請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95139完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 龔源成 | zh_TW |
| dc.contributor.advisor | Yuancheng Gung | en |
| dc.contributor.author | 陳薈筑 | zh_TW |
| dc.contributor.author | Hui-Chu Chen | en |
| dc.date.accessioned | 2024-08-29T16:16:06Z | - |
| dc.date.available | 2024-08-30 | - |
| dc.date.copyright | 2024-08-29 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | Alford, R. (1986). Shear data in the presence of azimuthal anisotropy: 56th Annual International Meeting, SEG, Expanded Abstracts, 476–479.
Central Weather Administration. (2012). Central Weather Administration Seismographic Network [Data set]. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/T5 Chang, C.-P., Chang, T.-Y., Angelier, J., Kao, H., Lee, J.-C., & Yu, S.-B. (2003). Strain and stress field in Taiwan oblique convergent system: constraints from GPS observation and tectonic data. Earth and Planetary Science Letters, 214(1-2), 115-127. https://doi.org/10.1016/s0012-821x(03)00360-1 Chang, C. P., Angelier, J., Huang, C. Y., & Liu, C. S. (2001). Structural evolution and significance of a mélange in a collision belt: the Lichi Mélange and the Taiwan arc–continent collision. Geological Magazine, 138(6), 633-651. https://doi.org/10.1017/s0016756801005970 Chao, K., & Peng, Z. (2009). Temporal changes of seismic velocity and anisotropy in the shallow crust induced by the 1999 October 22M6.4 Chia-Yi, Taiwan earthquake. Geophysical Journal International, 179(3), 1800-1816. https://doi.org/10.1111/j.1365-246X.2009.04384.x Chen, L.-W., Chen, Y.-N., Gung, Y., Lee, J.-C., & Liang, W.-T. (2017). Strong near-surface seismic anisotropy of Taiwan revealed by coda interferometry. Earth and Planetary Science Letters, 475, 224-230. https://doi.org/10.1016/j.epsl.2017.07.016 Crampin, S. (1999). Calculable fluid–rock interactions. Journal of the Geological Society, 156, 501-514. https://doi.org/10.1144/gsjgs.156.3.0501 Deuss, A., Irving, J. C., & Woodhouse, J. H. (2010). Regional variation of inner core anisotropy from seismic normal mode observations. Science, 328(5981), 1018-1020. https://doi.org/10.1126/science.1188596 Gung, Y., Panning, M., & Romanowicz, B. (2003). Global anisotropy and the thickness of continents. Nature, 422(6933), 707-711. https://doi.org/10.1038/nature01559 Hillers, G., Ben-Zion, Y., Campillo, M., & Zigone, D. (2015). Seasonal variations of seismic velocities in the San Jacinto fault area observed with ambient seismic noise. Geophysical Journal International, 202(2), 920-932. https://doi.org/10.1093/gji/ggv151 Hsu, Y.-J., Yu, S.-B., Simons, M., Kuo, L.-C., & Chen, H.-Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1-2), 4-18. https://doi.org/10.1016/j.tecto.2008.11.016 Huang, T. Y., Gung, Y., Kuo, B. Y., Chiao, L. Y., & Chen, Y. N. (2015). Layered deformation in the Taiwan orogen. Science, 349(6249), 720-723. https://doi.org/10.1126/science.aab1879 Lee, H.-Y., Gung, Y., Chen, L.-W., Chen, W.-S., Chen, Y.-N., Cai, S.-J., Chen, H.-C., & Liao, C.-W. (2023). Strong variation of near-surface seismic anisotropy in Taiwan and its geological implications. Earth and Planetary Science Letters, 620. https://doi.org/10.1016/j.epsl.2023.118339 Lin, F.-C., Li, D., Clayton, R. W., & Hollis, D. (2013). High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array. Geophysics, 78(4), Q45-Q56. https://doi.org/10.1190/geo2012-0453.1 Miao, Y., Shi, Y., & Wang, S.-Y. (2018). Temporal change of near-surface shear wave velocity associated with rainfall in Northeast Honshu, Japan. Earth, Planets and Space, 70(1). https://doi.org/10.1186/s40623-018-0969-3 Miao, Y., Shi, Y., Zhuang, H. Y., Wang, S. Y., Liu, H. B., & Yu, X. B. (2019). Influence of Seasonal Frozen Soil on Near‐Surface Shear Wave Velocity in Eastern Hokkaido, Japan. Geophysical Research Letters, 46(16), 9497-9508. https://doi.org/10.1029/2019gl082282 Miyazawa, M., Snieder, R., & Venkataraman, A. (2008). Application of seismic interferometry to extract P- and S-wave propagation and observation of shear-wave splitting from noise data at Cold Lake, Alberta, Canada. Geophysics, 73(4), D35-D40. https://doi.org/10.1190/1.2937172 Montagner, J. P., & Tanimoto, T. (1990). Global anisotropy in the upper mantle inferred from the regionalization of phase velocities. Journal of Geophysical Research: Solid Earth, 95(B4), 4797-4819. https://doi.org/10.1029/JB095iB04p04797 Nakata, N., & Snieder, R. (2012). Estimating near‐surface shear wave velocities in Japan by applying seismic interferometry to KiK‐net data. Journal of Geophysical Research: Solid Earth, 117(B1). https://doi.org/10.1029/2011jb008595 Obermann, A., Froment, B., Campillo, M., Larose, E., Planès, T., Valette, B., Chen, J. H., & Liu, Q. Y. (2014). Seismic noise correlations to image structural and mechanical changes associated with the Mw 7.9 2008 Wenchuan earthquake. Journal of Geophysical Research: Solid Earth, 119(4), 3155-3168. https://doi.org/10.1002/2013jb010932 Okamoto, K., Mikada, H., Goto, T.-n., & Takekawa, J. (2013). Numerical analysis of the relationship between time-variant coda-Q and the variation in crustal stress. Geophysical Journal International, 195(1), 575-581. https://doi.org/10.1093/gji/ggt243 Pio Lucente, F., De Gori, P., Margheriti, L., Piccinini, D., Di Bona, M., Chiarabba, C., & Piana Agostinetti, N. (2010). Temporal variation of seismic velocity and anisotropy before the 2009 MW6.3 L'Aquila earthquake, Italy. Geology, 38(11), 1015-1018. https://doi.org/10.1130/g31463.1 Saade, M., Araragi, K., Montagner, J. P., Kaminski, E., Roux, P., Aoki, Y., & Brenguier, F. (2019). Evidence of reactivation of a hydrothermal system from seismic anisotropy changes. Nat Commun, 10(1), 5278. https://doi.org/10.1038/s41467-019-13156-8 Snieder, R., Gret, A., Douma, H., & Scales, J. (2002). Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science, 295(5563), 2253-2255. https://doi.org/10.1126/science.1070015 Snieder, R. (2004). Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase. Physical Review E, 69(4), 046610. https://doi.org/10.1103/PhysRevE.69.046610 Snieder, R., & Wapenaar, K. (2010). Imaging with ambient noise. Physics Today, 63(9), 44-49. https://doi.org/10.1063/1.3490500 Taira, T., Nayak, A., Brenguier, F., & Manga, M. (2018). Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California. Sci Adv, 4(1), e1701536. https://doi.org/10.1126/sciadv.1701536 Thomsen, L. (1988). Reflection seismology over azimuthally anisotropic media. Geophysics, 53(3), 304-313. https://doi.org/10.1190/1.1442464 Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59. https://doi.org/Doi 10.1016/S0040-1951(96)00297-1 陳力維(2014)。臺灣地區近地表之震波非均向性研究。國立臺灣大學。臺灣博碩士論文知識加值系統。臺北市。 https://hdl.handle.net/11296/28pwp2 蔡昇均(2020)。以尾波干涉法探討臺灣近地表地區震波構造的時序變化。國立臺灣大學。臺灣博碩士論文知識加值系統。臺北市。https://hdl.handle.net/11296/yr47dn | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95139 | - |
| dc.description.abstract | 本研究利用垂直的井上地震儀與井下地震儀測站資料,結合尾波干涉法來建立兩個測站之間的體波經驗格林函數(EGF),以研究2015年至2023年間臺灣近地表(<500 m)震波結構(S波速度和非均向性)的變化。Chen et al. (2017)和Lee et al. (2023)通過規模大於4.5的地震事件,可以獲取穩定且高品質的EGF,從而初步了解臺灣近地表震波構造的特性,並根據非均向性的成因機制,將測站劃分為兩種類型:平行應力的非均向性(SAA)和平行山脈走向的非均向性(OPA)。本研究為了加入時間解析,需要大量資料,故而將地震規模調降至3.0,並進行EGF穩定度、疊加天數和疊加方法的測試,確保長期監測的可靠分析結果。從7個SAA和6個OPA測站的時序分析顯示,除了位於花東縱谷的玉里站(EYUL)在2022年期間受到強烈擾動外,SAA測站相較於OPA測站更穩定。為進一步了解其中的機制,本研究對時序結果進行(1)季節性分析、(2)降雨分析和(3)地震影響分析。結果顯示,臺灣近地表的震波構造僅在少數測站呈現顯著季節性變化,而降雨是南投國姓站(WCS)S波速度呈現季節性變化的主要因素。雖然WCS屬於OPA測站,其震波構造長期由構造主導,但在受到極端降水時,仍會因其帶來的地層應力變化而產生影響。這暗示了OPA機制較為複雜,可能同時受到構造及應力擾動的影響,也導致在長期監測結果中,震波構造比SAA更為波動。此外,發生於2022年9月18日的池上地震序列是導致EYUL測站主要變化的原因,該地震序列導致EYUL測站的S波速度和非均向性強度下降、快軸急劇變化,對稍遠的EGFH(SAA)測站影響較小,但對距離相近的EDH(OPA)測站並未有明顯影響,因此推斷震源距離與非均向性成因機制皆是地震事件是否對震波構造產生強烈影響的重要因子。然而,不同測站間的差異顯示,影響臺灣震波構造變化的原因相當複雜,並非單一因素所致,還可能受到其他未知參數的干擾。 | zh_TW |
| dc.description.abstract | This study utilizes data from vertical borehole and surface stations pairs, combined with coda wave interferometry, to establish empirical Green's functions (EGFs) for body waves between two stations. The aim is to investigate changes in the near-surface (<500 m) seismic structure (S-wave velocity and anisotropy) in Taiwan from 2015 to 2023. Chen et al. (2017) and Lee et al. (2023) obtained stable and high-quality EGFs from seismic events with magnitudes greater than 4.5, providing preliminary insights into the near-surface seismic structure in Taiwan. Based on the mechanisms of anisotropy, stations were categorized into two types: stress-aligned anisotropy (SAA) and orogen-parallel anisotropy (OPA). For the purpose of incorporating temporal resolution, this study required a substantial amount of data, leading to the reduction of the seismic event magnitude threshold to 3.0. Tests on EGF stability, stacking days, and stacking methods were conducted to ensure reliable long-term monitoring results. Time-series analysis of seven SAA and six OPA stations revealed that, except for the Yuli (玉里) station (EYUL) in the Longitudinal Valley, which experienced significant disturbances in 2022, SAA stations were more stable compared to OPA stations. To further understand the mechanisms behind these observations, this study conducted (1) seasonal analysis, (2) rainfall analysis, and (3) earthquake impact analysis on the time-series results. The results indicated that only a few stations showed significant seasonal variations in the near-surface seismic structure of Taiwan, with rainfall being the primary factor for the seasonal variation in S-wave velocity at the Guoxing (國姓) station (WCS) in Nantou(南投). Although WCS belongs to the OPA category and its seismic structures are primarily driven by structural factors, it can still be influenced by stress changes induced by extreme rainfall. This suggests that the OPA mechanism is more complex, potentially influenced by both structural and stress perturbations, leading to more variable seismic structures over long-term monitoring compared to SAA. Furthermore, the Chishang (池上) earthquake sequence on September 18, 2022, was identified as the main cause of changes at EYUL station, resulting in decreases in S-wave velocity and anisotropy strength, as well as rapid changes in the fast polarization direction. This earthquake sequence had a minor impact on the more distant EGFH (SAA) station but no significant effect on the nearby EDH (OPA) station. It is inferred that both the distance to the earthquake source and the anisotropy mechanism are crucial factors in determining whether a seismic event strongly impacts the seismic structure. However, variations between different stations indicate that the factors influencing changes in Taiwan's seismic structures are complex, not attributed to a single cause, and may be affected by other unknown parameters. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-29T16:16:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-29T16:16:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
中文摘要 ii Abstract iii 目次 v 圖次 vii 表次 ix 第1章 、 緒論 1 1.1 震波構造 1 1.2 研究動機 2 第2章 、 研究區域 7 2.1 臺灣區域地質概況 7 2.2 臺灣水平應力及應變場 9 第3章 、 研究方法 13 3.1 尾波干涉法 13 3.2 理論背景 15 第4章 、 資料處理及分析 17 4.1 資料簡介 17 4.2 資料篩選 17 4.2.1 地震事件 17 4.2.2 測站資料 18 4.3 分析流程 19 4.3.1 尾波選取 21 4.3.2 井下測站方位修正 22 4.3.3 地震尾波交互相關法 24 4.3.4 震波速度與非均向性測量 25 4.3.5 高斯函數疊加 27 第5章 、 結果 29 5.1 震波構造的平均結果 29 5.1.1 S波速度平均結果 29 5.1.2 震波非均向性平均結果 30 5.2 時序變化結果 31 5.2.1 S波速度時序變化 33 5.2.2 震波非均向性時序變化 36 第6章 、 討論 39 6.1 平均結果的穩定性測試 39 6.2 時序分析結果的疊加測試 40 6.3 時序分析結果的探討 42 6.3.1 季節性變化分析 42 6.3.2 降雨對震波構造的影響 43 6.3.3 地震事件對震波構造的影響 44 第7章 、 結論 51 參考文獻 52 附錄A、各測站平均結果 56 附錄B、各測站平滑高斯疊加S波速度時序變化 57 附錄C、各測站平滑高斯疊加非均向性時序變化 59 附錄D、各測站S波速度週期分析 65 附錄E、各測站非均向性週期分析 66 附錄F、各測站S波速度與降雨量關係的時序變化 67 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 井下地震儀陣列 | zh_TW |
| dc.subject | 尾波干涉法 | zh_TW |
| dc.subject | 剪切波分裂 | zh_TW |
| dc.subject | 震波非均向性 | zh_TW |
| dc.subject | 淺層震波構造 | zh_TW |
| dc.subject | seismic anisotropy | en |
| dc.subject | near-surface seismic structure | en |
| dc.subject | coda interferometry | en |
| dc.subject | shear wave splitting | en |
| dc.subject | borehole array | en |
| dc.title | 臺灣近地表震波構造的時序變化及其地質推論 | zh_TW |
| dc.title | On the temporal variations of near-surface seismic structure of Taiwan and its geological inferences | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 梁文宗;陳映年 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Tzong Liang;Ying-Nien Chen | en |
| dc.subject.keyword | 震波非均向性,淺層震波構造,尾波干涉法,剪切波分裂,井下地震儀陣列, | zh_TW |
| dc.subject.keyword | seismic anisotropy,near-surface seismic structure,coda interferometry,shear wave splitting,borehole array, | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU202402661 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| dc.date.embargo-lift | 2029-08-12 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 7.81 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
