請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95131完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蕭友晉 | zh_TW |
| dc.contributor.advisor | Yo-Jin Shiau | en |
| dc.contributor.author | 呂沛儒 | zh_TW |
| dc.contributor.author | Pei-Ju Lu | en |
| dc.date.accessioned | 2024-08-29T16:13:37Z | - |
| dc.date.available | 2024-08-30 | - |
| dc.date.copyright | 2024-08-29 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-10 | - |
| dc.identifier.citation | Bai, Y., Wang, S., Zhussupbekova, A., Shvets, I. V., Lee, P.-H., & Zhan, X. (2023). High-rate iron sulfide and sulfur-coupled autotrophic denitrification system: Nutrients removal performance and microbial characterization. Water Research, 231, 119619. https://doi.org/https://doi.org/10.1016/j.watres.2023.119619
BAILEY, L. D. (1976). EFFECTS OF TEMPERATURE AND ROOT ON DENITRIFICATION IN A SOIL. Canadian Journal of Soil Science, 56(2), 79-87. https://doi.org/10.4141/cjss76-012 Barnard, R., Leadley, P. W., & Hungate, B. A. (2005). Global change, nitrification, and denitrification: A review [Review]. Global Biogeochemical Cycles, 19(1), 13, Article Gb1007. https://doi.org/10.1029/2004gb002282 Bateman, E. J., & Baggs, E. M. (2005). Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space [Article]. Biology and Fertility of Soils, 41(6), 379-388. https://doi.org/10.1007/s00374-005-0858-3 Bergaust, L., Mao, Y. J., Bakken, L. R., & Frostegård, Å. (2010). Denitrification Response Patterns during the Transition to Anoxic Respiration and Posttranscriptional Effects of Suboptimal pH on Nitrogen Oxide Reductase in <i>Paracoccus denitrificans</i> [Article]. Applied and Environmental Microbiology, 76(19), 6387-6396. https://doi.org/10.1128/aem.00608-10 Borduas, N., & Donahue, N. M. (2018). Chapter 3.1 - The Natural Atmosphere. In B. Török & T. Dransfield (Eds.), Green Chemistry (pp. 131-150). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809270-5.00006-6 Braker, G., & Conrad, R. (2011). Diversity, Structure, and Size of N2O-Producing Microbial Communities in Soils—What Matters for Their Functioning? In A. I. Laskin, S. Sariaslani, & G. M. Gadd (Eds.), Advances in Applied Microbiology, Vol 75 (Vol. 75, pp. 33-70). Elsevier Academic Press Inc. https://doi.org/10.1016/b978-0-12-387046-9.00002-5 Canfield, D. E., Glazer, A. N., & Falkowski, P. G. (2010). The Evolution and Future of Earth's Nitrogen Cycle [Review]. Science, 330(6001), 192-196. https://doi.org/10.1126/science.1186120 Capblancq, T., & Forester, B. R. (2022). Redundancy analysis: A Swiss Army Knife for landscape genomics (vol 12, pg 2298, 2021) [Correction]. Methods in Ecology and Evolution, 13(2), 528-530. https://doi.org/10.1111/2041-210x.13782 Caporaso, J. G., Bittinger, K., Bushman, F. D., DeSantis, T. Z., Andersen, G. L., & Knight, R. (2010). PyNAST: a flexible tool for aligning sequences to a template alignment [Article]. Bioinformatics, 26(2), 266-267. https://doi.org/10.1093/bioinformatics/btp636 Castaldi, S., Ermice, A., & Strumia, S. (2006). Fluxes of N2O and CH4 from soils of savannas and seasonally-dry ecosystems [Article]. Journal of Biogeography, 33(3), 401-415. https://doi.org/10.1111/j.1365-2699.2005.01447.x Chen, H., Shang, Z. H., Cai, H. J., & Zhu, Y. (2019). Response of Soil N2O Emissions to Soil Microbe and Enzyme Activities with Aeration at Two Irrigation Levels in Greenhouse Tomato (Lycopersicon esculentum Mill.) Fields [Article]. Atmosphere, 10(2), 16, Article 72. https://doi.org/10.3390/atmos10020072 Chen, Q., Jia, R., Li, L. N., & Qu, D. (2020). Effects of high concentrations of sulfate on dissolved organic matter in paddy soils revealed by excitation-emission matrix analyzing [Article]. Chemosphere, 249, 10, Article 126207. https://doi.org/10.1016/j.chemosphere.2020.126207 Chen, X., Wei, H., & Zhang, J. (2021). Nitrogen and Sulfur Additions Improved the Diversity of nirK- and nirS-Type Denitrifying Bacterial Communities of Farmland Soil. Biology, 10(11), 1191. https://www.mdpi.com/2079-7737/10/11/1191 Chen, Z., Hou, H. J., Zheng, Y., Qin, H. L., Zhu, Y. J., Wu, J. S., & Wei, W. X. (2012). Influence of fertilisation regimes on a nosZ-containing denitrifying community in a rice paddy soil [Article; Proceedings Paper]. Journal of the Science of Food and Agriculture, 92(5), 1064-1072. https://doi.org/10.1002/jsfa.4533 Chen, Z. M., Ma, J. C., Liu, Y. X., Zhao, J., Ma, J. W., Yu, Q. G., Zou, P., Lin, H., & Wang, Q. (2023). Differential responses of soil nirS- and nirK-type denitrifying microbial communities to long-term application of biogas slurry in a paddy soil [Article]. Applied Soil Ecology, 182, 10, Article 104711. https://doi.org/10.1016/j.apsoil.2022.104711 Chowdhury, T. R., & Dick, R. P. (2013). Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands [Review]. Applied Soil Ecology, 65, 8-22. https://doi.org/10.1016/j.apsoil.2012.12.014 Clark, D. P., Pazdernik, N. J., & McGehee, M. R. (2019). Chapter 6 - Polymerase Chain Reaction. In D. P. Clark, N. J. Pazdernik, & M. R. McGehee (Eds.), Molecular Biology (Third Edition) (pp. 168-198). Academic Cell. https://doi.org/https://doi.org/10.1016/B978-0-12-813288-3.00006-9 Cui, P. Y., Fan, F. L., Yin, C., Song, A. L., Huang, P. R., Tang, Y. J., Zhu, P., Peng, C., Li, T. Q., Wakelin, S. A., & Liang, Y. C. (2016). Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes [Article]. Soil Biology & Biochemistry, 93, 131-141. https://doi.org/10.1016/j.soilbio.2015.11.005 Cui, Y. F., Meng, J., Wang, Q. X., Zhang, W. M., Cheng, X. Y., & Chen, W. F. (2017). Effects of straw and biochar addition on soil nitrogen, carbon, and super rice yield in cold waterlogged paddy soils of North China [Article]. Journal of Integrative Agriculture, 16(5), 1064-1074. https://doi.org/10.1016/s2095-3119(16)61578-2 Dalal, R. C., & Allen, D. E. (2008). Greenhouse gas fluxes from natural ecosystems [Review]. Australian Journal of Botany, 56(5), 369-407. https://doi.org/10.1071/bt07128 Denecke, M., & Liebig, T. (2003). Effect of carbon dioxide on nitrification rates [Article]. Bioprocess and Biosystems Engineering, 25(4), 249-253. https://doi.org/10.1007/s00449-002-0303-z Derenne, S., & Quénéa, K. (2015). Analytical pyrolysis as a tool to probe soil organic matter [Article]. Journal of Analytical and Applied Pyrolysis, 111, 108-120. https://doi.org/10.1016/j.jaap.2014.12.001 Deweerd, K. A., Mandelco, L., Tanner, R. S., Woese, C. R., & Suflita, J. M. (1990). DESULFOMONILE-TIEDJEI GEN-NOV AND SP-NOV, A NOVEL ANAEROBIC, DEHALOGENATING, SULFATE-REDUCING BACTERIUM [Article]. Archives of Microbiology, 154(1), 23-30. <Go to ISI>://WOS:A1990DL36100005 Dobbie, K. E., & Smith, K. A. (2001). The effects of temperature, water-filled pore space and land use on N<sub>2</sub>O emissions from an imperfectly drained gleysol [Article]. European Journal of Soil Science, 52(4), 667-673. https://doi.org/10.1046/j.1365-2389.2001.00395.x Dobbie, K. E., & Smith, K. A. (2003). Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water-filled pore space and other controlling variables [Article]. Global Change Biology, 9(2), 204-218. https://doi.org/10.1046/j.1365-2486.2003.00563.x Domeignoz-Horta, L. A., Spor, A., Bru, D., Breuil, M. C., Bizouard, F., Léonard, J., & Philippot, L. (2015). The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system [Article]. Frontiers in Microbiology, 6, 10, Article 971. https://doi.org/10.3389/fmicb.2015.00971 Dong, Q. G., Yang, Y. C., Yu, K., & Feng, H. (2018). Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China [Article]. Agricultural Water Management, 201, 133-143. https://doi.org/10.1016/j.agwat.2018.01.021 Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C., & Langille, M. G. I. (2020). PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38(6), 685-688. https://doi.org/10.1038/s41587-020-0548-6 Duan, R., Long, X. E., Tang, Y. F., Wen, J., Su, S. M., Bai, L. Y., Liu, R. L., & Zeng, X. B. (2018). Effects of different fertilizer application methods on the community of nitrifiers and denitrifiers in a paddy soil [Article]. Journal of Soils and Sediments, 18(1), 24-38. https://doi.org/10.1007/s11368-017-1738-9 Emerson, D., Field, E. K., Chertkov, O., Davenport, K. W., Goodwin, L., Munk, C., Nolan, M., & Woyke, T. (2013). Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics [Article]. Frontiers in Microbiology, 4, 17, Article 254. https://doi.org/10.3389/fmicb.2013.00254 Ettwig, K. F., Butler, M. K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M. M. M., Schreiber, F., Dutilh, B. E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H., van Alen, T., Luesken, F., Wu, M. L., van de Pas-Schoonen, K. T., den Camp, H., Janssen-Megens, E. M., Francoijs, K. J., . . . Strous, M. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria [Article]. Nature, 464(7288), 543-+. https://doi.org/10.1038/nature08883 Evenson, R. E., & Gollin, D. (2003). Assessing the impact of the Green Revolution, 1960 to 2000 [Review]. Science, 300(5620), 758-762. https://doi.org/10.1126/science.1078710 Fangueiro, D., Becerra, D., Albarrán, A., Peña, D., Sanchez-Llerena, J., Rato-Nunes, J. M., & López-Piñeiro, A. (2017). Effect of tillage and water management on GHG emissions from Mediterranean rice growing ecosystems [Article]. Atmospheric Environment, 150, 303-312. https://doi.org/10.1016/j.atmosenv.2016.11.020 Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., Sheppard, L. J., Jenkins, A., Grizzetti, B., Galloway, J. N., Vitousek, P., Leach, A., Bouwman, A. F., Butterbach-Bahl, K., Dentener, F., Stevenson, D., Amann, M., & Voss, M. (2013). The global nitrogen cycle in the twenty-first century [Review]. Philosophical Transactions of the Royal Society B-Biological Sciences, 368(1621), 13, Article 20130164. https://doi.org/10.1098/rstb.2013.0164 Francis, C. A., Beman, J. M., & Kuypers, M. M. M. (2007). New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation [Review]. Isme Journal, 1(1), 19-27. https://doi.org/10.1038/ismej.2007.8 Galbally, I. E., Meyer, M. C. P., Wang, Y. P., Smith, C. J., & Weeks, I. A. (2010). Nitrous oxide emissions from a legume pasture and the influences of liming and urine addition [Article]. Agriculture Ecosystems & Environment, 136(3-4), 262-272. https://doi.org/10.1016/j.agee.2009.10.013 Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., & Vörösmarty, C. J. (2004). Nitrogen cycles:: past, present, and future [Review]. Biogeochemistry, 70(2), 153-226. https://doi.org/10.1007/s10533-004-0370-0 Ghani, A., Dexter, M., & Perrott, K. W. (2003). Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation [Article]. Soil Biology & Biochemistry, 35(9), 1231-1243. https://doi.org/10.1016/s0038-0717(03)00186-x Glass, A. D. M. (2003). Nitrogen use efficiency of crop plants: Physiological constraints upon nitrogen absorption [Review]. Critical Reviews in Plant Sciences, 22(5), 453-470. https://doi.org/10.1080/07352680390243512 Griffith, J. (2016). Insights into the soil microbial communities in New Zealand’s indigenous tussock grasslands Gruber, N., & Galloway, J. N. (2008). An Earth-system perspective of the global nitrogen cycle [Article]. Nature, 451(7176), 293-296. https://doi.org/10.1038/nature06592 Guo, Z. B., Liu, H., Wan, S. X., Hua, K. K., Jiang, C. Q., Wang, D. Z., He, C. L., & Guo, X. S. (2017). Enhanced yields and soil quality in a wheat-maize rotation using buried straw mulch [Article]. Journal of the Science of Food and Agriculture, 97(10), 3333-3341. https://doi.org/10.1002/jsfa.8183 Haber, F., & Le Rossignol, R. (1916). Production of ammonia. In: Google Patents. Hallin, S., Philippot, L., Löffler, F. E., Sanford, R. A., & Jones, C. M. (2018). Genomics and Ecology of Novel N2O-Reducing Microorganisms [Review]. Trends in Microbiology, 26(1), 43-55. https://doi.org/10.1016/j.tim.2017.07.003 Han, Y. L., Ma, W., Zhou, B. Y., Yang, X. L., Salah, A., Li, C. F., Cao, C. G., Zhan, M., & Zhao, M. (2020). Effects of Straw-Return Method for the Maize-Rice Rotation System on Soil Properties and Crop Yields [Article]. Agronomy-Basel, 10(4), 17, Article 461. https://doi.org/10.3390/agronomy10040461 Harter, J., Krause, H. M., Schuettler, S., Ruser, R., Fromme, M., Scholten, T., Kappler, A., & Behrens, S. (2014). Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community [Article]. Isme Journal, 8(3), 660-674. https://doi.org/10.1038/ismej.2013.160 Heil, J., Liu, S. R., Vereecken, H., & Brüggemann, N. (2015). Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties [Article]. Soil Biology & Biochemistry, 84, 107-115. https://doi.org/10.1016/j.soilbio.2015.02.022 Hochstein, L. I., Betlach, M., & Kritikos, G. (1984). THE EFFECT OF OXYGEN ON DENITRIFICATION DURING STEADY-STATE GROWTH OF PARACOCCUS-HALODENITRIFICANS [Article]. Archives of Microbiology, 137(1), 74-78. https://doi.org/10.1007/bf00425811 Holtan-Hartwig, L., Dörsch, P., & Bakken, L. R. (2002). Low temperature control of soil denitrifying communities:: kinetics of N<sub>2</sub>O production and reduction [Article]. Soil Biology & Biochemistry, 34(11), 1797-1806, Article Pii s0038-0717(02)00169-4. https://doi.org/10.1016/s0038-0717(02)00169-4 Hu, N. J., Wang, B. J., Gu, Z. H., Tao, B. R., Zhang, Z. W., Hu, S. J., Zhu, L. Q., & Meng, Y. L. (2016). Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice-wheat rotation system [Article]. Agriculture Ecosystems & Environment, 223, 115-122. https://doi.org/10.1016/j.agee.2016.02.027 Hu, Y., Wu, G., Li, R., Xiao, L., & Zhan, X. (2020). Iron sulphides mediated autotrophic denitrification: An emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment. Water Research, 179, 115914. https://doi.org/https://doi.org/10.1016/j.watres.2020.115914 IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Isermann, K. (1994). AGRICULTURES SHARE IN THE EMISSION OF TRACE GASES AFFECTING THE CLIMATE AND SOME CAUSE-ORIENTED PROPOSALS FOR SUFFICIENTLY REDUCING THIS SHARE [Article]. Environmental Pollution, 83(1-2), 95-111. https://doi.org/10.1016/0269-7491(94)90027-2 Ishii, S., Ikeda, S., Minamisawa, K., & Senoo, K. (2011). Nitrogen Cycling in Rice Paddy Environments: Past Achievements and Future Challenges [Review]. Microbes and Environments, 26(4), 282-292. https://doi.org/10.1264/jsme2.ME11293 Janzen, H. H., Beauchemin, K. A., Bruinsma, Y., Campbell, C. A., Desjardins, R. L., Ellert, B. H., & Smith, E. G. (2003). The fate of nitrogen in agroecosystems: An illustration using Canadian estimates [Review]. Nutrient Cycling in Agroecosystems, 67(1), 85-102. https://doi.org/10.1023/a:1025195826663 Jiang, L. P., Liu, S. G., Wang, S. Y., Sun, L. B., & Zhu, G. B. (2024). Effect of tillage state of paddy soils with heavy metal pollution on the<i> nosZ</i> gene of N2O reductase [Article]. Journal of Environmental Sciences, 137, 469-477. https://doi.org/10.1016/j.jes.2023.02.024 Jiang, X. L., Yao, L., Guo, L. D., Liu, G. H., & Liu, W. Z. (2017). Multi-scale factors affecting composition, diversity, and abundance of sediment denitrifying microorganisms in Yangtze lakes [Article]. Applied Microbiology and Biotechnology, 101(21), 8015-8027. https://doi.org/10.1007/s00253-017-8537-5 Jin, W. J., Cao, W. C., Liang, F., Wen, Y. K., Wang, F. W., Dong, Z. R., & Song, H. (2020). Water management impact on denitrifier community and denitrification in a soil at different of rice [Article]. Agricultural Water Management, 241, 12, Article 106354. https://doi.org/10.1016/j.agwat.2020.106354 Katsuyama, C., Kondo, N., Suwa, Y., Yamagishi, T., Itoh, M., Ohte, N., Kimura, H., Nagaosa, K., & Kato, K. (2008). Denitrification Activity and Relevant Bacteria Revealed by Nitrite Reductase Gene Fragments in Soil of Temperate Mixed Forest [Article]. Microbes and Environments, 23(4), 337-345. https://doi.org/10.1264/jsme2.ME08541 KEGG. (nd). KEGG Organisms in Taxonomic Ranks. Retrieved nd from https://www.genome.jp/kegg-bin/show_brite?htext=br08611&pruning=join_brite&brel=off&hier=20&highlight=join_brite&mapper=taxmap%2ds%2dp%20M00529 Kim, H., Bae, H. S., Reddy, K. R., & Ogram, A. (2016). Distributions, abundances and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary [Article]. Water Research, 106, 51-61. https://doi.org/10.1016/j.watres.2016.09.048 Kirk-Davidoff, D. (2018). Chapter 3.4 - The Greenhouse Effect, Aerosols, and Climate Change. In B. Török & T. Dransfield (Eds.), Green Chemistry (pp. 211-234). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809270-5.00009-1 Kloos, K., Mergel, A., Rösch, C., & Bothe, H. (2001). Denitrification within the genus Azospirillum and other associative bacteria [Article; Proceedings Paper]. Australian Journal of Plant Physiology, 28(9), 991-998. <Go to ISI>://WOS:000171163000018 Knowles, R. (1982). DENITRIFICATION [Review]. Microbiological Reviews, 46(1), 43-70. https://doi.org/10.1128/mmbr.46.1.43-70.1982 Kodama, Y., & Watanabe, K. (2004). Sulfuricurvum kujiense gen. nov., sp nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity [Article]. International Journal of Systematic and Evolutionary Microbiology, 54, 2297-2300. https://doi.org/10.1099/ijs.0.63243-0 Koponen, H. T., Duran, C. E., Maljanen, M., Hytönen, J., & Martikainen, P. J. (2006). Temperature responses of NO and N2O emissions from boreal organic soil [Article]. Soil Biology & Biochemistry, 38(7), 1779-1787. https://doi.org/10.1016/j.soilbio.2005.12.004 Kroeze, C. (1994). ANTHROPOGENIC EMISSIONS OF NITROUS-OXIDE (N2O) FROM EUROPE [Article]. Science of The Total Environment, 152(3), 189-205. https://doi.org/10.1016/0048-9697(94)90310-7 Kroeze, C., Mosier, A., & Bouwman, L. (1999). Closing the global N2O budget:: A retrospective analysis 1500-1994 [Article]. Global Biogeochemical Cycles, 13(1), 1-8. https://doi.org/10.1029/1998gb900020 Kumar, A., Nayak, A. K., Mohanty, S., & Das, B. S. (2016). Greenhouse gas emission from direct seeded paddy fields under different soil water potentials in Eastern India [Article]. Agriculture Ecosystems & Environment, 228, 111-123. https://doi.org/10.1016/j.agee.2016.05.007 Kuypers, M. M. M., Marchant, H. K., & Kartal, B. (2018). The microbial nitrogen-cycling network [Review]. Nature Reviews Microbiology, 16(5), 263-276. https://doi.org/10.1038/nrmicro.2018.9 Kyongmi, C., Kim, Y., Chang, N. I., & Cho, J. (2010). Evaluating wastewater stabilizing constructed wetland, through diversity and abundance of the nitrite reductase gene <i>nirS</i>, with regard to nitrogen control [Article]. Desalination, 264(3), 201-205. https://doi.org/10.1016/j.desal.2010.05.010 Levy-Booth, D. J., Prescott, C. E., & Grayston, S. J. (2014). Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems [Review]. Soil Biology & Biochemistry, 75, 11-25. https://doi.org/10.1016/j.soilbio.2014.03.021 Li, J. Z., Dong, W. X., Oenema, O., Chen, T., Hu, C. S., Yuan, H. J., & Zhao, L. Y. (2019). Irrigation reduces the negative effect of global warming on winter wheat yield and greenhouse gas intensity [Article]. Science of The Total Environment, 646, 290-299. https://doi.org/10.1016/j.scitotenv.2018.07.296 Li, S. H., Guo, L. J., Cao, C. G., & Li, C. F. (2021). Effects of straw returning levels on carbon footprint and net ecosystem economic benefits from rice-wheat rotation in central China [Article]. Environmental Science and Pollution Research, 28(5), 5742-5754. https://doi.org/10.1007/s11356-020-10914-w Linquist, B. A., Adviento-Borbe, M. A., Pittelkow, C. M., van Kessel, C., & van Groenigen, K. J. (2012). Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis [Review]. Field Crops Research, 135, 10-21. https://doi.org/10.1016/j.fcr.2012.06.007 Linquist, B. A., Liu, L. J., van Kessel, C., & van Groenigen, K. J. (2013). Enhanced efficiency nitrogen fertilizers for rice systems: Meta-analysis of yield and nitrogen uptake [Review]. Field Crops Research, 154, 246-254. https://doi.org/10.1016/j.fcr.2013.08.014 Liu, B. B., Morkved, P. T., Frostegård, Å., & Bakken, L. R. (2010). Denitrificationgenepools, transcriptionand kineticsof NO, N2Oand N2 productionas a¡ectedbysoil pH [Article]. Fems Microbiology Ecology, 72(3), 407-417. https://doi.org/10.1111/j.1574-6941.2010.00856.x Liu, D. T., Song, C. C., Xin, Z. H., Fang, C., Liu, Z. H., & Xu, Y. P. (2023). Agricultural management strategies for balancing yield increase, carbon sequestration, and emission reduction after straw return for three major grain crops in China: A meta-analysis [Article]. Journal of Environmental Management, 340, 11, Article 117965. https://doi.org/10.1016/j.jenvman.2023.117965 Liu, J., Jiang, B. S., Shen, J. L., Zhu, X., Yi, W. Y., Li, Y., & Wu, J. S. (2021). Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems [Article]. Agriculture Ecosystems & Environment, 311, 10, Article 107286. https://doi.org/10.1016/j.agee.2020.107286 Liu, Y., Wang, C. H., He, N. P., Wen, X. F., Gao, Y., Li, S. G., Niu, S. L., Butterbach-Bahl, K., Luo, Y. Q., & Yu, G. R. (2017). A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms [Article]. Global Change Biology, 23(1), 455-464. https://doi.org/10.1111/gcb.13372 Lu, C. Q., Yu, Z., Zhang, J. E., Cao, P. Y., Tian, H. Q., & Nevison, C. (2022). Century-long changes and drivers of soil nitrous oxide (N2O) emissions across the contiguous United States [Article]. Global Change Biology, 28(7), 2505-2524. https://doi.org/10.1111/gcb.16061 Lyu, H., Zhang, H., Chu, M. W., Zhang, C. F., Tang, J. C., Chang, S. X., Masek, O., & Ok, Y. S. (2022). Biochar affects greenhouse gas emissions in various environments: A critical review [Review]. Land Degradation & Development, 33(17), 3327-3342. https://doi.org/10.1002/ldr.4405 Mahne, I., & Tiedje, J. M. (1995). CRITERIA AND METHODOLOGY FOR IDENTIFYING RESPIRATORY DENITRIFIERS [Article]. Applied and Environmental Microbiology, 61(3), 1110-1115. https://doi.org/10.1128/aem.61.3.1110-1115.1995 Maia, L. B., & Moura, J. J. G. (2014). How Biology Handles Nitrite [Review]. Chemical Reviews, 114(10), 5273-5357. https://doi.org/10.1021/cr400518y Moreau, D., Bardgett, R. D., Finlay, R. D., Jones, D. L., & Philippot, L. (2019). A plant perspective on nitrogen cycling in the rhizosphere [Review]. Functional Ecology, 33(4), 540-552. https://doi.org/10.1111/1365-2435.13303 Moreno-Vivián, C., Cabello, P., Martínez-Luque, M., Blasco, R., & Castillo, F. (1999). Prokaryotic nitrate reduction:: Molecular properties and functional distinction among bacterial nitrate reductases [Review]. Journal of Bacteriology, 181(21), 6573-6584. <Go to ISI>://WOS:000083442100001 Mostovaya, A., Wind-Hansen, M., Rousteau, P., Bristow, L. A., & Thamdrup, B. (2022). Sulfate- and iron-dependent anaerobic methane oxidation occurring side-by-side in freshwater lake sediment [Article]. Limnology and Oceanography, 67(1), 231-246. https://doi.org/10.1002/lno.11988 Muthu, S. S. (2020). 3 - Textile processing and greenhouse gas emissions: Methods for calculating the product carbon footprint of textile products. In S. S. Muthu (Ed.), Assessing the Environmental Impact of Textiles and the Clothing Supply Chain (Second Edition) (pp. 57-75). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-819783-7.00003-X Ni, S. Q., & Zhang, J. (2013). Anaerobic Ammonium Oxidation: From Laboratory to Full-Scale Application. Biomed Research International, 2013, Article 469360. https://doi.org/10.1155/2013/469360 Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. (2016). Greenhouse gas emissions from soils A review [Review]. Chemie Der Erde-Geochemistry, 76(3), 327-352. https://doi.org/10.1016/j.chemer.2016.04.002 Oksanen, J., & Simpson, G. L. (2024). vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan Pandey, C. B., Kumar, U., Kaviraj, M., Minick, K. J., Mishra, A. K., & Singh, J. S. (2020). DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial [Review]. Science of The Total Environment, 738, 25, Article 139710. https://doi.org/10.1016/j.scitotenv.2020.139710 Paudel, S. R., Choi, O., Khanal, S. K., Chandran, K., Kim, S., & Lee, J. W. (2015). Effects of temperature on nitrous oxide (N2O) emission from intensive aquaculture system [Article]. Science of The Total Environment, 518, 16-23. https://doi.org/10.1016/j.scitotenv.2015.02.076 Peng, Y. Z., & Zhu, G. B. (2006). Biological nitrogen removal with nitrification and denitrification via nitrite pathway [Review]. Applied Microbiology and Biotechnology, 73(1), 15-26. https://doi.org/10.1007/s00253-006-0534-z Pereira, J., Figueiredo, N., Goufo, P., Carneiro, J., Morais, R., Carranca, C., Coutinho, J., & Trindade, H. (2013). Effects of elevated temperature and atmospheric carbon dioxide concentration on the emissions of methane and nitrous oxide from Portuguese flooded rice fields [Article]. Atmospheric Environment, 80, 464-471. https://doi.org/10.1016/j.atmosenv.2013.08.045 Philippot, L., Hallin, S., & Schloter, M. (2007). Ecology of denitrifying prokaryotes in agricultural soil. In D. L. Sparks (Ed.), Advances in Agronomy, Vol 96 (Vol. 96, pp. 249-305). Elsevier Academic Press Inc. https://doi.org/10.1016/s0065-2113(07)96003-4 Qi, L., Niu, H. D., Zhou, P., Jia, R. J., & Gao, M. (2018). Effects of Biochar on the Net Greenhouse Gas Emissions under Continuous Flooding and Water-Saving Irrigation Conditions in Paddy Soils [Article]. Sustainability, 10(5), 17, Article 1403. https://doi.org/10.3390/su10051403 Qiao, Y. F., Miao, S. J., Zhong, X., Zhao, H. F., & Pan, S. Q. (2020). The greatest potential benefit of biochar return on bacterial community structure among three maize-straw products after eight-year field experiment in Mollisols [Article]. Applied Soil Ecology, 147, 6, Article 103432. https://doi.org/10.1016/j.apsoil.2019.103432 Qu, Z., Wang, J. G., Almoy, T., & Bakken, L. R. (2014). Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils [Article]. Global Change Biology, 20(5), 1685-1698. https://doi.org/10.1111/gcb.12461 R Core Team. (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ Ruangcharus, C., Kim, S. U., Yoo, G. Y., Choi, E. J., Kumar, S., Kang, N., & Hong, C. O. (2021). Nitrous oxide emission and sweet potato yield in upland soil: Effects of different type and application rate of composted animal manures [Article]. Environmental Pollution, 279, 11, Article 116892. https://doi.org/10.1016/j.envpol.2021.116892 Saleh-Lakha, S., Shannon, K. E., Henderson, S. L., Goyer, C., Trevors, J. T., Zebarth, B. J., & Burton, D. L. (2009). Effect of pH and Temperature on Denitrification Gene Expression and Activity in <i>Pseudomonas mandelii</i> [Article]. Applied and Environmental Microbiology, 75(12), 3903-3911. https://doi.org/10.1128/aem.00080-09 Schlesinger, W. H. (1986). Changes in Soil Carbon Storage and Associated Properties with Disturbance and Recovery. In J. R. Trabalka & D. E. Reichle (Eds.), The Changing Carbon Cycle: A Global Analysis (pp. 194-220). Springer New York. https://doi.org/10.1007/978-1-4757-1915-4_11 Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., & Weber, C. F. (2009). Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities [Article]. Applied and Environmental Microbiology, 75(23), 7537-7541. https://doi.org/10.1128/aem.01541-09 Schulze, J. (2004). How are nitrogen fixation rates regulated in legumes? [Review]. Journal of Plant Nutrition and Soil Science, 167(2), 125-137. https://doi.org/10.1002/jpln.200320358 Shaaban, M., Peng, Q. A., Hu, R. G., Wu, Y. P., Lin, S., & Zhao, J. S. (2015). Dolomite application to acidic soils: a promising option for mitigating N2O emissions [Article]. Environmental Science and Pollution Research, 22(24), 19961-19970. https://doi.org/10.1007/s11356-015-5238-4 Shaaban, M., Wu, Y. P., Peng, Q. A., Lin, S., Mo, Y. L., Wu, L., Hu, R. G., & Zhou, W. (2016). Effects of dicyandiamide and dolomite application on N2O emission from an acidic soil [Article]. Environmental Science and Pollution Research, 23(7), 6334-6342. https://doi.org/10.1007/s11356-015-5863-y Shaaban, M., Wu, Y. P., Wu, L., Hu, R. G., Younas, A., Nunez-Delgado, A., Xu, P., Sun, Z., Lin, S., Xu, X. Y., & Jiang, Y. B. (2020). The Effects of pH Change through Liming on Soil N2O Emissions [Article]. Processes, 8(6), 13, Article 702. https://doi.org/10.3390/pr8060702 Shan, J., & Yan, X. Y. (2013). Effects of crop residue returning on nitrous oxide emissions in agricultural soils [Article]. Atmospheric Environment, 71, 170-175. https://doi.org/10.1016/j.atmosenv.2013.02.009 Shcherbak, I., & Robertson, G. P. (2019). Nitrous Oxide (N2O) Emissions from Subsurface Soils of Agricultural Ecosystems. Ecosystems, 22(7), 1650-1663. https://doi.org/10.1007/s10021-019-00363-z Shi, R. J., Xu, S. M., Qi, Z. H., Huang, H. H., & Liang, Q. Y. (2019). Seasonal patterns and environmental drivers of nirS- and nirK-encoding denitrifiers in sediments of Daya Bay, China [Article]. Oceanologia, 61(3), 308-320. https://doi.org/10.1016/j.oceano.2019.01.002 Shoun, H., Kim, D. H., Uchiyama, H., & Sugiyama, J. (1992). DENITRIFICATION BY FUNGI [Article]. Fems Microbiology Letters, 94(3), 277-281. https://doi.org/10.1016/0378-1097(92)90643-3 Simek, M., & Cooper, J. E. (2002). The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years [Article]. European Journal of Soil Science, 53(3), 345-354. https://doi.org/10.1046/j.1365-2389.2002.00461.x Smith, K. A., Thomson, P. E., Clayton, H., McTaggart, I. P., & Conen, F. (1998). Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils [Article]. Atmospheric Environment, 32(19), 3301-3309. https://doi.org/10.1016/s1352-2310(97)00492-5 Solomon, S. (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge university press. Soloneski, S., & Larramendy, M. (2018). Emerging Pollutants - Some Strategies for the Quality Preservation of Our Environment. Stein, L. Y., & Klotz, M. G. (2016). The nitrogen cycle [Editorial Material]. Current Biology, 26(3), R94-R98. https://doi.org/10.1016/j.cub.2015.12.021 Strous, M., Heijnen, J. J., Kuenen, J. G., & Jetten, M. S. M. (1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [Article]. Applied Microbiology and Biotechnology, 50(5), 589-596. https://doi.org/10.1007/s002530051340 Subbarao, G. V., Ito, O., Sahrawat, K. L., Berry, W. L., Nakahara, K., Ishikawa, T., Watanabe, T., Suenaga, K., Rondon, M., & Rao, I. M. (2006). Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities [Review]. Critical Reviews in Plant Sciences, 25(4), 303-335. https://doi.org/10.1080/07352680600794232 Thamdrup, B. (2012). New Pathways and Processes in the Global Nitrogen Cycle. In D. J. Futuyma (Ed.), Annual Review of Ecology, Evolution, and Systematics, Vol 43 (Vol. 43, pp. 407-428). Annual Reviews. https://doi.org/10.1146/annurev-ecolsys-102710-145048 Tiedje, J. (1988). Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In (Vol. 717, pp. 179-244). Tirol-Padre, A., Minamikawa, K., Tokida, T., Wassmann, R., & Yagi, K. (2018). Site-specific feasibility of alternate wetting and drying as a greenhouse gas mitigation option in irrigated rice fields in Southeast Asia: a synthesis [Article]. Soil Science and Plant Nutrition, 64(1), 2-13. https://doi.org/10.1080/00380768.2017.1409602 Toma, Y., & Hatano, R. (2007). Effect of crop residue C:N ratio on N2O emissions from Gray Lowland soil in Mikasa, Hokkaido, Japan [Article]. Soil Science and Plant Nutrition, 53(2), 198-205. https://doi.org/10.1111/j.1747-0765.2007.00125.x Trost, B., Prochnow, A., Drastig, K., Meyer-Aurich, A., Ellmer, F., & Baumecker, M. (2013). Irrigation, soil organic carbon and N2O emissions. A review [Review]. Agronomy for Sustainable Development, 33(4), 733-749. https://doi.org/10.1007/s13593-013-0134-0 Uchida, Y., Wang, Y., Akiyama, H., Nakajima, Y., & Hayatsu, M. (2014). Expression of denitrification genes in response to a waterlogging event in a Fluvisol and its relationship with large nitrous oxide pulses [Article]. Fems Microbiology Ecology, 88(2), 407-423. https://doi.org/10.1111/1574-6941.12309 Verbaendert, I., De Vos, P., Boon, N., & Heylen, K. (2011). Denitrification in Gram-positive bacteria: an underexplored trait [Article]. Biochemical Society Transactions, 39, 254-258. https://doi.org/10.1042/bst0390254 Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., & Tilman, D. (1997). Human alteration of the global nitrogen cycle: Sources and consequences [Review]. Ecological Applications, 7(3), 737-750. https://doi.org/10.2307/2269431 Walling, E., & Vaneeckhaute, C. (2020). Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability [Review]. Journal of Environmental Management, 276, 16, Article 111211. https://doi.org/10.1016/j.jenvman.2020.111211 Wang, H., Zhao, R., Zhao, D., Liu, S. J., Fu, J. F., Zhang, Y. X., Dai, N., Song, D., & Ding, H. (2022). Microbial-Mediated Emissions of Greenhouse Gas from Farmland Soils: A Review [Review]. Processes, 10(11), 14, Article 2361. https://doi.org/10.3390/pr10112361 Wang, H. C., Liu, Z. D., Ma, L., Li, D. D., Liu, K. L., Huang, Q. H., Zhao, B. Z., & Zhang, J. B. (2020). Denitrification Potential of Paddy and Upland Soils Derived From the Same Parent Material Respond Differently to Long-Term Fertilization [Article]. Frontiers in Environmental Science, 8, 13, Article 105. https://doi.org/10.3389/fenvs.2020.00105 Wang, Q., Qu, Y., Robinson, K. L., Bogena, H., Graf, A., Vereecken, H., Tietema, A., & Bol, R. (2022). Deforestation alters dissolved organic carbon and sulfate dynamics in a mountainous headwater catchment-A wavelet analysis [Article]. Frontiers in Forests and Global Change, 5, 14, Article 1044447. https://doi.org/10.3389/ffgc.2022.1044447 Wang, X. Y., Li, Y. J., Ciampitti, I. A., He, P., Xu, X. P., Qiu, S. J., & Zhao, S. C. (2022). Response of soil denitrification potential and community composition of denitrifying bacterial to different rates of straw return in north-central China [Article]. Applied Soil Ecology, 170, 10, Article 104312. https://doi.org/10.1016/j.apsoil.2021.104312 Wanyama, I., Pelster, D. E., Arias-Navarro, C., Butterbach-Bahl, K., Verchot, L. V., & Rufino, M. C. (2018). Management intensity controls soil N2O fluxes in an Afromontane ecosystem [Article]. Science of The Total Environment, 624, 769-780. https://doi.org/10.1016/j.scitotenv.2017.12.081 Wei, T., & Simko, V. (2021). R package 'corrplot': Visualization of a Correlation Matrix. https://github.com/taiyun/corrplot Wei, W., Isobe, K., Nishizawa, T., Zhu, L., Shiratori, Y., Ohte, N., Koba, K., Otsuka, S., & Senoo, K. (2015). Higher diversity and abundance of denitrifying microorganisms in environments than considered previously [Article]. Isme Journal, 9(9), 1954-1965. https://doi.org/10.1038/ismej.2015.9 Wrage, N., Velthof, G. L., van Beusichem, M. L., & Oenema, O. (2001). Role of nitrifier denitrification in the production of nitrous oxide [Article]. Soil Biology & Biochemistry, 33(12-13), 1723-1732. https://doi.org/10.1016/s0038-0717(01)00096-7 Wu, H. T., Hao, X. H., Xu, P., Hu, J. L., Jiang, M. D., Shaaban, M., Zhao, J. S., Wu, Y. P., & Hu, R. G. (2020). CO2 and N2O emissions in response to dolomite application are moisture dependent in an acidic paddy soil [Article]. Journal of Soils and Sediments, 20(8), 3136-3147. https://doi.org/10.1007/s11368-020-02652-w Xing, G. X. (1998). N2O emission from cropland in China [Article]. Nutrient Cycling in Agroecosystems, 52(2-3), 249-254. https://doi.org/10.1023/a:1009776008840 Xue, S., Chai, F., Li, L., & Wang, W. (2022). Conversion and speculated pathway of methane anaerobic oxidation co-driven by nitrite and sulfate. Environmental Research, 208, 112662. https://doi.org/https://doi.org/10.1016/j.envres.2021.112662 Yang, S. S., Liu, C. M., Lai, C. M., & Liu, Y. L. (2003). Estimation of methane and nitrous oxide emission from paddy fields and uplands during 1990-2000 in Taiwan [Article]. Chemosphere, 52(8), 1295-1305. https://doi.org/10.1016/s0045-6535(03)00029-8 Yang, Y. J., Liu, H. X., & Lv, J. L. (2022). Response of N2O emission and denitrification genes to different inorganic and organic amendments [Article]. Scientific Reports, 12(1), 8, Article 3940. https://doi.org/10.1038/s41598-022-07753-9 Yoshida, M., Ishii, S., Otsuka, S., & Senoo, K. (2010). nirK-Harboring Denitrifiers Are More Responsive to Denitrification-Inducing Conditions in Rice Paddy Soil Than nirS-Harboring Bacteria [Article]. Microbes and Environments, 25(1), 45-48. https://doi.org/10.1264/jsme2.ME09160 Zhang, L., Jiang, M. H., Ding, K. R., & Zhou, S. G. (2019). Iron oxides affect denitrifying bacterial communities with the <i>nir</i>S and <i>nir</i>K genes and potential N<sub>2</sub>O emission rates from paddy soil [Article]. European Journal of Soil Biology, 93, 8, Article 103093. https://doi.org/10.1016/j.ejsobi.2019.103093 Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences [Article]. Journal of Computational Biology, 7(1-2), 203-214. https://doi.org/10.1089/10665270050081478 Zhao, S. Y., Zhou, J. M., Yuan, D. D., Wang, W. D., Zhou, L. G., Pi, Y. X., & Zhu, G. B. (2020). NirS-type N2O-producers and nosZ II-type N2O-reducers determine the N2O emission potential in farmland rhizosphere soils [Article]. Journal of Soils and Sediments, 20(1), 461-471. https://doi.org/10.1007/s11368-019-02395-3 Zhao, W. R., Li, J. Y., Deng, K. Y., Shi, R. Y., Jiang, J., Hong, Z. N., Qian, W., He, X., & Xu, R. K. (2020). Effects of crop straw biochars on aluminum species in soil solution as related with the growth and yield of canola (<i>Brassica napus</i> L.) in an acidic Ultisol under field condition [Article]. Environmental Science and Pollution Research, 27(24), 30178-30189. https://doi.org/10.1007/s11356-020-09330-x Zimmerman, C. F., C. W. Keefe, AND J. Bashe. (1997). Method 440.0 Determination of Carbon and Nitrogen in Sediments and Particulatesof Estuarine/Coastal Waters Using Elemental Analysis. Zumft, W. G., & Kroneck, P. M. H. (2007). Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. In R. K. Poole (Ed.), Advances in Microbial Physiology, Vol 52 (Vol. 52, pp. 107-+). Academic Press Ltd-Elsevier Science Ltd. https://doi.org/10.1016/s0065-2911(06)52003-x 行政院. (2023). 農業經營現況. Retrieved March 8 from https://www.ey.gov.tw/state/CD050F4E4007084B/0ededcaf-8d80-428e-96b7-7c24feb4ea0d 行政院環境保護署. (2012). 土壤及底泥水分含量測定方法-重量法(NIEA S280.62C). Retrieved July 31 from https://www.moenv.gov.tw/DisplayFile.aspx?FileID=1909B524D6FD888B 行政院環境保護署. (2008). 土壤酸鹼值(pH 值)測定方法-電極法(NIEA S410.62C). Retrieved January 15 from https://www.moenv.gov.tw/DisplayFile.aspx?FileID=7AF523909FAEFF06 國家發展委員會. (2022). 臺灣2050淨零排放路徑及策略總說明. Retrieved March 30 from https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76 張雅涵. (2023). 以穩定同位素探針探討水田與旱田之土壤硝化作用及其活性微生物族群結構差異 (Publication Number 2023年) 國立臺灣大學]. AiritiLibrary. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95131 | - |
| dc.description.abstract | 氣候變遷和全球暖化是當今人類廣泛關注的問題。全球暖化的主要原因是大氣層中溫室氣體(GHG)濃度的增加。氧化亞氮(N2O)是主要的溫室氣體之一,與CO2相比,它們在100年的時間內具有較高的溫室氣體暖化潛勢。在導致溫室氣體排放的原因當中,人為活動產生N2O排放主要與農業活動有關,水稻栽培是來源之一,這是由於化肥的廣泛使用和長期厭氧土壤條件的形成。因此,減少農業活動的N2O排放對於緩解全球暖化至關重要。
為了研究各種理化因子對微生物的影響,進而推測不同條件下N2O排放量的變化,本研究在臺灣新北市新店區進行了一項田間實驗。實驗地點同時進行四種不同的水稻種植方式。第一個為對照組(C),第二塊稻田則採用節水灌溉技術(WS),另一塊稻田採用稻稈還田技術(S),最後則是同時採用兩種技術的稻田(S+WS)。研究主要從四片稻田收集土壤樣本,並且分析其物理和化學特性,包括土壤含水量和pH值等物理特性,以及NH4+和NO3-等化學特性。此外,本研究還會利用16S rRNA基因以及nirS脫氮基因的次世代定序分析土壤微生物群落。 從巨觀規模來說,有進行稻稈還田處理的土壤總溶解性有機碳SbOC較高。而在不同的稻田中,不同的灌溉方法對於微生物群落的影響較大,此外,因為季節變化溫度下降導致的微生物各基因豐度下降也十分明顯。qPCR以及nirS基因定序的結果則顯示慣行灌溉與稻稈還田可以增加nosZ/nir,nosZ/nir的上升則可能會減少稻田的N2O排放量。因此,慣行灌溉與稻稈還田值得進一步研究並推廣以期能夠達到永續環境的目的。 | zh_TW |
| dc.description.abstract | Climate change and global warming are widespread concerns for humanity today. The primary cause of global warming is the increased concentration of greenhouse gases (GHGs) in the atmosphere. Nitrous oxide (N2O) are major greenhouse gases with high global warming potential over a 100-year time horizon compared to CO2 . Anthropogenic N2O emissions are predominantly associated with agricultural activities, with rice cultivation being one of the sources, due to the extensive use of chemical fertilizers and the creation of prolonged anaerobic soil conditions. Therefore, it is crucial to reduce N2O emissions from agricultural activities to mitigate global warming.
To investigate the effects the effects of various physicochemical factors on microorganisms, and to predict the changes of N2O emissions under different plantations, a field experiment was conducted in Xindian District, New Taipei City, Taiwan. Four different rice cultivation practices were carried out simultaneously in the experimental site. One rice field was irrigated using water-saving techniques (WS), another was planted with returned rice straw to the farmland (S), a third received both treatments (S+WS), and the last field served as the control treatment (C). Soil samples were collected from the four rice plantations to analyze their physical and chemical properties, including physical properties such as soil water content and pH, and chemical properties such as NH4+ and NO3- .Additionally, soil microbial communities were analyzed using next-generation sequencing of 16S rRNA genes and nirS genes. At a macro scale, Soils treated with straw return had higher total soluble organic carbon (SbOC). In different rice plantations, different irrigation methods had a greater effect on microbial community, and the seasonal temperature drop led to a noticeable decrease in the abundance of various microbial genes. qPCR and sequencing of the nirS gene showed that customary irrigation and straw returning could increase nosZ/nir, and that an increase in nosZ/nir might reduce N2O emissions from rice fields. Therefore, customary irrigation and straw returning are worthy of further study and promotion to achieve environmental sustainability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-29T16:13:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-29T16:13:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 I
致謝 II 摘要 III 目次 VI 圖次 IX 表次 XI 第1章 緒論 1 1.1研究背景 1 1.2研究目的 3 第2章 文獻回顧 4 2.1氮循環 4 2.2溫室氣體排放 9 2.2.1甲烷排放 9 2.2.2氧化亞氮排放 10 2.3微生物層面的脫氮作用 13 2.3.1脫氮作用的微生物機制 13 2.3.2脫氮微生物 15 2.4影響N2O排放的理化因子 17 2.4.1一般物理化學作用 17 2.4.2氮添加 20 2.4.3土壤有機物 21 2.5分子生物技術 23 2.5.1聚合酶鏈鎖反應(Polymerase Chain Reaction,PCR) 23 2.5.2定量聚合酶鏈鎖反應(Quantitative Polymerase Chain Reaction) 23 第3章 研究方法 26 3.1實驗架構 26 3.2實驗現地配置及土壤採樣 27 3.3土壤理化性質分析 30 3.3.1土壤水分含量 30 3.3.2土壤pH值 30 3.3.3土壤氨態氮(NH4+)、硝酸態氮(NO3-)以及硫酸鹽(SO42-)濃度 31 3.3.4土壤總溶解性有機碳(Soluble Organic Carbon;SbOC)測定 32 3.3.5總有機碳與總氮測定 33 3.4分子生物實驗 35 3.4.1土壤DNA萃取 35 3.4.2定量聚合酶鏈鎖反應(qPCR) 36 3.4.3聚合酶鏈鎖反應(PCR) 36 3.4.4次世代定序 38 3.5生物資訊處理 41 3.6統計分析 43 第4章 結果討論 45 4.1不同時間與配置中稻田土壤理化因子差異 45 4.1.1理化因子 45 4.1.2理化因子Spearman相關性分析 50 4.2土壤微生物群落結構分析 52 4.2.1 Alpha和Beta多樣性分析 52 4.2.2 16S rRNA、nirS、nirK以及nosZ qPCR分析 56 4.3土壤微生物群落豐度以及組成 66 4.3.1 nirS基因系統發育分析 66 4.3.2土壤nirS基因之相對豐度及組成 68 4.3.3脫氮微生物16S rRNA 基因之相對豐度及組成 72 4.3.4 16S rRNA基因與nirS基因之相關性 77 4.4土壤理化因子與微生物群落之相關性 79 4.4.1土壤脫氮微生物nirS基因的冗餘分析(Redundancy Analysis) 79 4.4.2土壤脫氮微生物nirS基因與理化因子之Spearman相關性分析和多變量線性分析 83 4.5.3土壤脫氮微生物16S rRNA基因的Spearman相關性分析 87 第5章 結論與建議 90 5.1結論 90 5.2建議 92 參考資料: 94 附錄: 110 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 稻田 | zh_TW |
| dc.subject | 氧化亞氮 | zh_TW |
| dc.subject | 節水灌溉 | zh_TW |
| dc.subject | 溫室氣體排放 | zh_TW |
| dc.subject | 稻稈還田 | zh_TW |
| dc.subject | 脫氮作用 | zh_TW |
| dc.subject | 脫氮微生物 | zh_TW |
| dc.subject | nitrous oxide | en |
| dc.subject | greenhouse gas emission | en |
| dc.subject | denitrification microbial | en |
| dc.subject | water-saving irrigation | en |
| dc.subject | straw return | en |
| dc.subject | denitrification | en |
| dc.subject | rice paddy | en |
| dc.title | 以功能基因定序探討不同水稻田栽培管理對土壤脫氮微生物群落的影響 | zh_TW |
| dc.title | Using functional gene sequencing to investigate the effects of different rice field cultivation management on soil Denitrification Microbial Community | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林裕彬;劉力瑜;何銘洋 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Pin Lin ;Li-yu Liu;Ming-Yang Ho | en |
| dc.subject.keyword | 稻田,脫氮作用,節水灌溉,稻稈還田,脫氮微生物,溫室氣體排放,氧化亞氮, | zh_TW |
| dc.subject.keyword | rice paddy,denitrification,straw return,water-saving irrigation,denitrification microbial,greenhouse gas emission,nitrous oxide, | en |
| dc.relation.page | 118 | - |
| dc.identifier.doi | 10.6342/NTU202403950 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物環境系統工程學系 | - |
| dc.date.embargo-lift | 2029-08-10 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 5.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
