Biomarkers & Prevention, 2005. 14(7): p. 1633. 48. Hasenoehrl, C., et al., G protein‐coupled receptor GPR55 promotes colorectal cancer and has opposing effects to cannabinoid receptor 1. International journal of cancer, 2018. 142(1): p. 121-132. 49. Asadi, M., et al., Expression Level of Caspase Genes in Colorectal Cancer. Asian Pac J Cancer Prev, 2018. 19(5): p. 1277-1280. 50. Bohanes, P., et al., Integrin genetic variants and stage-specific tumor recurrence in patients with stage II and III colon cancer. The Pharmacogenomics Journal, 2014. 15: p. 226. 51. Kline, C.L.B., et al., Role of Dopamine Receptors in the Anticancer Activity of ONC201. Neoplasia (New York, N.Y.), 2017. 20(1): p. 80-91. 52. Lei, Y., et al., Proteomics identification of ITGB3 as a key regulator in reactive oxygen species-induced migration and invasion of colorectal cancer cells. Molecular & Cellular Proteomics, 2011. 10(10). 53. Slattery, M.L., et al., Variation in the CYP19A1 gene and risk of colon and rectal cancer. Cancer causes & control : CCC, 2011. 22(7): p. 955-963. 54. Ye, P., et al., SNPs in microRNA-binding sites in the ITGB1 and ITGB3 3′-UTR increase colorectal cancer risk. Cell biochemistry and biophysics, 2014. 70(1): p. 601-607. 55. Alexander, E.K., et al., Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. New England Journal of Medicine, 2012. 367(8): p. 705-715. 56. McIver, B., et al., An Independent Study of a Gene Expression Classifier (Afirma) in the Evaluation of Cytologically Indeterminate Thyroid Nodules. The Journal of Clinical Endocrinology & Metabolism, 2014. 99(11): p. 4069-4077. 57. Huang, T.-T., et al., Gene expression profiling in prognosis of distant recurrence in HR-positive and HER2-negative breast cancer patients. Oncotarget, 2018. 9(33): p. 23173-23182. 58. Zemmour, C., et al., Prediction of early breast cancer metastasis from DNA microarray data using high-dimensional cox regression models. Cancer informatics, 2015. 14(Suppl 2): p. 129-138. 59. Dyrskjøt, L., et al., Gene Expression Signatures Predict Outcome in Non–Muscle-Invasive Bladder Carcinoma: A Multicenter Validation Study. Clinical Cancer Research, 2007. 13(12): p. 3545. 60. Thorsteinsson, M., et al., Gene expression profiles in stages II and III colon cancers: application of a 128-gene signature. International journal of colorectal disease, 2012. 27(12): p. 1579-1586. 61. Cancer Research UK. Bowel cancer statistic. https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bowel-cancer [Accessed May 18, 2018]. 62. National Institute for Health and Care Excellence. https://www.nice.org.uk/ [Accessed May 18, 2018]. 63. Manilich, E.A., et al., A Novel Data-Driven Prognostic Model for Staging of Colorectal Cancer. Journal of the American College of Surgeons, 2011. 213(5): p. 579-588.e2. 64. Pietrantonio, F., et al., Estimating 12-week death probability in patients with refractory metastatic colorectal cancer: the Colon Life nomogram. Annals of Oncology, 2017. 28(3): p. 555-561. 65. Yuan, Y., et al., Prognostic and survival analysis of 837 Chinese colorectal cancer patients. World journal of gastroenterology, 2013. 19(17): p. 2650-2659. 66. Marisa, L., et al., Gene Expression Classification of Colon Cancer into Molecular Subtypes: Characterization, Validation, and Prognostic Value. PLOS Medicine, 2013. 10(5): p. e1001453. 67. Freeman, T.J., et al., Smad4-Mediated Signaling Inhibits Intestinal Neoplasia by Inhibiting Expression of β-Catenin. Gastroenterology, 2012. 142(3): p. 562-571.e2. 68. Jorissen, R.N., et al., Metastasis-Associated Gene Expression Changes Predict Poor Outcomes in Patients with Dukes Stage B and C Colorectal Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 2009. 15(24): p. 7642-7651. 69. Gabriel, E., et al., Predicting Individualized Postoperative Survival for Stage II/III Colon Cancer Using a Mobile Application Derived from the National Cancer Data Base. Journal of the American College of Surgeons, 2016. 222(3): p. 232-244. 70. Hippisley-Cox, J. and C. Coupland, Development and validation of risk prediction equations to estimate survival in patients with colorectal cancer: cohort study. BMJ, 2017. 357: p. j2497. 71. Valentini, V., et al., Nomograms for predicting local recurrence, distant metastases, and overall survival for patients with locally advanced rectal cancer on the basis of European randomized clinical trials. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2011. 29(23): p. 3163-3172. 72. Honda, M., et al., Development and validation of a prognostic nomogram for colorectal cancer after radical resection based on individual patient data from three large-scale phase III trials. Oncotarget, 2017. 8(58). 73. Holowatyj, A.N., et al., Racial/ethnic disparities in survival among patients with young-onset colorectal cancer. Journal of Clinical Oncology, 2016. 34(18): p. 2148. 74. Wang, J., et al., The prognostic superiority of log odds of positive lymph nodes in stage III colon cancer. Journal of Gastrointestinal Surgery, 2008. 12(10): p. 1790-1796. 75. Chiang, C.J., Y.W. Wang, and W.C. Lee, Taiwan's Nationwide Cancer Registry System of 40 years: Past, present, and future. J Formos Med Assoc, 2019. 118(5): p. 856-858. 76. Chiang, C.J., et al., Quality assessment and improvement of nationwide cancer registration system in Taiwan: a review. Jpn J Clin Oncol, 2015. 45(3): p. 291-6. 77. Chiang, C.-J., et al., Cancer trends in Taiwan. Japanese journal of clinical oncology, 2010. 40(10): p. 897-904. 78. Chang, J.S., et al., The incidence and survival of pancreatic cancer by histology, including rare subtypes: a nation-wide cancer registry-based study from Taiwan. Cancer Medicine, 2018. 7(11): p. 5775-5788. 79. Chang, L.-C., et al., Prognostic factors in epithelial ovarian cancer: A population-based study. PLOS ONE, 2018. 13(3): p. e0194993. 80. Huang, C.-C., et al., Development of a prediction model for breast cancer based on the national cancer registry in Taiwan. Breast Cancer Research, 2019. 21(1): p. 92. 81. Tsai, H.-J., et al., The Epidemiology of Neuroendocrine Tumors in Taiwan: A Nation-Wide Cancer Registry-Based Study. PLOS ONE, 2013. 8(4): p. e62487. 82. dos Reis, F.J.C., et al., An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation. Breast Cancer Research, 2017. 19(1): p. 58. 83. Wishart, G., et al., PREDICT Plus: development and validation of a prognostic model for early breast cancer that includes HER2. British journal of cancer, 2012. 107(5): p. 800-807. 84. Wishart, G.C., et al., PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Research, 2010. 12(1): p. R1. 85. Cienfuegos, J.A., et al., Perineural Invasion is a Major Prognostic and Predictive Factor of Response to Adjuvant Chemotherapy in Stage I–II Colon Cancer. Annals of Surgical Oncology, 2017. 24(4): p. 1077-1084. 86. Tang, X.-Y., et al., The Circumferential Resection Margin Is a Prognostic Predictor in Colon Cancer. Frontiers in Oncology, 2020. 10(927). 87. Katoh, H., et al., Prognostic Significance of Preoperative Bowel Obstruction in Stage III Colorectal Cancer. Annals of Surgical Oncology, 2011. 18(9): p. 2432-2441. 88. Steinberg, S.M., et al., Prognostic indicators of colon tumors. The gastrointestinal tumor study group experience. Cancer, 1986. 57(9): p. 1866-1870. 89. Saha, A.K., et al., Prognostic factors for survival after curative resection of Dukes’ B colonic cancer. Colorectal Disease, 2011. 13(12): p. 1390-1394. 90. Amin, M.B. and S.B. Edge, AJCC cancer staging manual. 2017: springer. 91. Liebig, C., et al., Perineural invasion in cancer. Cancer, 2009. 115(15): p. 3379-3391. 92. Vaccaro, C.A., et al., Lymph node ratio as prognosis factor for colon cancer treated by colorectal surgeons. Dis Colon Rectum, 2009. 52(7): p. 1244-50. 93. Cox, D.R., Regression Models and Life-Tables. Journal of the Royal Statistical Society. Series B (Methodological), 1972. 34(2): p. 187-220. 94. T, T., A Package for Survival Analysis in R. R package version 3.2-3, https://CRAN.R-project.org/package=survival. 2020. 95. Therneau, T.M. and P.M. Grambsch, The Cox model, in Modeling survival data: extending the Cox model. 2000, Springer. p. 39-77. 96. Royston, P. and D.G. Altman, External validation of a Cox prognostic model: principles and methods. BMC medical research methodology, 2013. 13(1): p. 33. 97. Harrell, F.E., Jr., et al., Evaluating the yield of medical tests. Jama, 1982. 247(18): p. 2543-6. 98. Surveillance, E., and End Results (SEER) Program (www.seer.cancer.gov) Research Data (1973-2015), National Cancer Institute, DCCPS, Surveillance Research Program, released April 2018, based on the November 2017 submission. 99. Goffredo, P., et al., Positive circumferential resection margins following locally advanced colon cancer surgery: Risk factors and survival impact. Journal of Surgical Oncology, 2020. 121(3): p. 538-546. 100. Huh, J.W., et al., Prognostic significance of lymphovascular or perineural invasion in patients with locally advanced colorectal cancer. The American Journal of Surgery, 2013. 206(5): p. 758-763. 101. Knijn, N., et al., Perineural Invasion is a Strong Prognostic Factor in Colorectal Cancer: A Systematic Review. Am J Surg Pathol, 2016. 40(1): p. 103-12. 102. Liebig, C., et al., Perineural invasion is an independent predictor of outcome in colorectal cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2009. 27(31): p. 5131-5137. 103. Chen, H.-S. and S.-M. Sheen-Chen, Obstruction and perforation in colorectal adenocarcinoma: An analysis of prognosis and current trends. Surgery, 2000. 127(4): p. 370-376. 104. McArdle, C.S., D.C. McMillan, and D.J. Hole, The impact of blood loss, obstruction and perforation on survival in patients undergoing curative resection for colon cancer. Br J Surg, 2006. 93(4): p. 483-8. 105. Wang, H.-S., et al., Long-term prognosis of patients with obstructing carcinoma of the right colon. The American Journal of Surgery, 2004. 187(4): p. 497-500. 106. Chen, T.-M., Y.-T. Huang, and G.-C. Wang, Outcome of colon cancer initially presenting as colon perforation and obstruction. World Journal of Surgical Oncology, 2017. 15(1): p. 164. 107. Koh, F.H. and K.-K. Tan, Complete mesocolic excision for colon cancer: is it worth it? Journal of gastrointestinal oncology, 2019. 10(6): p. 1215. 108. Han, D.-P., et al., Long-term results of laparoscopy-assisted radical right hemicolectomy with D3 lymphadenectomy: clinical analysis with 177 cases. International journal of colorectal disease, 2013. 28(5): p. 623-629. 109. Tentes, A.-A.K., et al., Radical lymph node resection of the retroperitoneal area for left-sided colon cancer. Langenbeck's archives of surgery, 2007. 392(2): p. 155-160. 110. Chow, C.F. and S.H. Kim, Laparoscopic complete mesocolic excision: West meets East. World Journal of Gastroenterology: WJG, 2014. 20(39): p. 14301. 111. Hohenberger, W., et al., Standardized surgery for colonic cancer: complete mesocolic excision and central ligation–technical notes and outcome. Colorectal disease, 2009. 11(4): p. 354-364. 112. Klahan, S., et al., Identification of genes and pathways related to lymphovascular invasion in breast cancer patients: a bioinformatics analysis of gene expression profiles. Tumor Biology, 2017. 39(6): p. 1010428317705573. 113. Favoriti, P., et al., Worldwide burden of colorectal cancer: a review. Updates in Surgery, 2016. 68(1): p. 7-11. 114. Rawla, P., T. Sunkara, and A. Barsouk, Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Przeglad gastroenterologiczny, 2019. 14(2): p. 89-103. 115. Arnold, M., et al., Global patterns and trends in colorectal cancer incidence and mortality. Gut, 2017. 66(4): p. 683-691. 116. Araghi, M., et al., Global trends in colorectal cancer mortality: Projections to the year 2035. International journal of cancer, 2018. 117. Byers, T.E., et al., The impact of socioeconomic status on survival after cancer in the United States. Cancer, 2008. 113(3): p. 582-591. 118. Chen, V.W., et al., Aggressiveness of colon carcinoma in blacks and whites. National Cancer Institute Black/White Cancer Survival Study Group. Cancer Epidemiology and Prevention Biomarkers, 1997. 6(12): p. 1087-1093. 119. Page, W. and A. Kuntz, Racial and socioeconomic factors in cancer survival. A comparison of Veterans Administration results with selected studies. Cancer, 1980. 45(5): p. 1029-1040. 120. Kogevinas, M. and M. Porta, Socioeconomic differences in cancer survival: a review of the evidence. IARC scientific publications, 1997. 138(138): p. 177-206. 121. Wegner, E.L., et al., Racial and socioeconomic status differences in survival of colorectal cancer patients in Hawaii. Cancer, 1982. 49(10): p. 2208-2216. 122. Bonett, A., D. Roder, and A. Esterman, Determinants of case survival for cancers of the lung, colon, breast and cervix in South Australia. Medical journal of Australia, 1984. 141(11): p. 705-709. 123. Kudryavtseva, A.V., et al., Important molecular genetic markers of colorectal cancer. Oncotarget, 2016. 7(33): p. 53959. 124. Walther, A., et al., Genetic prognostic and predictive markers in colorectal cancer. Nature Reviews Cancer, 2009. 9(7): p. 489. 125. Ibrahim, A., et al., Colitis‐induced colorectal cancer and intestinal epithelial estrogen receptor beta impact gut microbiota diversity. International journal of cancer, 2018. 126. Barry, M.J. and S. Edgman-Levitan, Shared decision making—the pinnacle of patient-centered care. New England Journal of Medicine, 2012. 366(9): p. 780-781. 127. Elwyn, G., et al., Shared decision making: a model for clinical practice. Journal of general internal medicine, 2012. 27(10): p. 1361-1367. 128. Charles, C., A. Gafni, and T. Whelan, Shared decision-making in the medical encounter: what does it mean?(or it takes at least two to tango). Social science & medicine, 1997. 44(5): p. 681-692. 129. Uffelmann, E., et al., Genome-wide association studies. Nature Reviews Methods Primers, 2021. 1(1): p. 59. 130. Barbeira, A.N., et al., Integrating predicted transcriptome from multiple tissues improves association detection. PLoS genetics, 2019. 15(1): p. e1007889. 131. Zhao, T., et al., Integrate GWAS, eQTL, and mQTL data to identify Alzheimer’s disease-related genes. Frontiers in genetics, 2019. 10: p. 1021. 132. Akçimen, F., et al., Transcriptome-wide association study for restless legs syndrome identifies new susceptibility genes. Communications biology, 2020. 3(1): p. 373. 133. Gusev, A., et al., Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nature genetics, 2018. 50(4): p. 538-548. 134. Mancuso, N., et al., Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nature communications, 2018. 9(1): p. 4079. 135. Wu, L., et al., A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nature genetics, 2018. 50(7): p. 968-978. 136. Barral-Arca, R., et al., Ancestry patterns inferred from massive RNA-seq data. RNA, 2019. 25(7): p. 857-868. 137. Martin, A.R., et al., Clinical use of current polygenic risk scores may exacerbate health disparities. Nature Genetics, 2019. 51(4): p. 584-591. 138. Gamazon, E.R., et al., A gene-based association method for mapping traits using reference transcriptome data. Nature genetics, 2015. 47(9): p. 1091-1098. 139. Keys, K.L., et al., On the cross-population generalizability of gene expression prediction models. PLoS genetics, 2020. 16(8): p. e1008927. 140. Mikhaylova, A.V. and T.A. Thornton, Accuracy of gene expression prediction from genotype data with PrediXcan varies across and within continental populations. Frontiers in genetics, 2019. 10: p. 440307. 141. Barbeira, A.N., et al., Exploiting the GTEx resources to decipher the mechanisms at GWAS loci. Genome biology, 2021. 22: p. 1-24. 142. Barbeira, A.N., et al., Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nature communications, 2018. 9(1): p. 1825. 143. Karczewski, K.J., et al., The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 2020. 581(7809): p. 434-443. 144. Gusev, A., et al., Integrative approaches for large-scale transcriptome-wide association studies. Nature genetics, 2016. 48(3): p. 245-252. 145. Olivas, E.S., et al., Handbook of research on machine learning applications and trends: Algorithms, methods, and techniques: Algorithms, methods, and techniques. 2009: IGI global. 146. Weiss, K., T.M. Khoshgoftaar, and D. Wang, A survey of transfer learning. Journal of Big data, 2016. 3: p. 1-40. 147. Zhuang, F., et al., A comprehensive survey on transfer learning. Proceedings of the IEEE, 2020. 109(1): p. 43-76. 148. Gao, Y., T. Sharma, and Y. Cui, Addressing the challenge of biomedical data inequality: An artificial intelligence perspective. Annual review of biomedical data science, 2023. 6: p. 153-171. 149. Li, S., T.T. Cai, and H. Li, Transfer learning for high-dimensional linear regression: Prediction, estimation and minimax optimality. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2022. 84(1): p. 149-173. 150. Toseef, M., X. Li, and K.-C. Wong, Reducing healthcare disparities using multiple multiethnic data distributions with fine-tuning of transfer learning. Briefings in Bioinformatics, 2022. 23(3): p. bbac078. 151. 2015-2016 Global Participation in Clinical Trials Report. Food and Drug Administration. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95152 | - |
| dc.description.abstract | 精準醫療之目的為考慮個人的臨床特徵、基因、環境因子及生活方式等,以提供更個人化的治療,在過往的治療中,主要都是以群體中主流的情況進行醫療決策,但結果往往會伴隨部分病人治療反應不佳,抑或是有嚴重副作用,醫療成本也隨之增加。隨著近年基因定序技術的進步,人們發現病人在基因組上的個體差異,透過找出基因與疾病間的關係,進而能發展出個人化的有效治療決策,因此在論文的第一部分,我嘗試透過分析Gene Expression Omnibus (GEO)資料庫上的基因表現量資料,尋找影響大腸癌一、二期病人術後復發風險的基因,因臨床上針對這些病人是否需要進行輔助性治療尚未有定論,透過利用支援向量機(Support Vector Machine, SVM)方法將差異表現基因建立預後模型,並使用集成學習(Ensemble learning)的概念進行預測,最終此模型在內外部驗證資料皆有良好的預測表現。基於前述GEO基因表現量資料大多來自於歐美族群,在第二部分我分析了來自台灣癌症登記資料庫之大腸癌病人,建立了專屬台灣人的存活預測模型,並使用美國癌症登記資料庫的資料進行外部驗證,探討了東西方族群在大腸癌存活上的差異。最後一部分的目標為欲比較在基因表現上歐美族群與東亞族群間的差異,PrediXcan為一廣泛使用於將DNA位點資料預測出基因表現量之演算法,惟其使用的權重模型訓練資料為來自歐洲族群,而已知在基因頻率上不同族群間是存在差異性的,因此本論文首先探討了此差異對於基因表現量預測值的影響程度,以及其使用到的DNA位點有多少比例存在族群差異;此外,也使用gnomAD中歐洲及東亞族群的次要等位基因頻率(MAF)資訊,模擬出500組所有PrediXcan位點所需資料,並代入PrediXcan以產生兩個族群的基因表現量參考資料庫,最終建立了一R語言套件,將東亞族群作為主要參考對象,使用者可將其PrediXcan結果輸入,即可得到該基因表現在相對應參考值分布中的百分位數(Percentile Rank, PR),以此可知其表現量相較大部分人群是否有所差異,同時也提供該基因的相關資訊,包括:其使用到的DNA位點數量、在東亞族群參考資料庫中的平均值及標準差、此基因在歐洲與東亞族群是否有顯著差異(使用Kolmogorov-Smirnov檢定)以及差異程度等。此工具可視為一輔助工具,透過利用大型數據庫的MAF資訊發展出標準的參考資料庫,提供使用者確認其基因表現差異程度,方便進一步後續分析探討。總結來說,本論文前兩部分分別在基因與臨床特徵的資料上嘗試建立能更加個人化治療的預測模型,而有鑒於主流的大型數據資料庫以歐美族群為居多,但歐美族群與其他次族群無論是在基因、臨床特徵上的差異對於治療反應是無法忽視的,因此本論文以東亞族群為代表,探討族群差異在PrediXcan演算法上的影響,並建立東亞族群參考資料庫,期望能更有助於東亞族群在精準醫療上的進展。 | zh_TW |
| dc.description.abstract | The goal of precision medicine is to provide more personalized treatments by considering individual clinical characteristics, genetics, environmental factors, and lifestyle. Historically, medical decisions have primarily been based on the predominant conditions within a population, often resulting in suboptimal treatment responses for some patients and severe side effects for others, thereby increasing healthcare costs. In recent years, advancements in gene sequencing technology have uncovered relationships between genes and diseases, leading to the development of personalized and effective treatment strategies.
The first part of the dissertation is aiming to identify genes influencing the risk of recurrence in stage I and II colorectal cancer patients by analyzing gene expression data from the Gene Expression Omnibus (GEO) database. As the need for adjuvant therapy in early-stage patients remains unclear, I applied the Support Vector Machine (SVM) to establish a prognostic model based on differentially expressed genes and utilized ensemble learning for final prediction. This model demonstrated good predictive performance in both internal and external validation datasets. Since most prediction models in colon cancer were developed from European populations, in the second part, I analyzed Taiwan Cancer Registry (TCR) database to develop a survival prediction model for the Taiwanese population by using their demographic characteristics and tumor-associated features. In addition, to investigate the generalizability of the proposed model and the population differences, I validated the model using data from the Surveillance, Epidemiology, and End Results (SEER) cancer registry dataset. Consequently, the model showed robust prediction performance (Harrell’s c-index > 0.8) in diverse populations. However, the differences in gene expression levels between European and underrepresented populations are still uncertain. Therefore, in the last part, I aimed to compare gene expression differences between European and East Asian populations. PrediXcan is a widely used algorithm that predicts gene expression levels from deoxyribonucleic acid (DNA) variant data, but the training data for its prediction models come from European populations. Given that allele frequency may differ among diverse populations, I first examined the impact of these differences on predicted gene expression values and the proportion of variants used by PrediXcan that exhibit population differences. In addition, I utilized the minor allele frequency (MAF) information of European and East Asian populations from gnomAD to develop gene expression reference panels for both populations. Furthermore, I developed an R package that allows users to input their PrediXcan results and obtain the percentile rank (PR) of gene expression within the reference distribution, indicating whether the gene expression level significantly differs from the majority of the population. I also provide gene-related information, including the number of variants used, the mean and standard deviation in the East Asian reference database, whether there is a significant difference between European and East Asian populations (using the Kolmogorov-Smirnov test), and the difference value. This tool serves as an auxiliary tool, utilizing MAF information from large-scale databases to develop the reference panel, helping users confirm population differences for further analysis. In summary, the first two parts of this dissertation aimed to establish predictive models for more personalized treatments based on genetic and clinical data. Given that large-scale databases are predominantly based on European populations, it is necessary to consider the impact of differences in genetic and clinical characteristics on treatment responses. Here, I focused on the East Asian population, exploring the impact of population differences on the PrediXcan algorithm and developing an East Asian reference panel, aiming to advance precision medicine for the East Asian population. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-29T16:20:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-29T16:20:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III ABSTRACT V 圖次 XI 表次 XII CHAPTER 1. INTRODUCTION 1 1.1. PRECISION MEDICINE 1 1.2. Biomedical data for precision medicine 3 1.2.1. Clinical data 3 1.2.2. Biological data 4 1.2.3. Population disparity in biological data 4 1.3. Analysis algorithms for biological data 5 1.3.1. Statistical algorithms 5 1.3.2. Machine learning algorithms 6 1.4. OUTLINE 7 CHAPTER 2. DEVELOPMENT OF A GENE-BASED PREDICTION MODEL FOR RECURRENCE OF COLORECTAL CANCER USING AN ENSEMBLE LEARNING ALGORITHM 10 2.1. ABSTRACT 10 2.2. INTRODUCTION 12 2.3. MATERIALS AND METHODS 15 2.3.1. Datasets 15 2.3.2. Imbalanced data 16 2.3.3. Parallel ensemble method 18 2.3.4. Effective drug prediction 19 2.3.5. Other methods for comparison of prediction performance 19 2.4. RESULTS 20 2.4.1. Clinical feature analysis 20 2.4.2. Determination of differentially expressed genes from feature selection 20 2.4.3. Prediction of 3-year recurrence-free survival using gene expression data 21 2.4.4. Prediction performance in the validation datasets from the USA and Australia 21 2.4.5. Prediction of drug response 22 2.4.6. Comparison of the prediction performance with other methods 23 2.5. DISCUSSION 24 2.6. FIGURES 29 2.7. TABLES 32 CHAPTER 3. PREDICTING COLON CANCER-SPECIFIC SURVIVAL FOR THE ASIAN POPULATION USING NATIONAL CANCER REGISTRY DATA FROM TAIWAN 36 3.1. ABSTRACT 36 3.2. INTRODUCTION 38 3.3. MATERIAL AND METHODS 40 3.3.1. Dataset 40 3.3.2. Variables 41 3.3.3. Model development 42 3.3.4. Model evaluation and validation 43 3.3.5. Overall Survival prediction 44 3.4. RESULTS 45 3.4.1. Descriptive statistics of patient characteristics 45 3.4.2. Development of the prognostic model 45 3.4.3. Performance of the prognostic model 46 3.4.4. Overall survival as outcome 48 3.5. DISCUSSION 49 3.6. CONCLUSION 53 3.7. FIGURE 54 3.8. TABLES 55 CHAPTER 4. CROSS-POPULATION ENHANCEMENT OF PREDIXCAN PREDICTIONS WITH A GNOMAD-BASED EAST ASIAN REFERENCE FRAMEWORK 92 4.1. ABSTRACT 92 4.2. INTRODUCTION 94 4.3. METHODS 98 4.3.1. Datasets 98 4.3.2. Simulation studies to identify parameters that represent population diversity 99 4.3.3. Proportion test on the population differentiated variants 102 4.3.4. Developing gene expression reference for East Asian ancestry 103 4.3.5. Evaluation of Predixcan results using PredictAP 104 4.3.1. Application using external dataset 105 4.4. RESULTS 106 4.4.1. Overview of PrediXcan and gnomAD 106 4.4.2. Population disparity 106 4.4.3. Gene expression reference for East Asian ancestry 107 4.4.4. PredictAP: The R package 108 4.4.1. Evaluation of PrediXcan predictions for real patient data using PredictAP 110 4.5. DISCUSSION 111 4.6. CONCLUSION 115 4.7. FIGURE 116 4.8. SUPPLEMENTARY 122 4.8.1. Supplementary Figures 122 4.8.2. Supplementary Tables 127 CHAPTER 5. DISCUSSION 145 REFERENCE 149 | - |
| dc.language.iso | en | - |
| dc.subject | 族群差異 | zh_TW |
| dc.subject | 預測模型 | zh_TW |
| dc.subject | PrediXcan | zh_TW |
| dc.subject | 精準醫療 | zh_TW |
| dc.subject | 大腸癌 | zh_TW |
| dc.subject | precision medicine | en |
| dc.subject | prediction model | en |
| dc.subject | gene expression | en |
| dc.subject | PrediXcan | en |
| dc.subject | population difference | en |
| dc.title | 開發臨床資料及基因數據之分析演算法 | zh_TW |
| dc.title | Development of Analysis Algorithms for Clinical and Genomic Data | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 蕭朱杏;郭柏秀;李文宗;馮嬿臻;張升懋;蕭自宏 | zh_TW |
| dc.contributor.oralexamcommittee | Chuhsing Kate Hsiao;Po-Hsiu Kuo;Wen-Chung Lee;Yen-Chen Anne Feng;Sheng-Mao Chang;Tzu-Hung Hsiao | en |
| dc.subject.keyword | 精準醫療,大腸癌,預測模型,PrediXcan,族群差異,R, | zh_TW |
| dc.subject.keyword | precision medicine,prediction model,gene expression,PrediXcan,population difference,R, | en |
| dc.relation.page | 159 | - |
| dc.identifier.doi | 10.6342/NTU202403777 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| dc.date.embargo-lift | 2025-08-31 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 6.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
