Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95143
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳炳煇zh_TW
dc.contributor.advisorPing-Hei Chenen
dc.contributor.author吳嘉輝zh_TW
dc.contributor.authorChia-Hui Wuen
dc.date.accessioned2024-08-29T16:17:23Z-
dc.date.available2024-08-30-
dc.date.copyright2024-08-29-
dc.date.issued2024-
dc.date.submitted2024-08-12-
dc.identifier.citation[1] S. Nukiyama, "The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure," International Journal of Heat and Mass Transfer, vol. 9, no. 12, pp. 1419-1433, 1966.
[2] C. Kruse et al., "Influence of Copper Oxide on Femtosecond Laser Surface Processed Copper Pool Boiling Heat Transfer Surfaces," Journal of Heat Transfer-Transactions of the Asme, vol. 141, no. 5, May 2019, Art no. 051503, doi: 10.1115/1.4043129.
[3] A. M. Gheitaghy, H. Saffari, D. Ghasimi, and A. Ghasemi, "Effect of electrolyte temperature on porous electrodeposited copper for pool boiling enhancement," Applied Thermal Engineering, vol. 113, pp. 1097-1106, Feb 2017, doi: 10.1016/j.applthermaleng.2016.11.106.
[4] C. M. Patil, K. Santhanam, and S. G. Kandlikar, "Development of a two-step electrodeposition process for enhancing pool boiling," International Journal of Heat and Mass Transfer, vol. 79, pp. 989-1001, 2014.
[5] M. S. El-Genk and A. F. Ali, "Enhanced nucleate boiling on copper micro-porous surfaces," International Journal of Multiphase Flow, vol. 36, no. 10, pp. 780-792, Oct 2010, doi: 10.1016/j.ijmultiphaseflow.2010.06.003.
[6] G. Dhadda, M. Hamed, and P. Koshy, "Electrical discharge surface texturing for enhanced pool boiling heat transfer," Journal of Materials Processing Technology, vol. 293, Jul 2021, Art no. 117083, doi: 10.1016/j.jmatprotec.2021.117083.
[7] B. J. Jones, J. P. McHale, and S. V. Garimella, "The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer," Journal of Heat Transfer-Transactions of the Asme, vol. 131, no. 12, Dec 2009, Art no. 121009, doi: 10.1115/1.3220144.
[8] S. An et al., "Supersonically sprayed reduced graphene oxide film to enhance critical heat flux in pool boiling," International Journal of Heat and Mass Transfer, vol. 98, pp. 124-130, Jul 2016, doi: 10.1016/j.ijheatmasstransfer.2016.03.027.
[9] H. Li, R. H. Li, R. Zhou, G. F. Zhou, and Y. Tang, "Pool boiling heat transfer of multi-scale composite copper powders fabricated by sintering-alloying-dealloying treatment," International Journal of Heat and Mass Transfer, vol. 147, Feb 2020, Art no. 118962, doi: 10.1016/j.ijheatmasstransfer.2019.118962.
[10] J. Kim, S. Jun, R. Laksnarain, and S. M. You, "Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability," International Journal of Heat and Mass Transfer, vol. 101, pp. 992-1002, 2016.
[11] J. S. Kim, A. Girard, S. Jun, J. Lee, and S. M. You, "Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces," International Journal of Heat and Mass Transfer, vol. 118, pp. 802-811, 2018.
[12] D. Min, G. Hwang, Y. Usta, O. Cora, M. Koc, and M. Kaviany, "2-D and 3-D modulated porous coatings for enhanced pool boiling," International Journal of Heat and Mass Transfer, vol. 52, no. 11-12, pp. 2607-2613, 2009.
[13] A. Jaikumar and S. G. Kandlikar, "Enhanced pool boiling heat transfer mechanisms for selectively sintered open microchannels," International Journal of Heat and Mass Transfer, vol. 88, pp. 652-661, 2015.
[14] L. L. Manetti, G. Ribatski, R. R. de Souza, and E. M. Cardoso, "Pool boiling heat transfer of HFE-7100 on metal foams," Experimental Thermal and Fluid Science, vol. 113, p. 110025, 2020.
[15] D. Cooke and S. G. Kandlikar, "Effect of open microchannel geometry on pool boiling enhancement," International Journal of Heat and Mass Transfer, vol. 55, no. 4, pp. 1004-1013, 2012.
[16] A. Walunj and A. Sathyabhama, "Comparative study of pool boiling heat transfer from various microchannel geometries," Applied Thermal Engineering, vol. 128, pp. 672-683, 2018.
[17] A. M. Gheitaghy, H. Saffari, and M. Mohebbi, "Investigation pool boiling heat transfer in U-shaped mesochannel with electrodeposited porous coating," Experimental Thermal and Fluid Science, vol. 76, pp. 87-97, 2016.
[18] T. Young, "III. An essay on the cohesion of fluids," Philosophical transactions of the royal society of London, no. 95, pp. 65-87, 1805.
[19] W. M. Rohsenow, "A method of correlating heat-transfer data for surface boiling of liquids," Transactions of the American Society of Mechanical Engineers, vol. 74, no. 6, pp. 969-975, 1952.
[20] M. H. Kwon, H. S. Shin, and C. N. Chu, "Fabrication of a super-hydrophobic surface on metal using laser ablation and electrodeposition," Applied Surface Science, vol. 288, pp. 222-228, 2014.
[21] U. Sajjad, A. Sadeghianjahromi, H. M. Ali, and C.-C. Wang, "Enhanced pool boiling of dielectric and highly wetting liquids-a review on enhancement mechanisms," International Communications in Heat and Mass Transfer, vol. 119, p. 104950, 2020.
[22] U. Sajjad, A. Sadeghianjahromi, H. M. Ali, and C.-C. Wang, "Enhanced pool boiling of dielectric and highly wetting liquids–A review on surface engineering," Applied Thermal Engineering, vol. 195, p. 117074, 2021.
[23] K. C. Leong, J. Y. Ho, and K. K. Wong, "A critical review of pool and flow boiling heat transfer of dielectric fluids on enhanced surfaces," Applied Thermal Engineering, vol. 112, pp. 999-1019, 2017.
[24] E. Von Hippel, S. Thomke, and M. Sonnack, "Creating breakthroughs at 3M. Harvard Business Review," ed: September-October, 1999.
[25] A. Brand, "Knowledge management and innovation at 3M," Journal of knowledge management, vol. 2, no. 1, pp. 17-22, 1998.
[26] J. R. Taylor and W. Thompson, An introduction to error analysis: the study of uncertainties in physical measurements. Springer, 1982.
[27] S. G. Kandlikar, "A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation," Journal of Heat Transfer-Transactions of the Asme, vol. 123, no. 6, pp. 1071-1079, Dec 2001, doi: 10.1115/1.1409265.
[28] S. J. Thiagarajan, R. Yang, C. King, and S. Narumanchi, "Bubble dynamics and nucleate pool boiling heat transfer on microporous copper surfaces," International Journal of Heat and Mass Transfer, vol. 89, pp. 1297-1315, 2015.
[29] S. Ming-Heng, J. Ma, and W. Bu-Xuan, "Analysis on hysteresis in nucleate pool boiling heat transfer," International journal of heat and mass transfer, vol. 36, no. 18, pp. 4461-4466, 1993.
[30] C. Li and G. Peterson, "Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces," 2007.
[31] C. M. Patil and S. G. Kandlikar, "Pool boiling enhancement through microporous coatings selectively electrodeposited on fin tops of open microchannels," International Journal of Heat and Mass Transfer, vol. 79, pp. 816-828, 2014.
[32] J. Kim, S. Jun, J. Lee, J. Godinez, and S. M. You, "Effect of surface roughness on pool boiling heat transfer of water on a superhydrophilic aluminum surface," Journal of Heat Transfer, vol. 139, no. 10, p. 101501, 2017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95143-
dc.description.abstract本研究探討了飛秒雷射燒蝕的微米柱狀結構和電鍍多孔層一起施加在平坦銅表面上,對Novec-7100池沸騰熱傳的綜合效果。在微米柱狀結構的製造過程中使用了飛秒雷射,並在雷射燒蝕測試表面之後,對測試表面再進行了二步電鍍製程以進一步增強表面。在二步電鍍製程中,第一階段較大的電流密度產生的氫氣泡可以在測試表面上製造微小空腔。由於這兩種表面改質方法的支持,當柱狀結構的間距(溝槽寬度)為300μm且第一階段電流密度為500 mA/cm2時,獲得了最高的HTC(比光滑平坦表面增加206%)和CHF(比光滑平坦表面增加24.85%)的改進。HTC的增加可以歸因於再濕潤能力的增強、表面粗糙度、空腔數量和空腔尺寸的增加,並通過雷射共軛焦顯微鏡分析、掃描電子顯微鏡圖像和氣泡高速攝影圖像得到了解釋。此外,在第一階段電流密度較高的情況下,CHF值由於毛細能力的改善而增加;而在較低的第一階段電流密度的情況下,由於電鍍產生的孔徑不夠大,甚至可能減少氣泡浮力相較於孔徑黏附力的大小,導致氣泡停滯在表面上不離開,因而導致CHF值與光滑平坦表面相比減少。zh_TW
dc.description.abstractThis study investigated the combined effects of laser-textured micro-pin-fin and electrodeposited porous layer over a flat copper surface on pool boiling heat transfer of Novec-7100. The femtosecond laser was applied during the fabrication process of micro-pin-fin. After the laser texturing, a two-step electrodeposition process was employed on the test surface for further surface enhancement. The ability of the larger first-stage current density to generate hydrogen bubbles can create cavities on the boiling surface. Supported by these two surface-enhancing effects, the greatest improvement of HTC (206% increment compared with plain surface sample) and CHF (24.85% increment compared with plain surface sample) was achieved using a modified surface with a pin spacing (groove width) of 300 μm and a first-stage current density of 500 mA/cm2. The HTC increment can be attributed to the increased ability of circulation of the rewetting liquid, surface roughness, number of cavities, and cavity size, and elucidated by the analysis of laser confocal microscope, SEM images and high-speed images of bubbles. Furthermore, compared with the plain surface sample, the CHF values increased due to the improvement of the capillary wicking ability in the region of higher first-stage current density, and decreased due to the smaller pore size that could deteriorate the buoyancy of the bubbles compared with the adhesion force in the cavities, causing the bubbles to stagnate on the surface, in the region of lower first-stage current density.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-29T16:17:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-29T16:17:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
摘要 ii
Abstract iii
Nomenclature iv
Table of Contents vii
List of Figures ix
List of Tables xii
Chapter 1 Introduction 1
1.1 Literature review 1
1.1.1 Pool boiling 1
1.1.2 Surface modification 3
1.1.3 Effect of surface roughness on pool boiling 4
1.1.4 Effect of porous surfaces on pool boiling 7
1.1.5 Effect of microchanneled surfaces on pool boiling 10
1.1.6 Effect of electrodeposited surfaces on pool boiling 14
1.2 Research objectives 16
Chapter 2 Theory 17
2.1 Evaporation and boiling phenomenon 17
2.2 Surface energy 17
2.3 Rohsenow’s correlation 18
Chapter 3 Experimental approach 20
3.1 Experimental setup 20
3.2 Fabrication process of test samples 24
3.3 Surface morphology 28
3.4 Properties of working fluid 32
3.5 Experimental procedure 33
3.6 XRD impurities detection 34
3.7 Data reduction 35
3.8 Uncertainty analysis 36
Chapter 4 Results and discussion 37
4.1 Validation of the experimental setup 37
4.2 Evaluations of pool boiling heat transfer data 39
4.2.1 Boiling hysteresis 42
4.2.2 Analysis of HTC curves 43
4.2.3 Effect of groove width 45
4.2.4 Effect of current density 48
4.3 Analysis of bubble dynamics 51
Chapter 5 Conclusions and Future Prospects 53
5.1 Conclusions 53
5.2 Future prospects 54
References 56
-
dc.language.isoen-
dc.subject池沸騰zh_TW
dc.subject臨界熱通量zh_TW
dc.subject熱傳係數zh_TW
dc.subject介電液zh_TW
dc.subject電鍍zh_TW
dc.subject飛秒雷射zh_TW
dc.subjectFemtosecond laseren
dc.subjectDielectric liquiden
dc.subjectPool boilingen
dc.subjectElectrodepositionen
dc.subjectCritical heat fluxen
dc.subjectHeat transfer coefficienten
dc.title探討具有雷射燒蝕的微米柱狀結構和電鍍多孔結構之銅表面對Novec-7100池沸騰的綜合影響zh_TW
dc.titleCombined effects of laser-induced micro-pin-fin and electrodeposited porous structure over a copper surface on pool boiling of Novec-7100en
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李達生;張天立zh_TW
dc.contributor.oralexamcommitteeDa-sheng Lee;Tien-Li Changen
dc.subject.keyword池沸騰,飛秒雷射,電鍍,介電液,熱傳係數,臨界熱通量,zh_TW
dc.subject.keywordPool boiling,Femtosecond laser,Electrodeposition,Dielectric liquid,Heat transfer coefficient,Critical heat flux,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202403511-
dc.rights.note未授權-
dc.date.accepted2024-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
6.97 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved