請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95144
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 管希聖 | zh_TW |
dc.contributor.advisor | Hsi-Sheng Goan | en |
dc.contributor.author | 呂柏融 | zh_TW |
dc.contributor.author | Po-Jung Lu | en |
dc.date.accessioned | 2024-08-29T16:17:42Z | - |
dc.date.available | 2024-08-30 | - |
dc.date.copyright | 2024-08-29 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-15 | - |
dc.identifier.citation | [1]Aram W Harrow and Ashley Montanaro. Quantum computational supremacy. Nature, 549(7671):203–209, 2017.
[2] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. [3] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996. [4] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–788, 2016. [5] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-shelvam, Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016. [6] OpenAI. ChatGPT (Jan 12 version) [Large language model], 2024. [7] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al. Variational quantum algorithms. Nature Reviews Physics, 3(9):625–644, 2021. [8] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized quantum circuits as machine learning models. Quantum Science and Technology, 4(4):043001, nov 2019. [9] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August 2018. [10] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S Kottmann, Tim Menke, et al. Noisy intermediate-scale quantum algorithms. Reviews of Modern Physics, 94(1):015004, 2022. [11] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Evaluating analytic gradients on quantum hardware. Physical Review A, 99(3):032331, 2019. [12] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. Quantum circuit learning. Physical Review A, 98(3):032309, 2018. [13] Sukin Sim, Peter D Johnson, and Al ́an Aspuru-Guzik. Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies, 2(12):1900070, 2019. [14] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A, 103(3), March 2021. [15] Adri ́an P ́erez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and Jos ́e I Latorre. Data re-uploading for a universal quantum classifier. Quantum, 4:226, 2020. [16] Samuel Yen-Chi Chen, Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen, Xiaoli Ma, and Hsi-Sheng Goan. Variational quantum circuits for deep reinforcement learning. IEEE Access, 8:141007–141024, 2020. [17] Maxwell Henderson, Samriddhi Shakya, Shashindra Pradhan, and Tristan Cook. Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Machine Intelligence, 2(1):2, 2020. [18] Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional neural networks. Nature Physics, 15(12):1273–1278, 2019. [19] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component analysis. Nature Physics, 10(9):631–633, 2014. [20] Samuel Yen-Chi Chen, Shinjae Yoo, and Yao-Lung L Fang. Quantum long short-term memory. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8622–8626. IEEE, 2022. [21] Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut Neven, and Jarrod R. McClean. Power of data in quantum machine learning. Nature Communications, 12(1), May 2021. [22] Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan Chen, Jerry Li, Masoud Mohseni, Hartmut Neven, Ryan Babbush, Richard Kueng, John Preskill, et al. Quantum advantage in learning from experiments. Science, 376(6598):1182–1186, 2022. [23] en:User:Chris 73. Schematic of an action potential, 2022. [Online; uploaded 08:58, 19 October 2022]. [24] Yaser S Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning from data: A short course. AMLBook, January 2012. [25] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer series in statistics. Springer, 2009. [26] Max Born. Zur quantenmechanik der stoßvorg ̈ange. Zeitschrift f ̈ur Physik, 37(12):863–867, December 1926. [27] Smite-Meister. Bloch sphere, January 2009. Bloch sphere, a geometrical representation of a two-level quantum system. [28] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cambridge university press, 2010. [29] Masahito Hayashi, Kazuo Iwama, Harumichi Nishimura, Rudy Raymond, and Shigeru Yamashita. (4, 1)-quantum random access coding does not exist—one qubit is not enough to recover one of four bits. New Journal of Physics, 8(8):129, 2006. [30] Hiroshi Yano, Yudai Suzuki, Kohei M Itoh, Rudy Raymond, and Naoki Yamamoto. Efficient discrete feature encoding for variational quantum classifier. IEEE Transactions on Quantum Engineering, 2:1–14, 2021. [31] Zhan Yu, Hongshun Yao, Mujin Li, and Xin Wang. Power and limitations of single-qubit native quantum neural networks. Advances in Neural Information Processing Systems, 35:27810–27823, 2022. [32] Hao-Wei Lai. Deep neural network with quantum circuits and hybrid neurons, 2020. [33] Francesco Tacchino, Panagiotis Barkoutsos, Chiara Macchiavello, Ivano Tavernelli, Dario Gerace, and Daniele Bajoni. Quantum implementation of an artificial feed-forward neural network. Quantum Science and Technology, 5(4):044010, October 2020. [34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011. [35] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake Lishman, Julien Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W. Cross, Blake R. Johnson, and Jay M. Gambetta. Quantum computing with Qiskit, 2024. [36] Maria Schuld, Alex Bocharov, Krysta M Svore, and Nathan Wiebe. Circuit-centric quantum classifiers. Physical Review A, 101(3):032308, 2020. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95144 | - |
dc.description.abstract | 單量子位元和多量子位元量子神經網絡的表達能力已被證明具有普遍性(universal),能夠逼近任何函數。然而,使用量子神經網路逼近任意函數通常需要相對較深的電路,這對於近期的量子設備來說可能不切實際。因此,本論文基於前人的工作,設計了一個混合量子神經網絡(hybrid QNN)電路,包括數據重新上傳電路(re-uploading circuit)和測量前饋電路(measurement feed-forward circuit),旨在通過前饋技術減少電路的深度和寬度。該混合電路具有模組化結構,允許靈活調整編碼閘數量、量子位元數量、數據重新上傳次數和前饋層數量。我們首先展示了前饋電路在分類任務中的能力及其在噪聲環境中的可行性。然後,我們將混合 QNN 電路應用於三個不同的分類問題,探索不同的電路結構和分類方法如何影響結果。最後,我們認為在經典神經網路中增加隱藏層和在QNN中增加前饋層有較大的相似性。 | zh_TW |
dc.description.abstract | The expressibility of both single-qubit and multi-qubit quantum neural networks has been shown to be universal, capable of approximating any function. However, approximating an arbitrary function using a quantum neural network usually requires a relatively deep circuit, which could be impractical for near-term quantum devices. Consequently, this thesis designs a hybrid quantum neural network (QNN) circuit, building on previous work including data re-uploading and measurement feed-forward circuits, aiming to reduce circuit depth and width using feed-forward techniques. The hybrid circuit can be modularized, allowing flexibility in the number of encoding gates, qubit numbers, data re-uploading steps, and feed-forward layers. We first demonstrate the capability of the feed-forward circuit in classification tasks and its feasibility in noisy environments. We then apply the hybrid QNN circuit to three different classification problems, exploring how various circuit structures and classification methods influence the results. Finally, we argue that a closer analogy between increasing hidden layers in classical neural networks and increasing feed-forward layers in QNNs can be drawn. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-29T16:17:42Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-29T16:17:42Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 I
Acknowledgments II 摘要 III Abstract IV List of Figures VIII List of Tables XI 1 Introduction 1 2 Classical Machine Learning and Quantum Computation 4 2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 Machine Learning Models . . . . . . . . . . . . . . . . . . . . 4 2.1.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.3 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Quantum Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Bloch Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Quantum Gates . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.3 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.4 Variational Quantum Circuits . . . . . . . . . . . . . . . . . . 17 2.2.5 Encoding Methods . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Quantum Neural Network And Classification Problems 24 3.1 Quantum Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.1 Re-upload Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.2 Feed-forward Circuit . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.3 Hybrid QNN Circuit . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Classification Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Classification Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.1 Single-qubit Classification . . . . . . . . . . . . . . . . . . . . 29 3.3.2 Multi-qubit Classification . . . . . . . . . . . . . . . . . . . . 30 3.3.3 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4 Results 36 4.1 Feed-forward circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.1.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.1.2 Simulation With Noise And Real Device Execution . . . . . . 40 4.2 Hybrid QNN circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Grid Search Simulations for Circuit Structures . . . . . . . . . . . . . 54 4.3.1 Moon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.2 3-circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.3 Breast Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.4 Comparison of results . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Comparison of Parameter Number . . . . . . . . . . . . . . . . . . . . 60 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.6 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5 Conclusion 63 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 A Calibration Data: IBM Nazca 65 B Analogy between hidden layers in NN and f-f layers in QNN 66 B.1 Formulas for Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 66 B.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 B.3 Structure of Measurement Feed-Forward . . . . . . . . . . . . . . . . 72 Bibliography 75 | - |
dc.language.iso | en | - |
dc.title | 使用前饋式量子神經網路的量子分類器 | zh_TW |
dc.title | Quantum Classifiers Using Measurement Feed-forward Quantum Neural Networks | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林澤;林俊達;劉子毓 | zh_TW |
dc.contributor.oralexamcommittee | Che Lin;Guin-Dar Lin;Tzu-Yu Liu | en |
dc.subject.keyword | 前饋神經網路,深度神經網路,量子機器學習,混合量子神經網路,變分量子電路, | zh_TW |
dc.subject.keyword | feed-forward neural network,deep neural network,quantum machine learning,hybrid quantum neural network,variational quantum circuit, | en |
dc.relation.page | 79 | - |
dc.identifier.doi | 10.6342/NTU202404165 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-15 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 應用物理研究所 | - |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 3.43 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。