Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95140
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 黃斯衍 | zh_TW |
dc.contributor.advisor | Ssu-Yen Huang | en |
dc.contributor.author | 蔡瑋瀚 | zh_TW |
dc.contributor.author | Wei-Han Tsai | en |
dc.date.accessioned | 2024-08-29T16:16:24Z | - |
dc.date.available | 2024-08-30 | - |
dc.date.copyright | 2024-08-29 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-15 | - |
dc.identifier.citation | [1] G.J. Snyder and E.S. Toberer, "Complex thermoelectric materials," Nat. Mater., vol. 7, pp. 105-114, 2008.
[2] F. Suarez, A. Nozariasbmarz, D. Vashaee, and M.C. Ozturk, "Designing thermoelectric generators for self-powered wearable electronics," Energ. Environ. Sci., vol. 9, pp. 2099-2113, 2016. [3] S.H. Hou, Y.J. Liu, Y. Luo, X.D. Wang, L. Yin, X.Y. Sun, Z.X. Wu, J. Wang, M.C. Li, Z.Y. Chen, et al., "High-performance, thin-film thermoelectric generator with self-healing ability for body-heat harvesting," Cell Rep. Phys. Sci., vol. 3, p. 101146, 2022. [4] Y. Han, H.X. Wei, Y.J. Du, Z.G. Li, S.P. Feng, B.L. Huang, and D.Y. Xu, "Ultrasensitive flexible thermal sensor arrays based on high-thermopower ionic thermoelectric hydrogel," Adv. Sci., vol. 10, p. 2302685, 2023. [5] J. Liu, Q.T. Liu, S.P. Lin, M.Y. Leung, Y. Ma, and X.M. Tao, "Wearable thermoelectric generators: materials, structures, fabrications, and applications," Phys. Status Solidi-R., vol. 17, p. 2200502, 2023. [6] T.J. Seebeck, "Magnetische polarisation der metalle und erze durch temperatur-differenz" Ann. Phys., vol. 82, no. 3, pp. 253-286, 1826. [7] J.C. Peltier, "Nouvelles expériences sur la caloricité des courants électrique," Ann. Chim. Phys., vol. 56, no. 371, pp. 371-386, 1834. [8] T.J. Zhu, Y.T. Liu, C.G. Fu, J.P. Heremans, J.G. Snyder, and X.B. Zhao, "Compromise and synergy in high-efficiency thermoelectric materials," Adv. Mater., vol. 29, p. 1605884, 2017. [9] Q. Jin, S. Jiang, Y. Zhao, D. Wang, J.H. Qiu, D.M. Tang, J. Tan, D.M. Sun, P.X. Hou, X.Q. Chen, et al., "Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold," Nat. Mater., vol. 18, pp. 62-68, 2019. [10] W. Hsieh, "Testing theories for thermal transport using high pressure, "Ph.D. dissertation”, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2012. [11] "ZEM-3," https://www.ulvac.com.tw/product/F7h3jLxgio0UNpDA. [12] "Hall effect wiki," https://en.wikipedia.org/wiki/Hall_effect. [13] Y. Luo, D.H. Wei, and Y.Y. Chen, " Thickness and crystalline effects on thermoelectric properties of Bi0.5Sb1.5Te3 films, “M.S. thesis”, National Taipei University of Technology, Taipei Tech, Taipei, ROC, 2019. [14] C.L. Chen, T.H. Wang, Z.G. Yu, Y. Hutabalian, R.K. Vankayala, C.C. Chen, W.P. Hsieh, H.T. Jeng, D.H. Wei, and Y.Y. Chen, "Modulation Doping Enables Ultrahigh Power Factor and Thermoelectric ZT in n-Type Bi2Te2.7Se0.3," Adv. Sci., vol. 9, p. 2201353, 2022. [15] S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, et al., "Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics," Science, vol. 348, pp. 109-114, 2015. [16] C. Schumacher, K.G. Reinsberg, R. Rostek, L. Akinsinde, S. Baessler, S. Zastrow, G. Rampelberg, P. Woias, C. Detavernier, J.A.C. Broekaert, et al., "Optimizations of pulsed plated p and n-type Bi2Te3-based ternary compounds by annealing in different ambient atmospheres," Adv. Energy Mater., vol. 3, pp. 95-104, 2013. [17] J. Jiang, L.D. Chen, S.Q. Bai, Q. Yao, and Q. Wang, "Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1-x crystals prepared via zone melting," J. Cryst. Growth, vol. 277, pp. 258-263, 2005. [18] A. Taylor, C. Mortensen, R. Rostek, N. Nguyen, and D.C. Johnson, "Vapor annealing as a post-processing technique to control carrier concentrations of Bi2Te3 thin films," J. Electron. Mater., vol. 39, pp. 1981-1986, 2010. [19] R. Rostek, V. Sklyarenko, and P. Woias, "Influence of vapor annealing on the thermoelectric properties of electrodeposited Bi2Te3," J. Mater. Res., vol. 26, pp. 1785-1790, 2011. [20] Y. Pei, A.D. LaLonde, H. Wang, and G.J. Snyder, "Low effective mass leading to high thermoelectric performance," Energy Environ. Sci., vol. 5, pp. 7963-7969, 2012. [21] L. Lu, W. Yi, and D.L. Zhang, "3 omega method for specific heat and thermal conductivity measurements," Rev. Sci. Instrum., vol. 72, pp. 2996-3003, 2001. [22] G. Li, D. Liang, R.L.J. Qiu, and X.P.A. Gao, "Thermal conductivity measurement of individual Bi2Se3 nano-ribbon by self-heating three-ω method," Appl. Phys. Lett., vol. 102, p. 043104, 2013. [23] W.-H. Tsai, C.-L. Chen, R.K. Vankayala, Y.-H. Lo, W.-P. Hsieh, T.-H. Wang, S.-Y. Huang, and Y.-Y. Chen, "Enhancement of ZT in Bi0.5Sb1.5Te3 Thin Film through Lattice Orientation Management," Nanomaterials, vol. 14, p. 747, 2024. [24] M. Tan, Y. Hao, and Y.M. Deng, "Tilt-structure and high-performance of hierarchical Bi1.5Sb0.5Te3 nanopillar arrays," Sci. Rep., vol. 8, p. 6384, 2018. [25] H. Shen, S. Lee, J.G. Kang, T.Y. Eom, H. Lee, and S. Han, "Thickness dependence of the electrical and thermoelectric properties of co-evaporated Sb2Te3 films," Appl. Surf. Sci., vol. 429, pp. 115-120, 2018. [26] N. Itagaki, Y. Nakamura, R. Narishige, K. Takeda, K. Kamataki, K. Koga, M. Hori, and M. Shiratani, "Growth of single crystalline films on lattice-mismatched substrates through 3D to 2D mode transition," Sci. Rep., vol. 10, p. 4669, 2020. [27] D.G. Cahill, "Thermal-conductivity measurement from 30-K to 750-K - the 3-omega method," Rev. Sci. Instrum., vol. 61, pp. 802-808, 1990. [28] P.C. Lee, H.C. Chen, C.M. Tseng, W.C. Lai, C.H. Lee, C.S. Chang, and Y.Y. Chen, "Thermoelectric Properties of an individual Bi1.75Sb0.25Te2.02 nanowire," Chin. J. Phys., vol. 51, pp. 854-861, 2013. [29] M. Rocci, V. Demontis, D. Prete, D. Ercolani, L. Sorba, F. Beltram, G. Pennelli, S. Roddaro, and F. Rossella, "Suspended InAs nanowire-based devices for thermal conductivity measurement using the 3 method," J. Mater. Eng. Perform., vol. 27, pp. 6299-6305, 2018. [30] K.M. Lee, T.Y. Choi, S.K. Lee, and D. Poulikakos, "Focused ion beam-assisted manipulation of single and double beta-SiC nanowires and their thermal conductivity measurements by the four-point-probe 3-omega method," Nanotechnology, vol. 21, p. 125301, 2010. [31] M.N. Ou, S.R. Harutyunyan, S.J. Lai, C.D. Chen, T.J. Yang, and Y.Y. Chen, "Thermal and electrical transport properties of a single nickel nanowire," Phys. Status Solidi (b), vol. 244, pp. 4512-4517, 2007. [32] J. Asai, M. Bumrungpon, T. Tsubochi, T. Kanaya, M. Tachii, T. Maeda, T. Iwamoto, C. Kanda, and K. Hasezaki, "Experimental estimation of the Lorenz number and scattering parameter for p-type bismuth antimony telluride via multiple doping under constant temperature conditions," Ceram. Int., vol. 48, pp. 12520-12528, 2022. [33] H. Mizuno, S. Mossa, and J.L. Barrat, "Beating the amorphous limit in thermal conductivity by superlattices design," Sci. Rep., vol. 5, p. 14116, 2015. [34] H.Y. Zhang, H.H. Wen, Z.W. Liu, Q. Zhang, and H.M. Xie, "TEM nano-Moire evaluation for an invisible lattice structure near the grain interface," Nanoscale, vol. 9, pp. 15923-15933, 2017. [35] M.L. Lwin, P. Dharmaiah, S.M. Yoon, S.H. Song, H.S. Kim, J.H. Lee, R. Ghomashchi, and S.J. Hong, "Correlation with the composition of the different parts of Bi0.5Sb1.5Te3 sintered bulks and their thermoelectric characteristics," J. Alloys Compd., vol. 845, p. 156114, 2020. [36] H. Choi, S.J. Kim, Y. Kim, J.H. We, M.W. Oh, and B.J. Cho, "Enhanced thermoelectric properties of screen-printed Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 thick films using a post annealing process with mechanical pressure," J. Mater. Chem. C, vol. 5, pp. 8559-8565, 2017. [37] N.W. Park, W.Y. Lee, Y.S. Yoon, G.S. Kim, Y.G. Yoon, and S.K. Lee, "Achieving out-of-plane thermoelectric figure of merit ZT=1.44 in a p-Type Bi2Te3/Bi0.5Sb1.5Te3 Superlattice Film with Low Interfacial Resistance," ACS Appl. Mater. Interfaces, vol. 11, pp. 38247-38254, 2019. [38] M. Tan, Y. Deng, and Y.M. Hao, "Enhanced thermoelectric properties and superlattice structure of a Bi2Te3/ZrB2 film prepared by ion-beam-assisted deposition," J. Phys. Chem. C, vol. 117, pp. 20415-20420, 2013. [39] M.Z. Hasan and C.L. Kane, "Colloquium: Topological insulators," Rev. Mod. Phys., vol. 82, p. 3045, 2011. [40] X.-L. Qi and S.-C. Zhang, "Topological insulators and superconductors," Rev. Mod. Phys., vol. 83, p. 1057, 2011. [41] H. Zhang et al., "Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface," Nat. Phys., vol. 5, p. 438, 2009. [42] J. Zhang et al., "Band structure engineering in (Bi1-xSbx)2Te3 ternary topological insulators," Nat. Commun., vol. 4, p. 574, 2011. [43] L. Fu and C.L. Kane, "Superconducting proximity effect and Majorana fermions at the surface of a topological insulator," Phys. Rev. Lett., vol. 100, p. 096407, 2008. [44] J.D. Sau, R.M. Lutchyn, S. Tewari, and S. Das Sarma, "Generic new platform for topological quantum computation using semiconductor heterostructures," Phys. Rev. Lett., vol. 104, p. 040502, 2010. [45] J.-P. Xu et al., "Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure," Phys. Rev. Lett., vol. 114, p. 017001, 2015. [46] J.R. Williams et al., "Unconventional Josephson effect in hybrid superconductor-topological insulator devices," Phys. Rev. Lett., vol. 109, p. 056803, 2012. [47] M.-X. Wang et al., "The coexistence of superconductivity and topological order in the Bi2Se3 thin films," Science, vol. 52, p. 336, 2012. [48] M. Sato and Y. Ando, "Topological superconductors: a review," arXiv:1608.03395. [49] G. Volovik, "Universe in a Helium Droplet," Oxford University Press, 2003. [50] C. Kallin, "Chiral p-wave order in Sr2RuO4," Rep. Prog. Phys., vol. 75, p. 042501, 2012. [51] Y.S. Hor et al., "Superconductivity in CuxBi2Se3 and its implications for pairing symmetry," Phys. Rev. Lett., vol. 104, p. 057001, 2010. [52] M. Kriener, K. Segawa, Z. Ren, S. Sasaki, and Y. Ando, "Bulk superconducting phase in a Bi2Se3 topological insulator," Phys. Rev. Lett., vol. 106, p. 127004, 2011. [53] J.L. Zhang et al., "Superconductivity in potassium-doped picene," Proc. Natl. Acad. Sci., vol. 24, p. 108, 2011. [54] J. Zhu et al., "Pressure-driven superconductivity in Bi2Te3," Sci. Rep., vol. 3, p. 2016, 2013. [55] S. Sasaki, Z. Ren, A.A. Taskin, K. Segawa, L. Fu, and Y. Ando, "Odd-parity pairing and topological superconductivity in a strongly spin-orbit coupled semiconductor," Phys. Rev. Lett., vol. 109, p. 217004, 2012. [56] S. Sasaki, K. Segawa, and Y. Ando, "Topological superconductivity in CuxBi2Se3," Phys. Rev. B, vol. 90, p. 220504, 2014. [57] Z. Liu et al., "Interfacial design of Bi2Te3-based thermoelectric materials by nano-precipitation for enhanced performance," J. Am. Chem. Soc., vol. 137, p. 10512, 2015. [58] K.E. Arpino et al., "Bulk and surface electronic properties of Bi2Te3 crystals," Phys. Rev. Lett., vol. 12, p. 017002, 2014. [59] L. Zhao et al., "Evidence for a topological phase transition in Bi2Se3 induced by pressure," Nat. Commun., vol. 6, p. 8279, 2015. [60] J. Liu, A.C. Potter, K.T. Law, and P.A. Lee, "Superconductivity from the quasiparticle dynamics in a topological insulator," Phys. Rev. Lett., vol. 109, p. 267002, 2012. [61] J. Jang et al., "Observation of half-integer quantum Hall effect in a two-dimensional Dirac fermion system," Science, vol. 331, p. 186, 2011. [62] G. Wang et al., "Enhanced thermoelectric performance of Bi2Te3 nanoplates through dimensional crossover," Nano Res., vol. 3, p. 874, 2010. [63] V.A. Kulbachinskii et al., "Transport properties of Bi2Te3 single crystals," Phys. Rev. B, vol. 52, p. 10915, 1995. [64] C. Uher, "Materials Aspect of Thermoelectricity," CRC Press, 2017, p. 62. [65] Y. Zhang et al., "Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit," Nat. Phys., vol. 6, p. 584, 2010. [66] D.X. Qu et al., "Quantum oscillations and Hall anomaly in the three-dimensional topological insulator Bi2Te3," Science, vol. 329, p. 821, 2010. [67] T.C. Hsiung et al., "Observation of a novel spin texture in topological insulator Bi2Se3," Appl. Phys. Lett., vol. 103, p. 163111, 2013. [68] Z. Jinsong et al., "Topological superconductivity in the Bi2Te3/ZrB2 heterostructure," Nat. Commun., vol. 2, p. 574, 2011. [69] Z.H. Wang et al., "Majorana fermions in the vortex core of topological insulator/superconductor heterostructures," Nano Res., vol. 8, p. 2963, 2015. [70] W.J. Wang et al., "Electronic transport properties of topological insulator Bi2Se3 thin films," Appl. Phys. Lett., vol. 105, p. 182102, 2014. [71] S. Hikami, A. Larkin, and Y. Nagaoka, "Spin-orbit interaction and magnetoresistance in the two dimensional random system," Prog. Theor. Phys., vol. 63, p. 707, 1980. [72] W. Adroguer, W.E. Liu, D. Culcer, and E.M. Hankiewicz, "Topological transport signatures in strained HgTe," Phys. Rev. B, vol. 92, p. 241402(R), 2015. [73] M. Tinkham, "Introduction to Superconductivity," 2nd ed., McGraw-Hill Inc., 1996. [74] E.F. Talantsev and J.L. Tallon, "Universal relationship for the resistivity of cuprate superconductors," Nat. Commun., vol. 6, p. 7820, 2015. [75] P.-H. Chou et al., "Geometry-induced topological superconductivity," Phys. Rev. B, vol. 103, p. 014508, 2021. [76] W.L. McMillan, "Transition temperature of strong-coupled superconductors," Phys. Rev., vol. 167, p. 331, 1968. [77] D. Bessas et al., "Lattice dynamics and thermal conductivity in two-dimensional materials," Phys. Rev. B, vol. 86, p. 224301, 2012. [78] Z. Bu et al., "Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys," Sci. Adv., vol. 7, p. eabf2738, 2021. [79] P. Ganesan et al., " Carrier optimization and reduced thermal conductivity leading to enhanced thermoelectric performance in (Mg, S) co-doped AgSbTe2," Mater. Today Phys., vol. 42, p. 101358, 2024. [80] Y. Zhang, "Defect-Engineering-Stabilized AgSbTe2 with High Thermoelectric Performance" Adv. Mater., vol. 35, no. 11, p. 2208994, March 16, 2023. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95140 | - |
dc.description.abstract | 本博士論文包涵兩個研究主題和一個熱電特性量測技術補充資料。兩個研究主題集中於低維熱電和拓撲超導特性的研究,前者研究Bi0.5Sb1.5Te3薄膜,後者則研究Sb2Te3奈米片,熱電特性測量技術用於測量單腿AgSbTe2裝置的熱電性能。
Bi0.5Sb1.5Te3薄膜的研究,主要是通過調整電子和聲子的傳輸特性來提高ZT值。使用RF濺射法製備了一系列厚度分別為0.125、0.25、0.5和1微米的Bi0.5Sb1.5Te3薄膜,其微觀結構分析顯示薄膜的生長形態與薄膜厚度有高度相關。值得注意的是,0.5微米厚的薄膜在400 K時功率因子達到了18.1 μWcm-1K-2,並具有低至0.3 Wm-1K-1的熱傳導率,實現了接近室溫的最大ZT值1.86。 Sb2Te3奈米片的研究,在氮化矽基板上製備了一系列厚度為5到27奈米的超薄薄膜,此研究與作者周柏豪、牟中瑜教授合作,根據其提出的理論及計算,此薄型拓撲絕緣體表面電子間的相互配對形成的新型拓撲超導體。本研究顯示,Sb2Te3奈米片在a-b平面上是通過層與層範凡德瓦力結合的。我們實驗結果表明,由於表面狄拉克錐間耦合而形成的配對對稱性,是由自p_x+〖ip〗_y配對主導,形成了一類新的拓撲超導體。 第三部份為補充資料,熱電裝置效率的研究,為了直接測量熱電材料的輸出功率以獲得效率,最可靠的方法是直接測量其輸出功率,而不是藉由測量各別的熱電參數計算ZT值。本研究利用四點探針法測量單腿AgSbTe2的熱電轉換效率。這種四點探針法能有效減少測量過程中線阻和接觸電阻的影響,此研究在156 K的溫差下,樣品測量出6.4 mW的輸出功率,且有2.1 %的轉換效率,與傳統單獨量測熱電參數計算的ZT值一致。 綜合以上研究,本論文為高性能熱電系統的設計與製造提供了重要的科學見解和技術突破。透過這些先進材料的開發,我們朝著實現高效能的熱電轉換技術邁進,為未來可持續能源解決方案的實現奠定了堅實的基礎。此外本研究展示了超薄單晶Sb2Te3奈米薄片的新型拓撲超導性,提供了拓撲材料研究的新方向。 | zh_TW |
dc.description.abstract | The doctoral thesis encompasses two thematic research topics and one supplementary thermoelectric (TE) characterization technique. The two research topics focus on the study of low-dimensional thermoelectric and topological superconducting properties. The former is on thermoelectric Bi0.5Sb1.5Te3 thin film, and the latter is on Sb2Te3 nanoflakes. The thermoelectric characterization technique is used to measure the thermoelectric performance of a single-leg AgSbTe2 device.
The study on thermoelectric Bi0.5Sb1.5Te3 thin film aims to examine the ZT enhancement through the decoupling of the transport properties of electrons and phonons. A series of Bi0.5Sb1.5Te3 thin films with thicknesses of 0.125, 0.25, 0.5, and 1 μm were fabricated by RF sputtering. Detailed microstructural analysis revealed that the growth morphology of the films is highly correlated with the film thickness. Notably, the 0.5 μm film achieved a power factor of 18.1 μWcm-1K-2 at 400 K and a thermal conductivity as low as 0.3 Wm-1K-1, resulting in a maximum figure of merit ZT of 1.86 near room temperature. In the study of Sb2Te3 nanoflakes, a series of ultrathin films grown on silicon nitride substrates with thicknesses ranging from 5 to 27 nm were fabricated. This research was conducted in collaboration with Po-Hao Chou, Chung-Yu Mou, et al., based on their proposed theory and calculations. A new class of topological superconductivity was formed by inter-surface pairing of surface electrons in the thin topological insulators. This study demonstrated that Sb2Te3 nanosheets are bonded through van der Waals forces in the a-b planes, layer-by-layer. Our results indicate that the pairing symmetry due to the coupling of inter-surface Dirac cones is unambiguously dominated by the spinful p_x+〖ip〗_y pairing and forms a new class of topological superconductors. This supplementary information pertains to the study of thermoelectric device efficiency. Instead of measuring separate TE properties to calculate the ZT value, the most reliable way to characterize the performance of a TE material is to directly measure its output power to gain efficiency. The study utilized the four-point probe method to measure the thermoelectric conversion efficiency on a single-leg AgSbTe2 device as an example. This four-point probe method can effectively reduce the influence of line and contact resistance during measurements. At a temperature difference of 156 K, the sample exhibited a power output of 6.4 mW, corresponding to a conversion efficiency of 2.1%, which is consistent with the ZT value obtained from conventional individual TE parameters. In summary, this thesis provides important scientific insights and technological breakthroughs for the design and fabrication of low-dimensional high-performance thermoelectric systems. Through the development of these advanced materials, we are moving towards achieving high-efficiency thermoelectric performance technologies, laying a solid foundation for the realization of future sustainable energy solutions. Additionally, this research demonstrates a new class of topological superconductivity in ultrathin single-crystal Sb2Te3 nanoflakes, offering a new direction for topological material studies. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-29T16:16:24Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-29T16:16:24Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES ix Part I. Enhancement of ZT in Bi0.5Sb1.5Te3 Thin Film through Lattice Orientation Management 1 Chapter 1 Introduction of Thermoelectricity 2 1.1 Thermoelectric Fundamentals 2 1.2 Basic Concepts of Thermoelectric 3 1.2.1 The Seebeck Effect 3 1.2.2 The Peltier Effect 4 1.2.3 The Thomson Effect 5 1.2.4 The Figure of Merit (ZT) 6 1.2.5 The Thermoelectric Devices 7 1.2.6 The Thermoelectric Efficiency 8 1.3 Factors involved in Thermoelectric 9 1.3.1 The Electrical Conductivity 9 1.3.2 The Seebeck Coefficient 10 1.3.3 The Thermal Conductivity 11 Chapter 2 Materials Synthesis and Characterization 12 2.1 Synthesis Equipment 12 2.1.1 Spark Plasma Sintering 12 2.1.2 RF Magnetron Sputtering 13 2.2 Experimental Equipment 15 2.2.1 X-ray Diffraction 15 2.2.2 Scanning Electron Microscope 16 2.2.3 Transmission Electron Microscope 17 2.3 Measurement Equipment and Techniques 18 2.3.1 LFA 18 2.3.2 TDTR 20 2.3.3 ZEM-3 20 2.3.4 PPMS 22 2.3.5 3ω technique 24 Chapter 3 Introduction of Bi0.5Sb1.5Te3 Materials 25 3.1 Composition and Structure 25 Chapter 4 Materials Synthesis and Characterization 27 4.1 Material Synthesis 27 4.1.1 The Bulk Bi0.5Sb1.5Te3 Sputtering Target's Preparation 27 4.1.2 Film Deposition and Annealing of Bi0.5Sb1.5Te3 (BST) 27 4.1.3 Bi0.5Sb1.5Te3 Film Structural Characterization 31 4.1.4 Electrical Conductivity and Seebeck Coefficient Measurements 36 4.1.5 Thermal Conductivity Measurements of Film 40 Chapter 5 Conclusion 53 Part II. Novel Form of Topological Superconductivity Arising from Inter-surface Electron Pairing in Sb2Te3 Nanoflakes 54 Chapter 1 Introduction of Superconductivity and Topological Insulator 55 1.1 The Basic Principle of Superconductivity 55 1.2 Introduction to Topological Insulator 56 1.3 Introduction to Topological Superconductivity 58 Chapter 2 Materials Synthesis and Characterization 59 2.1 Synthesis Equipment 59 2.1.1 Three-zone tube furnace 59 2.2 Experimental Equipment 61 2.2.1 X-Y-Z Micropositioner 61 2.2.2 Reactive Ion Etching 62 2.2.3 Electron Beam Lithography Writer 63 2.2.4 Mask Aligner 64 2.2.5 Electron Beam Evaporator 66 2.3 Measurement Equipment and Techniques 67 2.3.1 Atomic Force Microscope 67 2.3.2 Measurement chip 69 2.3.3 Four-probe method 70 Chapter 3 Introduction of Sb2Te3 Materials 70 Chapter 4 Sample synthesis and Characterization 72 4.1 Nanoflake crystal growth 72 4.2 Sample preparation, characterization and measurement 73 4.3 Characterization of Transport Properties 77 4.5 Magnetic phase diagram and transport properties in B fields 85 4.6 Theoretical analysis and mechanism of superconductivity 92 Chapter 5 Conclusion 97 Supplementary Information: 101 Thermoelectric Measurement Technique Instrumentation for Thermoelectric Performance of Single Leg AgSbTe2. 101 Chapter 1 Introduction of Thermoelectric Device 102 1.1 Single-Leg Thermoelectric Device 102 1.2 Basic Concepts of Thermoelectric Conversion Efficiency 103 Chapter 2 Sample Preparation and Single-Leg Thermoelectric Efficiency Setup 104 2.1 Sample Preparation 104 2.2 Single-Leg Thermoelectric Efficiency Setup 104 Chapter 3 Introduction of AgSbTe2 Materials 106 Chapter 4 Measurement and Characterization 107 4.1 Measurement of Thermal Properties 107 4.2 Characterization 109 4.2.1 Output Power 109 4.2.2 Single-Leg Thermoelectric Properties 110 Chapter 5 Conclusion 112 REFERENCE 113 | - |
dc.language.iso | en | - |
dc.title | Bi0.5Sb1.5Te3薄膜之熱電性質研究和Sb2Te3奈米片的拓樸超導性質 | zh_TW |
dc.title | Thermoelectric Properties in Bi0.5Sb1.5Te3 Thin Film and Topological Superconductivity in Sb2Te3 Nanoflakes | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.coadvisor | 陳洋元 | zh_TW |
dc.contributor.coadvisor | Yang-Yuan Chen | en |
dc.contributor.oralexamcommittee | 陳貴賢;謝文斌;張之威 | zh_TW |
dc.contributor.oralexamcommittee | Kuei-Hsien Chen;Wen-Pin Hsieh;Chih-Wei Chang | en |
dc.subject.keyword | 熱電材料,熱電裝置,薄膜,奈米片,拓樸材料, | zh_TW |
dc.subject.keyword | Thermoelectric materials,Thermoelectric devices,Thin films,Nanoflakes,Topological materials, | en |
dc.relation.page | 123 | - |
dc.identifier.doi | 10.6342/NTU202404294 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-15 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 物理學系 | - |
Appears in Collections: | 物理學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-2.pdf | 4.23 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.