Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95136
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭友晉zh_TW
dc.contributor.advisorYo-Jin Shiauen
dc.contributor.author簡睿廷zh_TW
dc.contributor.authorJui-Ting Chienen
dc.date.accessioned2024-08-29T16:15:11Z-
dc.date.available2024-08-30-
dc.date.copyright2024-08-29-
dc.date.issued2024-
dc.date.submitted2024-08-14-
dc.identifier.citationAbiven, S., Menasseri, S., & Chenu, C. (2009). The effects of organic inputs over time on soil aggregate stability - A literature analysis. Soil Biology & Biochemistry, 41(1), 1-12. https://doi.org/10.1016/j.soilbio.2008.09.015
Arellano, A. R., Bianchi, T. S., Osburn, C. L., D'Sa, E. J., Ward, N. D., Oviedo-Vargas, D., Joshi, I. D., Ko, D. S., Shields, M. R., Kurian, G., & Green, J. (2019). Mechanisms of Organic Matter Export in Estuaries with Contrasting Carbon Sources. Journal of Geophysical Research: Biogeosciences, 124(10), 3168-3188. https://doi.org/https://doi.org/10.1029/2018JG004868
Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9(4), 479-492. https://doi.org/https://doi.org/10.1046/j.1365-2486.2003.00629.x
Baldock, J. A. (2007). Composition and Cycling of Organic Carbon in Soil. In P. Marschner & Z. Rengel (Eds.), Nutrient Cycling in Terrestrial Ecosystems (pp. 1-35). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-68027-7_1
Bauer, J. E., & Bianchi, T. S. (2011). 5.02 - Dissolved Organic Carbon Cycling and Transformation. In E. Wolanski & D. McLusky (Eds.), Treatise on Estuarine and Coastal Science (pp. 7-67). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-374711-2.00502-7
Behzad, M., Richard, L. I., Wenrui, H., Lewis, F. G., & Jane, M. C. (2000). Nitrogen budget of Apalachicola Bay, a bar-built estuary in the northeastern Gulf of Mexico. Marine Ecology Progress Series, 195, 1-14. https://www.int-res.com/abstracts/meps/v195/p1-14/
Bowden, W. B., Vörösmarty, C. J., Morris, J. T., Peterson, B. J., Hobbie, J. E., Steudler, P. A., & Moore III, B. (1991). Transport and processing of nitrogen in a tidal freshwater wetland. Water Resources Research, 27(3), 389-408. https://doi.org/https://doi.org/10.1029/90WR02614
Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C. (2006). The carbon balance of North American wetlands. Wetlands, 26(4), 889-916.
Burrows, E. H., Bubier, J. L., Mosedale, A., Cobb, G. W., & Crill, P. M. (2005). Net Ecosystem Exchange of Carbon dioxide in a Temperate Poor Fen: a Comparison of Automated and Manual Chamber Techniques. Biogeochemistry, 76(1), 21-45. https://doi.org/10.1007/s10533-004-6334-6
Butterbach-Bahl, K., Kesik, M., Miehle, P., Papen, H., & Li, C. (2004). Quantifying the regional source strength of N-trace gases across agricultural and forest ecosystems with process based models. Plant and Soil, 260(1), 311-329. https://doi.org/10.1023/B:PLSO.0000030186.81212.fb
Cahoon, D. R., & Turner, R. E. (1989). Accretion and canal impacts in a rapidly subsiding wetland II. Feldspar marker horizon technique. Estuaries, 12(4), 260-268. https://doi.org/10.2307/1351905
Chassain, J., Vieublé Gonod, L., Chenu, C., & Joimel, S. (2021). Role of different size classes of organisms in cropped soils: What do litterbag experiments tell us? A meta-analysis. Soil Biology and Biochemistry, 162. https://doi.org/10.1016/j.soilbio.2021.108394
Chatterjee, A., Lal, R., Wielopolski, L., Martin, M. Z., & Ebinger, M. H. (2009). Evaluation of Different Soil Carbon Determination Methods. Critical Reviews in Plant Sciences, 28(3), 164-178. https://doi.org/10.1080/07352680902776556
Chen, G. C., Chen, B., Yu, D., Tam, N. F. Y., Ye, Y., & Chen, S. Y. (2016). Soil greenhouse gas emissions reduce the contribution of mangrove plants to the atmospheric cooling effect. Environmental Research Letters, 11(12), Article 124019. https://doi.org/10.1088/1748-9326/11/12/124019
Chen, M., Chang, L., Zhang, J., Guo, F., Vymazal, J., He, Q., & Chen, Y. (2020). Global nitrogen input on wetland ecosystem: The driving mechanism of soil labile carbon and nitrogen on greenhouse gas emissions. Environmental Science and Ecotechnology, 4. https://doi.org/10.1016/j.ese.2020.100063
Chou, M.-Q., Lin, W.-J., Lin, C.-W., Wu, H.-H., & Lin, H.-J. (2022). Allometric equations may underestimate the contribution of fine roots to mangrove carbon sequestration. Science of the Total Environment, 833, 155032. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.155032
Conner, W. H., & Day, J. W. (1991). Variations in Vertical Accretion in a Louisiana Swamp. Journal of Coastal Research, 7(3), 617-622. http://www.jstor.org/stable/4297880
Costanza, R., De Groot, R., Sutton, P., Van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., & Turner, R. K. (2014). Changes in the global value of ecosystem services. Global environmental change, 26, 152-158.
Cowardin, L. M., Carter, V., Golet, F. C., & LaRoe, E. T. (1979). Classification of wetlands and deepwater habitats of the United States [Report](79/31). (FWS/OBS, Issue. U. S. Fish & S. Wildlife. https://pubs.usgs.gov/publication/2000109
Davidson, N. C., & Finlayson, C. M. (2018). Extent, regional distribution and changes in area of different classes of wetland. Marine and Freshwater Research, 69(10), 1525-1533. https://doi.org/https://doi.org/10.1071/MF17377
de Klein, J. J. M., & van der Werf, A. K. (2014). Balancing carbon sequestration and GHG emissions in a constructed wetland. Ecological Engineering, 66, 36-42. https://doi.org/10.1016/j.ecoleng.2013.04.060
de la Guardia, L. C., Fariñas, T. H., Marchese, C., Amargant-Arumí, M., Myers, P. G., Bélanger, S., Assmy, P., Gradinger, R., & Duarte, P. (2023). Assessing net primary production in the northwestern Barents Sea using in situ, remote sensing and modelling approaches. Progress in Oceanography, 219, Article 103160. https://doi.org/10.1016/j.pocean.2023.103160
Eggleston, H., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). 2006 IPCC guidelines for national greenhouse gas inventories.
Emmer, I., Needelman, B., Emmett-Mattox, S., Crooks, S., Megonigal, P., Myers, D., Oreska, M., McGlathery, K., & Shoch, D. (2023). VM0033 Methodology for tidal wetland and seagrass restoration, v2.1. In.
Fennessy, M. S., Rokosch, A., & Mack, J. J. (2008). Patterns of plant decomposition and nutrient cycling in natural and created wetlands. Wetlands, 28(2), 300-310. https://doi.org/10.1672/06-97.1
Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281(5374), 237-240. https://doi.org/10.1126/science.281.5374.237
Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(7167), 277-U210. https://doi.org/10.1038/nature06275
Forster, P., T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, D.J. Lunt, T. Mauritsen, M.D. Palmer, M. Watanabe, M. Wild, & Zhang, H. (2021). The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 923-1054). https://doi.org/10.1017/9781009157896.009
Foster, B. (2001). IPCC Third Assessment Report. The Scientific Basis: Geneva, Switzerland.
Fritz, C., Pancotto, V. A., Elzenga, J. T. M., Visser, E. J. W., Grootjans, A. P., Pol, A., Iturraspe, R., Roelofs, J. G. M., & Smolders, A. J. P. (2011). Zero methane emission bogs: extreme rhizosphere oxygenation by cushion plants in Patagonia. New Phytologist, 190(2), 398-408. https://doi.org/https://doi.org/10.1111/j.1469-8137.2010.03604.x
Gao, Y., Peng, R.-H., Ouyang, Z.-T., Shao, C.-L., Chen, J.-Q., Zhang, T.-T., Guo, H.-Q., Tang, J.-W., Zhao, F., Zhuang, P., & Zhao, B. (2020). Enhanced Lateral Exchange of Carbon and Nitrogen in a Coastal Wetland With Invasive Spartina alterniflora. Journal of Geophysical Research: Biogeosciences, 125(5), e2019JG005459. https://doi.org/https://doi.org/10.1029/2019JG005459
Girkin, N. T., Vane, C. H., Turner, B. L., Ostle, N. J., & Sjögersten, S. (2020). Root oxygen mitigates methane fluxes in tropical peatlands. Environmental Research Letters, 15(6), 064013. https://doi.org/10.1088/1748-9326/ab8495
Gower, S. T., Vogel, J. G., Norman, J. M., Kucharik, C. J., Steele, S. J., & Stow, T. K. (1997). Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. Journal of Geophysical Research: Atmospheres, 102(D24), 29029-29041. https://doi.org/https://doi.org/10.1029/97JD02317
Hagemann, N., Harter, J., & Behrens, S. (2016). Chapter 7 - Elucidating the Impacts of Biochar Applications on Nitrogen Cycling Microbial Communities. In T. K. Ralebitso-Senior & C. H. Orr (Eds.), Biochar Application (pp. 163-198). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-803433-0.00007-2
Haj-Amor, Z., Araya, T., Kim, D.-G., Bouri, S., Lee, J., Ghiloufi, W., Yang, Y., Kang, H., Jhariya, M. K., Banerjee, A., & Lal, R. (2022). Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: A review. Science of the Total Environment, 843, 156946. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.156946
Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiological Reviews, 60(2), 439-+. https://doi.org/10.1128/mmbr.60.2.439-471.1996
Heil, J., Vereecken, H., & Brüggemann, N. (2016). A review of chemical reactions of nitrification intermediates and their role in nitrogen cycling and nitrogen trace gas formation in soil. European Journal of Soil Science, 67(1), 23-39. https://doi.org/10.1111/ejss.12306
Hill, J. K., & Wheeler, P. A. (2002). Organic carbon and nitrogen in the northern California current system: comparison of offshore, river plume, and coastally upwelled waters. Progress in Oceanography, 53(2), 369-387. https://doi.org/https://doi.org/10.1016/S0079-6611(02)00037-X
Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M., & Troxler, T. (2014). 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands. IPCC, Switzerland.
Ho, A., Mo, Y., Lee, H. J., Sauheitl, L., Jia, Z., & Horn, M. A. (2018). Effect of salt stress on aerobic methane oxidation and associated methanotrophs; a microcosm study of a natural community from a non-saline environment. Soil Biology and Biochemistry, 125, 210-214. https://doi.org/https://doi.org/10.1016/j.soilbio.2018.07.013
Huang, C.-M., Yuan, C.-S., Yang, W.-B., & Yang, L. (2019). Temporal variations of greenhouse gas emissions and carbon sequestration and stock from a tidal constructed mangrove wetland. Marine Pollution Bulletin, 149, 110568. https://doi.org/https://doi.org/10.1016/j.marpolbul.2019.110568
Hughes, R. F., Archer, S. R., Asner, G. P., Wessman, C. A., McMurtry, C., Nelson, J., & Ansley, R. J. (2006). Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna. Global Change Biology, 12(9), 1733-1747. https://doi.org/10.1111/J.1365-2486.2006.01210.x
IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC.
Jóźwiakowski, K., Bugajski, P., Mucha, Z., Wójcik, W., Jucherski, A., Nastawny, M., Siwiec, T., Mazur, A., Obroślak, R., & Gajewska, M. (2017). Reliability and efficiency of pollution removal during long-term operation of a one-stage constructed wetland system with horizontal flow. Separation and Purification Technology, 187, 60-66. https://doi.org/https://doi.org/10.1016/j.seppur.2017.06.043
Kandel, T. P., Lærke, P. E., Hoffmann, C. C., & Elsgaard, L. (2019). Complete annual CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O balance of a temperate riparian wetland 12 years after rewetting. Ecological Engineering, 127, 527-535. https://doi.org/10.1016/j.ecoleng.2017.12.019
Lal, R. (2008). Carbon sequestration. Philos Trans R Soc Lond B Biol Sci, 363(1492), 815-830. https://doi.org/10.1098/rstb.2007.2185
Lane, R. R., Mack, S. K., Day, J. W., Kempka, R., & Brady, L. (2017). Carbon sequestration at a forested wetland receiving treated municipal effluent. Wetlands, 37, 861-873.
Li, S.-B., Chen, P.-H., Huang, J.-S., Hsueh, M.-L., Hsieh, L.-Y., Lee, C.-L., & Lin, H.-J. (2018). Factors regulating carbon sinks in mangrove ecosystems. Global Change Biology, 24(9), 4195-4210. https://doi.org/https://doi.org/10.1111/gcb.14322
Li, S., Bush, R. T., Santos, I. R., Zhang, Q., Song, K., Mao, R., Wen, Z., & Lu, X. X. (2018). Large greenhouse gases emissions from China's lakes and reservoirs. Water Research, 147, 13-24. https://doi.org/https://doi.org/10.1016/j.watres.2018.09.053
Li, Y., Xu, J., Liu, S., Qi, Z., Wang, H., Wei, Q., Gu, Z., Liu, X., & Hameed, F. (2020). Salinity-induced concomitant increases in soil ammonia volatilization and nitrous oxide emission. Geoderma, 361, 114053. https://doi.org/https://doi.org/10.1016/j.geoderma.2019.114053
Lin, C.-W., Lin, W.-J., Ho, C.-W., Kao, Y.-C., Yong, Z.-J., & Lin, H.-J. (2024). Flushing emissions of methane and carbon dioxide from mangrove soils during tidal cycles. Science of the Total Environment, 919, 170768. https://doi.org/https://doi.org/10.1016/j.scitotenv.2024.170768
Lin, W.-J., Lin, C.-W., Wu, H.-H., Kao, Y.-C., & Lin, H.-J. (2023). Mangrove carbon budgets suggest the estimation of net production and carbon burial by quantifying litterfall. Catena, 232, 107421. https://doi.org/https://doi.org/10.1016/j.catena.2023.107421
Lovelock, C. E., Simpson, L. T., Duckett, L. J., & Feller, I. C. (2015). Carbon Budgets for Caribbean Mangrove Forests of Varying Structure and with Phosphorus Enrichment. Forests, 6(10), 3528-3546. https://www.mdpi.com/1999-4907/6/10/3528
Lovett, G. M., Cole, J. J., & Pace, M. L. (2006). Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation? Ecosystems, 9(1), 152-155. https://doi.org/10.1007/s10021-005-0036-3
Mander, Ü., Dotro, G., Ebie, Y., Towprayoon, S., Chiemchaisri, C., Nogueira, S. F., Jamsranjav, B., Kasak, K., Truu, J., Tournebize, J., & Mitsch, W. J. (2014). Greenhouse gas emission in constructed wetlands for wastewater treatment: A review. Ecological Engineering, 66, 19-35. https://doi.org/10.1016/j.ecoleng.2013.12.006
Mander, U., Lohmus, K., Teiter, S., Mauring, T., Nurk, K., & Augustin, J. (2008). Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands. Sci Total Environ, 404(2-3), 343-353. https://doi.org/10.1016/j.scitotenv.2008.03.014
Mander, U., Tournebize, J., Espenberg, M., Chaumont, C., Torga, R., Garnier, J., Muhel, M., Maddison, M., Lebrun, J. D., Uher, E., Remm, K., Parn, J., & Soosaar, K. (2021). High denitrification potential but low nitrous oxide emission in a constructed wetland treating nitrate-polluted agricultural run-off. Sci Total Environ, 779, 146614. https://doi.org/10.1016/j.scitotenv.2021.146614
McLauchlan, K. K., & Hobbie, S. E. (2004). Comparison of Labile Soil Organic Matter Fractionation Techniques. Soil Science Society of America Journal, 68(5), 1616-1625. https://doi.org/https://doi.org/10.2136/sssaj2004.1616
Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, Ü., Zhang, L., Anderson, C. J., Jørgensen, S. E., & Brix, H. (2012). Wetlands, carbon, and climate change. Landscape Ecology, 28(4), 583-597. https://doi.org/10.1007/s10980-012-9758-8
Mitsch, W. J., & Gosselink, J. G. (2015). Wetlands. Wiley. https://books.google.fr/books?id=-vcwBgAAQBAJ
Mitsch, W. J., Nedrich, S. M., Harter, S. K., Anderson, C., Nahlik, A. M., & Bernal, B. (2014). Sedimentation in created freshwater riverine wetlands: 15 years of succession and contrast of methods. Ecological Engineering, 72, 25-34. https://doi.org/https://doi.org/10.1016/j.ecoleng.2014.09.116
Moreira, F. D., & Dias, E. H. O. (2020). Constructed wetlands applied in rural sanitation: A review. Environ Res, 190, 110016. https://doi.org/10.1016/j.envres.2020.110016
Nag, S. K., Liu, R., & Lal, R. (2017). Emission of greenhouse gases and soil carbon sequestration in a riparian marsh wetland in central Ohio. Environmental monitoring and assessment, 189(11), 580. https://doi.org/10.1007/s10661-017-6276-9
Narrowe Adrienne, B., Borton Mikayla, A., Hoyt David, W., Smith Garrett, J., Daly Rebecca, A., Angle Jordan, C., Eder Elizabeth, K., Wong Allison, R., Wolfe Richard, A., Pappas, A., Bohrer, G., Miller Christopher, S., & Wrighton Kelly, C. (2019). Uncovering the Diversity and Activity of Methylotrophic Methanogens in Freshwater Wetland Soils. mSystems, 4(6), 10.1128/msystems.00320-00319. https://doi.org/10.1128/msystems.00320-19
Naser, H. M., Nagata, O., Sultana, S., & Hatano, R. (2020). Carbon Sequestration and Contribution of CO2, CH4 and N2O Fluxes to Global Warming Potential from Paddy-Fallow Fields on Mineral Soil Beneath Peat in Central Hokkaido, Japan. Agriculture, 10(1), 6. https://www.mdpi.com/2077-0472/10/1/6
Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. (2016). Greenhouse gas emissions from soils—A review. Geochemistry, 76(3), 327-352. https://doi.org/10.1016/j.chemer.2016.04.002
Purdy, K. J., Nedwell, D. B., & Embley, T. M. (2003). Analysis of the Sulfate-Reducing Bacterial and Methanogenic Archaeal Populations in Contrasting Antarctic Sediments. Applied and Environmental Microbiology, 69(6), 3181-3191. https://doi.org/doi:10.1128/AEM.69.6.3181-3191.2003
Qin, H. L., Wang, D., Xing, X. Y., Tang, Y. F., Wei, X. M., Chen, X. B., Zhang, W. Z., Chen, A. L., Li, L. L., Liu, Y., & Zhu, B. L. (2021). A few key nirK and nosZ denitrifier taxa play a dominant role in moisture-enhanced N2O emissions in acidic paddy soil. Geoderma, 385, Article 114917. https://doi.org/10.1016/j.geoderma.2020.114917
Ramesh, T., Bolan, N. S., Kirkham, M. B., Wijesekara, H., Kanchikerimath, M., Srinivasa Rao, C., Sandeep, S., Rinklebe, J., Ok, Y. S., Choudhury, B. U., Wang, H., Tang, C., Wang, X., Song, Z., & Freeman Ii, O. W. (2019). Chapter One - Soil organic carbon dynamics: Impact of land use changes and management practices: A review. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 156, pp. 1-107). Academic Press. https://doi.org/https://doi.org/10.1016/bs.agron.2019.02.001
Ramsar Convention Secretariat. (2013). The Ramsar Convention Manual: a guide to the Convention on Wetlands (Ramsar, Iran, 1971), 6th ed. (Ramsar Convention Secretariat, Gland, Switzerland.)
Ray, R., Majumder, N., Das, S., Chowdhury, C., & Jana, T. K. (2014). Biogeochemical cycle of nitrogen in a tropical mangrove ecosystem, east coast of India. Marine Chemistry, 167, 33-43. https://doi.org/https://doi.org/10.1016/j.marchem.2014.04.007
Reddy, K. R. D., Ronald D Inglett, Patrick W. (2022). Biogeochemistry of wetlands: science and applications. CRC press.
Reeves, D. W. (1997). The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil & Tillage Research, 43(1-2), 131-167. https://doi.org/10.1016/s0167-1987(97)00038-x
Rovira, P., & Vallejo, V. R. (2002). Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma, 107(1), 109-141. https://doi.org/https://doi.org/10.1016/S0016-7061(01)00143-4
Rumpel, C., Amiraslani, F., Chenu, C., Garcia Cardenas, M., Kaonga, M., Koutika, L. S., Ladha, J., Madari, B., Shirato, Y., Smith, P., Soudi, B., Soussana, J. F., Whitehead, D., & Wollenberg, E. (2020). The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio, 49(1), 350-360. https://doi.org/10.1007/s13280-019-01165-2
Saiki, M., Nguyen, T. P. M., Shindo, J., & Nishida, K. (2020). Nitrogen balance in paddy fields under flowing-irrigation condition. Nutrient Cycling in Agroecosystems, 116(1), 19-30. https://doi.org/10.1007/s10705-019-10019-y
Salimi, S., Almuktar, S., & Scholz, M. (2021). Impact of climate change on wetland ecosystems: A critical review of experimental wetlands. J Environ Manage, 286, 112160. https://doi.org/10.1016/j.jenvman.2021.112160
Sapkota, Y., & White, J. R. (2020). Carbon offset market methodologies applicable for coastal wetland restoration and conservation in the United States: A review. Sci Total Environ, 701, 134497. https://doi.org/10.1016/j.scitotenv.2019.134497
Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M. A., & Zechmeister-Boltenstern, S. (2010). Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature. European Journal of Soil Science, 61(5), 683-696. https://doi.org/https://doi.org/10.1111/j.1365-2389.2010.01277.x
Scott, D. A., & Jones, T. A. (1995). Classification and inventory of wetlands: A global overview. Vegetatio, 118(1), 3-16. https://doi.org/10.1007/BF00045186
Shiau, Y.-J., Burchell, M. R., Krauss, K. W., Birgand, F., & Broome, S. W. (2016). Greenhouse Gas Emissions from a Created Brackish Marsh in Eastern North Carolina. Wetlands, 36(6), 1009-1024. https://doi.org/10.1007/s13157-016-0815-y
Shiau, Y.-J., Chen, Y.-A., You, C.-R., Lai, Y.-C., & Lee, M. (2022). Compositions of sequestrated soil carbon in constructed wetlands of Taiwan. Science of the Total Environment, 805, 150290. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.150290
Shiau, Y. J., Burchell, M. R., Krauss, K. W., Broome, S. W., & Birgand, F. (2019). Carbon storage potential in a recently created brackish marsh in eastern North Carolina, USA. Ecological Engineering, 127, 579-588. https://doi.org/10.1016/j.ecoleng.2018.09.007
Son, S., Wang, M., & Harding, L. W. (2014). Satellite-measured net primary production in the Chesapeake Bay. Remote Sensing of Environment, 144, 109-119. https://doi.org/https://doi.org/10.1016/j.rse.2014.01.018
Song, C., XU, X., TIAN, H., & WANG, Y. (2009). Ecosystem–atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Global Change Biology, 15(3), 692-705. https://doi.org/https://doi.org/10.1111/j.1365-2486.2008.01821.x
Sparling, G., Vojvodić-Vuković, M., & Schipper, L. A. (1998). Hot-water-soluble C as a simple measure of labile soil organic matter: The relationship with microbial biomass C. Soil Biology and Biochemistry, 30(10), 1469-1472. https://doi.org/https://doi.org/10.1016/S0038-0717(98)00040-6
Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., de Courcelles, V. D., Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., . . . Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture Ecosystems & Environment, 164, 80-99. https://doi.org/10.1016/j.agee.2012.10.001
Sultana, M.-Y., Mourti, C., Tatoulis, T., Akratos, C. S., Tekerlekopoulou, A. G., & Vayenas, D. V. (2016). Effect of hydraulic retention time, temperature, and organic load on a horizontal subsurface flow constructed wetland treating cheese whey wastewater. Journal of Chemical Technology & Biotechnology, 91(3), 726-732. https://doi.org/https://doi.org/10.1002/jctb.4637
Sun, H. S., Wu, S. H., Feng, S. G., Jiang, C. C., Wang, R., Xu, S. J., Cui, L. J., & Zhuang, X. L. (2022). Impact of influent strengths on nitrous oxide emission and its molecular mechanism in constructed wetlands treating swine wastewater. Environmental Research, 210, Article 112957. https://doi.org/10.1016/j.envres.2022.112957
VanderZaag, A. C., Gordon, R. J., Burton, D. L., Jamieson, R. C., & Stratton, G. W. (2010). Greenhouse gas emissions from surface flow and subsurface flow constructed wetlands treating dairy wastewater. J Environ Qual, 39(2), 460-471. https://doi.org/10.2134/jeq2009.0166
Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Sci Total Environ, 380(1-3), 48-65. https://doi.org/10.1016/j.scitotenv.2006.09.014
Vymazal, J. (2010). Constructed Wetlands for Wastewater Treatment. Water, 2(3), 530-549. https://doi.org/10.3390/w2030530
Vymazal, J., Láska, J., & Hnátková, T. (2023). The retention of nitrogen and phosphorus in aboveground biomass of plants growing in constructed wetlands treating agricultural drainage. Ecological Engineering, 194, 107044. https://doi.org/https://doi.org/10.1016/j.ecoleng.2023.107044
Wang, H., Zhao, R., Zhao, D., Liu, S., Fu, J., Zhang, Y., Dai, N., Song, D., & Ding, H. (2022). Microbial-Mediated Emissions of Greenhouse Gas from Farmland Soils: A Review. Processes, 10(11), 2361. https://www.mdpi.com/2227-9717/10/11/2361
Wang, S., Wang, W., Liu, L., Zhuang, L., Zhao, S., Su, Y., Li, Y., Wang, M., Wang, C., Xu, L., & Zhu, G. (2018). Microbial Nitrogen Cycle Hotspots in the Plant-Bed/Ditch System of a Constructed Wetland with N2O Mitigation. Environmental Science & Technology, 52(11), 6226-6236. https://doi.org/10.1021/acs.est.7b04925
Wang, X., Siciliano, S., Helgason, B., & Bedard-Haughn, A. (2017). Responses of a mountain peatland to increasing temperature: A microcosm study of greenhouse gas emissions and microbial community dynamics. Soil Biology and Biochemistry, 110, 22-33. https://doi.org/https://doi.org/10.1016/j.soilbio.2017.02.013
Wang, Y., Wu, F., Li, X., Li, C. C., Zhao, Y. K., Gao, Y. X., & Liu, J. (2023). Effects of plants and soil microorganisms on organic carbon and the relationship between carbon and nitrogen in constructed wetlands. Environmental Science and Pollution Research, 30(22), 62249-62261. https://doi.org/10.1007/s11356-023-26489-1
Wiegert, R. G., & Evans, F. C. (1964). Primary Production and the Disappearance of Dead Vegetation on an Old Field in Southeastern Michigan. Ecology, 45(1), 49-63. https://doi.org/https://doi.org/10.2307/1937106
Woodwell, G. M., & Whittaker, R. H. (2015). Primary Production in Terrestrial Ecosystems. American Zoologist, 8(1), 19-30. https://doi.org/10.1093/icb/8.1.19
Wrage, N., Velthof, G. L., van Beusichem, M. L., & Oenema, O. (2001). Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology & Biochemistry, 33(12-13), 1723-1732. https://doi.org/10.1016/s0038-0717(01)00096-7
Wu, H., Wang, R., Yan, P., Wu, S., Chen, Z., Zhao, Y., Cheng, C., Hu, Z., Zhuang, L., Guo, Z., Xie, H., & Zhang, J. (2023). Constructed wetlands for pollution control. Nature Reviews Earth & Environment, 4(4), 218-234. https://doi.org/10.1038/s43017-023-00395-z
Xi, M., Kong, F., Li, Y., & Kong, F. (2017). Temporal-spatial variation of DOC concentration, UV absorbance and the flux estimation in the Lower Dagu River, China. Frontiers of Earth Science, 11(4), 660-669. https://doi.org/10.1007/s11707-017-0633-4
Xu, C., Yu, X., Duan, H., Li, J., Xia, S., Zhang, Q., & Li, C. (2023). The decomposition processes and return of carbon, nitrogen, and phosphorus of Phragmites australis litter with different detritus amount. Hydrobiologia, 850(18), 3893-3906. https://doi.org/10.1007/s10750-022-05026-0
Yamochi, S. (2008). Succession of macrobenthic fauna and nitrogen budget at two artificial tidal flats in Osaka Bay, Japan. Marine Pollution Bulletin, 57(1), 137-141. https://doi.org/https://doi.org/10.1016/j.marpolbul.2008.04.032
Yang, L., & Yuan, C.-S. (2019). Analysis of carbon sink effects for saline constructed wetlands vegetated with mangroves to treat mariculture wastewater and sewage. Water Science and Technology, 79(8), 1474-1483. https://doi.org/10.2166/wst.2019.145
Yang, W. B., Yuan, C. S., Huang, B. Q., Tong, C., & Yang, L. (2018). Emission Characteristics of Greenhouse Gases and Their Correlation with Water Quality at an Estuarine Mangrove Ecosystem - the Application of an In-situ On-site NDIR Monitoring Technique. Wetlands, 38(4), 723-738. https://doi.org/10.1007/s13157-018-1015-8
Yin, C., Pereira, P., Zhao, W., & Barcelo, D. (2023). Natural climate solutions. The way forward. Geography and Sustainability, 4(2), 179-182. https://doi.org/https://doi.org/10.1016/j.geosus.2023.03.005
Yoo, J., Kim, J., Kim, J., Lim, J., & Kang, H. (2022). Soil carbon storage and its economic values of inland wetlands in Korea. Ecological Engineering, 182, 106731. https://doi.org/https://doi.org/10.1016/j.ecoleng.2022.106731
Yuckin, S. J., Howell, G., Robichaud, C. D., & Rooney, R. C. (2023). Phragmites australis invasion and herbicide-based control changes primary production and decomposition in a freshwater wetland. Wetlands Ecology and Management, 31(1), 73-88. https://doi.org/10.1007/s11273-022-09902-3
Zhang, D., Tian, X., Dong, S., Chen, Y., Feng, J., He, R. P., & Zhang, K. (2020). Carbon budgets of two typical polyculture pond systems in coastal China and their potential roles in the global carbon cycle. Aquaculture Environment Interactions, 12, 105-115. https://www.int-res.com/abstracts/aei/v12/p105-115/
Zhang, J., Wang, J. J., Xiao, R., Deng, H., & DeLaune, R. D. (2023). Effect of salinity on greenhouse gas production and emission in marsh soils during the decomposition of wetland plants. Journal of Soils and Sediments, 23(1), 131-144. https://doi.org/10.1007/s11368-022-03334-5
Zhang, L., Wang, X. C., Dzakpasu, M., Cao, T., Zhang, H., Liu, Y., & Zheng, Y. (2022). Integrated environmental influences quantification of pilot-scale constructed wetlands based on modified ecological footprint assessment. Sci Total Environ, 843, 157039. https://doi.org/10.1016/j.scitotenv.2022.157039
Zhang, S., Liu, F., Luo, P., Xiao, R., Zhu, H., & Wu, J. (2019). Nitrous oxide emissions from pilot scale three-stage constructed wetlands with variable nitrogen loading. Bioresour Technol, 289, 121687. https://doi.org/10.1016/j.biortech.2019.121687
Zhenghu, D., & Honglang, X. (2000). Effects of soil properties on ammonia volatilization. Soil Science and Plant Nutrition, 46(4), 845-852. https://doi.org/10.1080/00380768.2000.10409150
Zhu, X., Shen, J., Li, Y., Liu, X., Xu, W., Zhou, F., Wang, J., Reis, S., & Wu, J. (2021). Nitrogen emission and deposition budget in an agricultural catchment in subtropical central China. Environmental Pollution, 289, 117870. https://doi.org/https://doi.org/10.1016/j.envpol.2021.117870
Zumft, W. G. (1997). Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev, 61(4), 533-616. https://doi.org/10.1128/mmbr.61.4.533-616.1997
中央氣象署. (2024). CODiS氣候資料服務系統. https://codis.cwa.gov.tw/StationData
陳柏宏. (2014). 淡水河紅樹林及草澤植物的碳儲存量與碳收支 國立中興大學. 臺灣博碩士論文知識加值系統. 台中市. https://hdl.handle.net/11296/24x2r2
經濟部水利署. (2024). 水文資訊網. https://gweb.wra.gov.tw/hydroinfo/WraSTList/#
臺北市政府工務局水利工程處. (2023). 112年度水利處轄管濕地及滯洪池生態監測技術服務總成果報告書. https://www-ws.gov.taipei/001/Upload/730/relfile/-1/730/3caaf4de-ebd0-4604-94f2-e20132466168.pdf
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95136-
dc.description.abstract人工濕地是近年廣泛應用的生態工法,具備各項生態系統服務功能,然而人工濕地運作機制複雜,入流水營養鹽濃度若過高,可能伴隨二氧化碳、甲烷、氧化亞氮等溫室氣體產生,尤其後兩者為高全球暖化潛勢之氣體,若大量排放可能導致碳吸存速率小於溫室氣體排放之二氧化碳當量,使得人工濕地成為碳源。
為了探討人工濕地的碳收支情形,本研究於社子島濕地進行為期一年之現地研究,採集水質、土壤與植體樣本進行分析,並以光聲譜溫室氣體監測儀量測土壤與生態系統溫室氣體交換量,搭配長石粉標記法與分解袋實驗,分別量測沉積速率與分解速率。藉由量化濕地內碳、氮循環的各個途徑,以深入了解濕地生物地質化學過程。
研究結果發現社子島濕地為碳匯與氮源,可分別吸存11.19 ton C ha-1 yr-1,並釋放0.56 ton N ha-1 yr-1。其中土壤碳變化貢獻了66 %之碳吸存量,速率為7.42 ton C ha-1 yr-1,植物初級生產量則貢獻34 %之碳吸存量。土壤的氮損失為主要氮源,其損失速率為0.68 ton N ha-1 yr-1。溫室氣體測量結果以正值表示濕地排放,負值表示濕地吸收,生態系統交換之CO2平均通量為-149.2 mg CO2 m-2 hr-1,CH4平均通量為-1255.8 μg CH4 m-2 hr-1,N2O通量為-138.2 μg N2O m-2 hr-1。土壤之CO2平均排放通量為91.9 mg CO2 m-2 hr-1,CH4平均通量為13193.9 μg CH4 m-2 hr-1,N2O通量為-187.1 μg N2O m-2 hr-1。計算溫室效應之平衡,社子島濕地仍為溫室效應匯,削減CO2eq之速率達41.56 ton CO2eq ha-1 yr-1。
此外,藉由長石粉標記法發現社子島濕地之沉積速率高,其平均值為6.0 cm yr-1,沉積物為濕地帶來的碳量達9.67 ton C ha-1 yr-1,氮量為0.87 ton N ha-1 yr-1。分解袋實驗則發現植物枯落物經過一年的分解會留下生物量中60%的碳與63%的氮。
本研究之結果量化了副熱帶半鹹水人工濕地之碳、氮動態,對於濕地管理提出建議,並可作為環境條件相近濕地之參考。
zh_TW
dc.description.abstractConstructed wetlands have been widely applied in recent years as an ecological engineering method, providing various ecosystem services. However, the operational mechanisms of constructed wetlands are complex. If the nutrient concentration in the inflow water is too high, it may lead to the production of greenhouse gases such as carbon dioxide, methane, and nitrous oxide, with the latter two being gases with high global warming potential. Excessive emissions of these gases may result in the carbon sequestration rate being less than the carbon dioxide equivalent emissions of greenhouse gases, thereby turning the constructed wetland into a carbon source.
To investigate the carbon balance in constructed wetlands, this study conducted a year-long field study at Shezidao wetland. Water, soil, and plant samples were collected for analysis, and greenhouse gas exchange from soil and ecosystems was measured using a photoacoustic gas monitor. The feldspar marker method and litter bag experiments were used to measure sedimentation and decomposition rates, respectively. By quantifying various pathways of carbon and nitrogen cycling within the wetland, we aimed to gain a deeper understanding of the biogeochemical processes in wetlands.
The results showed that Shezidao wetland is a carbon sink and a nitrogen source, sequestering 11.19 tons of carbon per hectare per year and releasing 0.56 tons of nitrogen per hectare per year. Soil carbon changes contributed 66% of the carbon sequestration at a rate of 7.42 ton C ha-1 yr-1, while primary plant production contributed 34% of the carbon sequestration. Soil nitrogen loss was the main source of nitrogen, with a loss rate of 0.68 ton N ha-1 yr-1. Greenhouse gas measurements indicated that positive values represented wetland emissions and negative values represented wetland absorption. The average ecosystem exchange rates of CO₂, CH₄, and N₂O were -149.2 mg CO₂m ² hr⁻¹, -1255.8 μg CH₄ m² hr⁻¹, and -138.2 μg N₂O m² hr⁻¹, respectively. Soil exchange rates for CO₂, CH₄, and N₂O were 91.9 mg CO₂ m² hr⁻¹, 13193.9 μg CH₄ m² hr⁻¹, and -187.1 μg N₂O m² hr⁻¹, respectively. In terms of greenhouse effect balance, Shezidao wetland remains a greenhouse gas sink, reducing CO₂eq at a rate of 41.56 tons per hectare per year.
Additionally, using the feldspar marker method, it was found that Shezidao wetland has a high sedimentation rate of 6.0 cm yr⁻¹, bringing 967 g m² yr⁻¹ of carbon and 87 g m² yr⁻¹ of nitrogen through sedimentation. The litter bag experiment revealed that plant litter, after a year of decomposition, retains 60% of its carbon and 63% of its nitrogen.
This study quantified the carbon and nitrogen dynamics in a subtropical brackish constructed wetland, provided management recommendations, and can serve as a reference for wetlands in similar environmental conditions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-29T16:15:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-29T16:15:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 ii
摘要 iii
Abstract iv
目次 vi
圖次 ix
表次 xii
第一章 前言 1
1.1 研究背景 1
1.2 研究動機 3
第二章 文獻回顧 4
2.1 濕地 4
2.1.1 濕地定義與種類 4
2.1.2 濕地碳循環 7
2.1.3 濕地氮循環 10
2.1.4 溫室氣體排放 14
2.2 濕地碳收支 16
2.2.1 碳收支評估方法 16
2.2.2 淨初級生產量 19
2.2.3 土壤有機碳 21
2.2.4 水中有機碳 23
2.3 濕地溫室氣體量測 24
2.3.1 量測方法總覽 24
2.3.2 氣罩法 26
2.4 濕地研究現況 28
2.5 本論文研究目的 30
第三章 研究方法 31
3.1 研究流程圖 31
3.2 研究場域介紹 32
3.3 採樣日期與項目 36
3.4 土壤與水質採樣方法與背景值分析 40
3.5 溫室氣體量測 48
3.5.1 靜置氣罩法 – 不透明氣罩 48
3.5.2 靜置氣罩法 – 透明氣罩 50
3.5.3 光聲譜氣體監測儀 52
3.5.4 潮汐連續監測 54
3.6 植物 – 淨初級生產量 56
3.7 分解作用 58
3.8 沉積物量測 61
3.9 碳收支 62
3.10 氮收支 64
3.11 溫室效應平衡 66
3.12 統計分析 67
第四章 結果與討論 69
4.1 環境因子 69
4.1.1 水質 69
4.1.2 土壤理化性質 75
4.2 溫室氣體通量 86
4.2.1 土壤交換 86
4.2.2 生態系統交換 89
4.2.3 多元線性回歸分析 92
4.2.4 溫室氣體通量研究之比較 94
4.3 初級生產量 97
4.4 分解作用 102
4.4.1 剩餘質量變化 102
4.4.2 枯落物易分解與難分解碳氮 105
4.5 沉積作用 110
4.5.1 沉積物測量 110
4.5.2 表層土壤總碳、氮含量校正 112
4.5.3 沉積物易分解與難分解碳、氮 115
4.6 潮汐週期連續監測 116
4.6.1 測量日期與潮位 116
4.6.2 靜置氣罩測量結果(2024/4/9與2024/4/15) 117
4.6.3 漂浮氣罩測量結果(2024/4/29與2024/5/8) 120
4.6.4 潮汐連續監測小結 123
4.7 碳收支 126
4.8 氮收支 130
4.9 潮汐濕地之碳氮動態與淨溫室效應潛勢 134
第五章 結論與建議 136
5.1 結論 136
5.2 建議 138
參考資料 139
附錄 152
-
dc.language.isozh_TW-
dc.subject人工濕地zh_TW
dc.subject碳收支zh_TW
dc.subject氮收支zh_TW
dc.subject溫室氣體排放zh_TW
dc.subject碳匯zh_TW
dc.subjectNitrogen budgeten
dc.subjectConstructed Wetlandsen
dc.subjectCarbon sinken
dc.subjectGreenhouse gas emissionen
dc.subjectCarbon budgeten
dc.title副熱帶半鹹水人工濕地碳氮循環之探討zh_TW
dc.titleCarbon and Nitrogen Cycles in Subtropical Brackish Constructed Wetlanden
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王尚禮;許少瑜;張頊瑞zh_TW
dc.contributor.oralexamcommitteeShan-Li Wang;Shao-Yiu Hsu;Syu-Ruei Jhangen
dc.subject.keyword人工濕地,碳收支,氮收支,溫室氣體排放,碳匯,zh_TW
dc.subject.keywordConstructed Wetlands,Carbon budget,Nitrogen budget,Greenhouse gas emission,Carbon sink,en
dc.relation.page157-
dc.identifier.doi10.6342/NTU202404136-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf9.74 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved