請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95122完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡坤憲 | zh_TW |
| dc.contributor.advisor | Kun-Hsien Tsai | en |
| dc.contributor.author | 鍾瀚璿 | zh_TW |
| dc.contributor.author | Han-Hsuan Chung | en |
| dc.date.accessioned | 2024-08-29T16:10:41Z | - |
| dc.date.available | 2024-08-30 | - |
| dc.date.copyright | 2024-08-29 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-03 | - |
| dc.identifier.citation | 1. WHO. Dengue: guidelines for diagnosis, treatment, prevention and control: World Health Organization; 2009.
2. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013; 496(7446): 504-7. doi: 10.1038/nature12060. 3. Lin C, Wang CY, Teng HJ. The study of dengue vector distribution in Taiwan from 2009 to 2011. Epidemiology Bulletin. 2014; 30(15): 150. 4. Chen WJ. Dengue outbreaks and the geographic distribution of dengue vectors in Taiwan: A 20-year epidemiological analysis. Biomed J. 2018; 41(5): 283-9. doi: 10.1016/j.bj.2018.06.002. 5. Carrington LB, Armijos MV, Lambrechts L, Barker CM, Scott TW. Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS One. 2013; 8(3): e58824. doi: 10.1371/journal.pone.0058824. 6. Reinhold JM, Lazzari CR, Lahondère C. Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: a review. Insects. 2018; 9(4): 158. doi: 10.3390/insects9040158. 7. Chang LH, Hsu EL, Teng HJ, Ho CM. Differential survival of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) larvae exposed to low temperatures in Taiwan. J Med Entomol. 2007; 44(2): 205-10. doi: 10.1093/jmedent/44.2.205. 8. Chang SF, Huang JH, Shu PY. Characteristics of dengue epidemics in Taiwan. J Formos Med Assoc. 2012; 111(6): 297-9. doi: 10.1016/j.jfma.2011.12.001. 9. Chang SF, Yang CF, Hsu TC, Su CL, Lin CC, Shu PY. Laboratory-based surveillance and molecular characterization of dengue viruses in Taiwan, 2014. Am J Trop Med Hyg. 2016; 94(4): 804-11. doi: 10.4269/ajtmh.15-0534. 10. WHO. Dengue vaccine: WHO position paper, September 2018. Vaccine. 2019; 37(35): 4848-9. 11. Hadinegoro SR, Arredondo-Garcia JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, et al. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N Engl J Med. 2015; 373(13): 1195-206. doi: 10.1056/NEJMoa1506223. 12. Wang SF, Wang WH, Chang K, Chen YH, Tseng SP, Yen CH, et al. Severe dengue fever outbreak in Taiwan. Am J Trop Med Hyg. 2016; 94(1): 193-7. doi: 10.4269/ajtmh.15-0422. 13. Hsu JC, Hsieh CL, Lu CY. Trend and geographic analysis of the prevalence of dengue in Taiwan, 2010-2015. Int J Infect Dis. 2017; 54: 43-9. doi: 10.1016/j.ijid.2016.11.008. 14. de Castro Poncio L, dos Anjos FA, de Oliveira DA, Rosa A, Silva BP, Rebechi D, et al. Large-scale deployment of SIT-based technology in a Brazilian city prevented Dengue outbreak. medRxiv. 2022. doi: 10.1101/2022.09.19.22279924. 15. Caragata EP, Dutra HL, Sucupira PH, Ferreira AG, Moreira LA. Wolbachia as translational science: controlling mosquito-borne pathogens. Trends Parasitol. 2021; 37(12): 1050-67. doi: 10.1016/j.pt.2021.06.007. 16. Carvalho DO, McKemey AR, Garziera L, Lacroix R, Donnelly CA, Alphey L, et al. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl Trop Dis. 2015; 9(7): e0003864. doi: 10.1371/journal.pntd.0003864. 17. Liu WL, Yu HY, Chen YX, Chen BY, Leaw SN, Lin CH, et al. Lab-scale characterization and semi-field trials of Wolbachia Strain wAlbB in a Taiwan Wolbachia introgressed Ae. aegypti strain. PLoS Negl Trop Dis. 2022; 16(1): e0010084. doi: 10.1371/journal.pntd.0010084. 18. TCDC. Guidelines for dengue / chikungunya control (13E). 2020. 19. van den Berg H, Zaim M, Yadav RS, Soares A, Ameneshewa B, Mnzava A, et al. Global trends in the use of insecticides to control vector-borne diseases. Environ Health Perspect. 2012; 120(4): 577-82. doi: 10.1289/ehp.1104340. 20. Kasai S, Komagata O, Itokawa K, Shono T, Ng LC, Kobayashi M, et al. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism. PLoS Negl Trop Dis. 2014; 8(6): e2948. doi: 10.1371/journal.pntd.0002948. 21. Lin YH, Wu SC, Hsu EL, Teng HJ, Ho CM, Pai HH. Insecticide resistance in Aedes aegypti during dengue epidemics in Taiwan, 2002. Formosan Entomol. 2003; 23(4): 263-74. doi: 10.6661/TESFE.2003025. 22. Lin YH, Wu HH, Hsu EL, Chang NT, Luo YP. Insecticide resistance in Aedes aegypti (L.) and Aedes albopictus (Skuse) larvae in southern Taiwan. Formosan Entomol. 2012; 32: 107-21. 23. Wu HH, Lin YH, Pai HH, Hsu EL, Chang NT, Luo YP. Insecticide resistance status in Aedes aegypti (L.) adults from Southern Taiwan. Formosan Entomol. 2014; 33: 253-70. doi: 10.6661/TESFE.2013018. 24. Dong K, Du Y, Rinkevich F, Nomura Y, Xu P, Wang L, et al. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochem Mol Biol. 2014; 50: 1-17. doi: 10.1016/j.ibmb.2014.03.012. 25. Narahashi T. Neuronal ion channels as the target sites of insecticides. Pharmacology & toxicology. 1996; 79(1): 1-14. doi: 10.1111/j.1600-0773.1996.tb00234.x. 26. Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 2000; 26(1): 13-25. doi: 10.1016/S0896-6273(00)81133-2. 27. Elliott M. Synthetic pyrethroids. 42: ACS Publications; 1977. p. 1-28. 28. Bradberry SM, Cage SA, Proudfoot AT, Vale JA. Poisoning due to pyrethroids. Toxicological reviews. 2005; 24: 93-106. doi: 00139709-200524020-00003. 29. Du Y, Nomura Y, Zhorov BS, Dong K. Sodium channel mutations and pyrethroid resistance in Aedes aegypti. Insects. 2016; 7(4). doi: 10.3390/insects7040060. 30. Smith LB, Kasai S, Scott JG. Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pestic Biochem Physiol. 2016; 133: 1-12. doi: 10.1016/j.pestbp.2016.03.005. 31. Milani R. Mendelian behavior of resistance to the knock-down action of DDT and correlation between knock-down and mortality in Musca domestica L. Rend Ist Sup Sanit. 1956; 19(11): 1107-43. 32. Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet. 1996; 252(1-2): 51-60. doi: 10.1007/BF02173204. 33. Brengues C, Hawkes NJ, Chandre F, McCarroll L, Duchon S, Guillet P, et al. Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Med Vet Entomol. 2003; 17(1): 87-94. doi: 10.1046/j.1365-2915.2003.00412.x. 34. Saavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, Moulton M, Flores AE, Fernandez-Salas I, et al. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol. 2007; 16(6): 785-98. doi: 10.1111/j.1365-2583.2007.00774.x. 35. Yanola J, Somboon P, Walton C, Nachaiwieng W, Prapanthadara L-a. A novel F1552/C1552 point mutation in the Aedes aegypti voltage-gated sodium channel gene associated with permethrin resistance. Pestic Biochem Physiol. 2010; 96(3): 127-31. doi: 10.1016/j.pestbp.2009.10.005. 36. Kawada H, Higa Y, Komagata O, Kasai S, Tomita T, Nguyen TY, et al. Widespread distribution of a newly found point mutation in voltage-gated sodium channel in pyrethroid-resistant populations in Vietnam. PLoS Negl Trop Dis 2009; 3(10). doi: ARTN e000052710.1371/journal.pntd.0000527. 37. Chen M, Du Y, Wu S, Nomura Y, Zhu G, Zhorov BS, et al. Molecular evidence of sequential evolution of DDT-and pyrethroid-resistant sodium channel in Aedes aegypti. PLoS Negl Trop Dis. 2019; 13(6): e0007432. doi: 10.1371/journal.pntd.0007432. 38. Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017; 11(7): e0005625. doi: 10.1371/journal.pntd.0005625. 39. Srisawat R, Komalamisra N, Eshita Y, Zheng M, Ono K, Itoh TQ, et al. Point mutations in domain II of the voltage-gated sodium channel gene in deltamethrin-resistant Aedes aegypti (Diptera: Culicidae). Appl Entomol Zool. 2010; 45(2): 275-82. doi: 10.1303/aez.2010.275. 40. Chang C, Shen WK, Wang TT, Lin YH, Hsu EL, Dai SM. A novel amino acid substitution in a voltage-gated sodium channel is associated with knockdown resistance to permethrin in Aedes aegypti. Insect Biochem Mol Biol. 2009; 39(4): 272-8. doi: 10.1016/j.ibmb.2009.01.001. 41. Fan Y, Scott JG. The F1534C voltage-sensitive sodium channel mutation confers 7- to 16-fold resistance to pyrethroid insecticides in Aedes aegypti. Pest Manag Sci. 2020; 76(6): 2251-9. doi: 10.1002/ps.5763. 42. Hirata K, Komagata O, Itokawa K, Yamamoto A, Tomita T, Kasai S. A single crossing-over event in voltage-sensitive Na+ channel genes may cause critical failure of dengue mosquito control by insecticides. PLoS Negl Trop Dis. 2014; 8(8): e3085. doi: 10.1371/journal.pntd.0003085. 43. Du Y, Nomura Y, Satar G, Hu Z, Nauen R, He SY, et al. Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel. Proc Natl Acad Sci U S A. 2013; 110(29): 11785-90. doi: 10.1073/pnas.1305118110. 44. Kushwah RBS, Dykes CL, Kapoor N, Adak T, Singh OP. Pyrethroid-resistance and presence of two knockdown resistance (kdr) mutations, F1534C and a novel mutation T1520I, in Indian Aedes aegypti. PLoS Negl Trop Dis. 2015; 9(1): e3332. doi: 10.1371/journal.pntd.0003332. 45. Naw H, Su MNC, Võ TC, Lê HG, Kang J-M, Jun H, et al. Overall prevalence and distribution of knockdown resistance (Kdr) mutations in Aedes aegypti from Mandalay region, Myanmar. Korean J Parasitol. 2020; 58(6): 709. doi: 10.3347/kjp.2020.58.6.709. 46. Marcombe S, Shimell K, Savage R, Howlett E, Luangamath P, Nilaxay S, et al. Detection of pyrethroid resistance mutations and intron variants in the voltage‐gated sodium channel of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus mosquitoes from Lao People's Democratic Republic. Med Vet Entomol. 2022; 36(4): 424-34. doi: 10.1111/mve.12580. 47. Tanzila G, Rasheed SB, Khan NH, Kausar A, Jahan F, Wahid S. Insecticide susceptibility and detection of kdr-gene mutations in Aedes aegypti of Peshawar, Pakistan. Acta Tropica. 2023; 242: 106919. doi: 10.1016/j.actatropica.2023.106919. 48. Haddi K, Tomé HV, Du Y, Valbon WR, Nomura Y, Martins GF, et al. Detection of a new pyrethroid resistance mutation (V410L) in the sodium channel of Aedes aegypti: a potential challenge for mosquito control. Sci Rep. 2017; 7(1): 46549. doi: 10.1038/srep46549. 49. Villanueva-Segura OK, Ontiveros-Zapata KA, Lopez-Monroy B, Ponce-Garcia G, Gutierrez-Rodriguez SM, Davila-Barboza JA, et al. Distribution and frequency of the kdr mutation V410L in natural populations of Aedes aegypti (L.) (Diptera: Culicidae) from eastern and southern Mexico. J Med Entomol. 2020; 57(1): 218-23. doi: 10.1093/jme/tjz148. 50. Ayres CFJ, Seixas G, Borrego S, Marques C, Monteiro I, Marques CS, et al. The V410L knockdown resistance mutation occurs in island and continental populations of Aedes aegypti in West and Central Africa. PLoS Negl Trop Dis. 2020; 14(5): e0008216. doi: 10.1371/journal.pntd.0008216. 51. Mack LK, Kelly ET, Lee Y, Brisco KK, Shen KV, Zahid A, et al. Frequency of sodium channel genotypes and association with pyrethrum knockdown time in populations of Californian Aedes aegypti. Parasit Vectors 2021; 14: 1-11. doi: 10.1186/s13071-021-04627-3. 52. Kushwah RBS, Kaur T, Dykes CL, Ravi Kumar H, Kapoor N, Singh OP. A new knockdown resistance (kdr) mutation, F1534L, in the voltage-gated sodium channel of Aedes aegypti, co-occurring with F1534C, S989P and V1016G. Parasit Vectors 2020; 13: 1-12. doi: 10.1186/s13071-020-04201-3. 53. Itokawa K, Furutani S, Takaoka A, Maekawa Y, Sawabe K, Komagata O, et al. A first, naturally occurring substitution at the second pyrethroid receptor of voltage‐gated sodium channel of Aedes aegypti. Pest Manag Sci. 2021; 77(6): 2887-93. doi: 10.1002/ps.6324. 54. Zuharah WF, Sufian M. The discovery of a novel knockdown resistance (kdr) mutation A1007G on Aedes aegypti (Diptera: Culicidae) from Malaysia. Sci Rep. 2021; 11(1): 5180. doi: 10.1038/s41598-021-84669-w. 55. TF T, OSSE R, Zoulkifilou S, GBENOUGA A, Houessinon F, Gounou I, et al. Insecticide resistance in Aedes aegypti mosquitoes: First evidence of kdr F1534C, S989P and V1016G triple mutation in Benin, West Africa. Preprintsorg. 2023. doi: 10.20944/preprints202305.0123.v1. 56. Dusfour I, Zorrilla P, Guidez A, Issaly J, Girod R, Guillaumot L, et al. Deltamethrin resistance mechanisms in Aedes aegypti populations from three French Overseas Territories worldwide. PLoS Negl Trop Dis. 2015; 9(11): e0004226. doi: 10.1371/journal.pntd.0004226. 57. Kawada H, Oo SZM, Thaung S, Kawashima E, Maung YNM, Thu HM, et al. Co-occurrence of point mutations in the voltage-gated sodium channel of pyrethroid-resistant Aedes aegypti populations in Myanmar. PLoS Negl Trop Dis. 2014; 8(7): e3032. doi: 10.1371/journal.pntd.0003032. 58. Plernsub S, Saingamsook J, Yanola J, Lumjuan N, Tippawangkosol P, Sukontason K, et al. Additive effect of knockdown resistance mutations, S989P, V1016G and F1534C, in a heterozygous genotype conferring pyrethroid resistance in Aedes aegypti in Thailand. Parasit Vectors. 2016; 9: 1-7. doi: 10.1186/s13071-016-1713-0. 59. Kasai S, Itokawa K, Uemura N, Takaoka A, Furutani S, Maekawa Y, et al. Discovery of super–insecticide-resistant dengue mosquitoes in Asia: Threats of concomitant knockdown resistance mutations. Sci Adv. 2022; 8(51): eabq7345. doi: 10.1126/sciadv.abq73. 60. Silva JJ, Kouam CN, Scott JG. Levels of cross-resistance to pyrethroids conferred by the Vssc knockdown resistance allele 410L+ 1016I+ 1534C in Aedes aegypti. PLoS Negl Trop Dis. 2021; 15(7): e0009549. doi: 10.1371/journal.pntd.0009549. 61. Naw H, Võ TC, Lê HG, Kang J-M, Mya YY, Myint MK, et al. Knockdown resistance mutations in the voltage-gated sodium channel of Aedes aegypti (Diptera: Culicidae) in Myanmar. Insects. 2022; 13(4): 322. doi: 10.3390/insects13040322. 62. Chang C, Huang XY, Chang PC, Wu HH, Dai SM. Inheritance and stability of sodium channel mutations associated with permethrin knockdown resistance in Aedes aegypti. Pestic Biochem Physiol. 2012; 104(2): 136-42. doi: 10.1016/j.pestbp.2012.06.003. 63. Lin YH, Tsen WL, Tien NY, Luo YP. Biochemical and molecular analyses to determine pyrethroid resistance in Aedes aegypti. Pestic Biochem Physiol. 2013; 107(2): 266-76. doi: 10.1016/j.pestbp.2013.08.004. 64. Chung HH, Cheng IC, Chen YC, Lin C, Tomita T, Teng HJ. Voltage-gated sodium channel intron polymorphism and four mutations comprise six haplotypes in an Aedes aegypti population in Taiwan. PLoS Negl Trop Dis. 2019; 13(3): e0007291. doi: 10.1371/journal.pntd.0007291. 65. Beerntsen BT, James AA, Christensen BM. Genetics of mosquito vector competence. Microbiol Mol Biol. 2000; 64(1): 115-37. doi: 10.1128/MMBR.64.1.115-137.2000. 66. Azar SR, Weaver SC. Vector competence: what has Zika virus taught us? Viruses. 2019; 11(9): 867. doi: 10.3390/v11090867. 67. Juache-Villagrana AE, Pando-Robles V, Garcia-Luna SM, Ponce-Garcia G, Fernandez-Salas I, Lopez-Monroy B, et al. Assessing the impact of insecticide resistance on vector competence: A review. Insects. 2022; 13(4): 377. doi: 10.3390/insects13040377. 68. McCarroll L, Hemingway J. Can insecticide resistance status affect parasite transmission in mosquitoes? Insect Biochem Mol Biol. 2002; 32(10): 1345-51. doi: 10.1016/s0965-1748(02)00097-8. 69. Alout H, Ndam NT, Sandeu MM, Djegbe I, Chandre F, Dabire RK, et al. Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates. PLoS One. 2013; 8(5): e63849. doi: 10.1371/journal.pone.0063849. 70. Kabula B, Tungu P, Rippon EJ, Steen K, Kisinza W, Magesa S, et al. A significant association between deltamethrin resistance, Plasmodium falciparum infection and the Vgsc-1014S resistance mutation in Anopheles gambiae highlights the epidemiological importance of resistance markers. Malar J. 2016; 15: 1-5. doi: 10.1186/s12936-016-1331-5. 71. Tchouakui M, Chiang MC, Ndo C, Kuicheu CK, Amvongo-Adjia N, Wondji MJ, et al. A marker of glutathione S-transferase-mediated resistance to insecticides is associated with higher infection in the African malaria vector. Sci Rep. 2019; 9. doi: ARTN 577210.1038/s41598-019-42015-1. 72. Alout H, Yameogo B, Djogbénou LS, Chandre F, Dabiré RK, Corbel V, et al. Interplay between Plasmodium infection and resistance to insecticides in vector mosquitoes. J Infect Dis. 2014; 210(9): 1464-70. doi: 10.1093/infdis/jiu276. 73. Atyame CM, Alout H, Mousson L, Vazeille M, Diallo M, Weill M, et al. Insecticide resistance genes affect Culex quinquefasciatus vector competence for West Nile virus. Proc Biol Sci. 2019; 286(1894): 20182273. doi: 10.1098/rspb.2018.2273. 74. Chen TY, Smartt CT, Shin D. Permethrin resistance in Aedes aegypti affects aspects of vectorial capacity. Insects. 2021; 12(1): 71. doi: 10.3390/insects12010071. 75. Parker-Crockett C, Connelly CR, Siegfried B, Alto B. Influence of pyrethroid resistance on vector competency for zika virus by Aedes aegypti (Diptera: Culicidae). J Med Entomol. 2021; 58(4): 1908-16. doi: 10.1093/jme/tjab035. 76. Serrato IM, Moreno-Aguilera D, Caicedo PA, Orobio Y, Ocampo CB, Maestre-Serrano R, et al. Vector competence of lambda-cyhalothrin resistant Aedes aegypti strains for dengue-2, Zika and chikungunya viruses in Colombia. PLoS One. 2022; 17(10): e0276493. doi: 10.1371/journal.pone.0276493. 77. Stephenson CJ, Coatsworth H, Waits CM, Nazario-Maldonado NM, Mathias DK, Dinglasan RR, et al. Geographic partitioning of dengue virus transmission risk in Florida. Viruses. 2021; 13(11): 2232. doi: 10.3390/v13112232. 78. Deng J, Guo Y, Su X, Liu S, Yang W, Wu Y, et al. Impact of deltamethrin-resistance in Aedes albopictus on its fitness cost and vector competence. PLoS Negl Trop Dis. 2021; 15(4): e0009391. doi: 10.1371/journal.pntd.0009391. 79. Campos KB, Alomar AA, Eastmond BH, Obara MT, Alto BW. Brazilian populations of Aedes aegypti resistant to pyriproxyfen exhibit lower susceptibility to infection with Zika virus. Viruses. 2022; 14(10): 2198. doi: 10.3390/v14102198. 80. Moltini-Conclois I, Stalinski R, Tetreau G, Despres L, Lambrechts L. Larval exposure to the bacterial insecticide Bti enhances dengue virus susceptibility of Adult Aedes aegypti mosquitoes. Insects. 2018; 9(4): 193. doi: 10.3390/insects9040193. 81. Alto BW, Lord CC. Transstadial effects of Bti on traits of Aedes aegypti and infection with dengue Virus. PLoS Negl Trop Dis. 2016; 10(2): e0004370. doi: 10.1371/journal.pntd.0004370. 82. Knecht H, Richards SL, Balanay JAG, White AV. Impact of mosquito age and insecticide exposure on susceptibility of Aedes albopictus (Diptera: Culicidae) to infection with Zika virus. Pathogens. 2018; 7(3): 67. doi: 10.3390/pathogens7030067. 83. Richards SL, White AV, Balanay JAG. Potential for sublethal insecticide exposure to impact vector competence of Aedes albopictus (Diptera: Culicidae) for dengue and Zika viruses. Res Rep Trop Med. 2017; 8: 53-7. doi: 10.2147/RRTM.S133411. 84. Wuliandari RJ, Lee SF, White VL, Tantowijoyo W, Hoffmann AA, Endersby-Harshman NM. Association between three mutations, F1565C, V1023G and S996P, in the voltage-sensitive sodium channel gene and knockdown resistance in Aedes aegypti from Yogyakarta, Indonesia. Insects. 2015; 6(3): 658-85. doi: 10.3390/insects6030658. 85. Al Nazawi AM, Aqili J, Alzahrani M, McCall PJ, Weetman D. Combined target site (kdr) mutations play a primary role in highly pyrethroid resistant phenotypes of Aedes aegypti from Saudi Arabia. Parasit Vectors. 2017; 10: 1-10. doi: 10.1186/s13071-017-2096-6. 86. Leong CS, Vythilingam I, Liew JW, Wong ML, Wan-Yusoff WS, Lau YL. Enzymatic and molecular characterization of insecticide resistance mechanisms in field populations of Aedes aegypti from Selangor, Malaysia. Parasit Vectors. 2019; 12(1): 236. doi: 10.1186/s13071-019-3472-1. 87. Zhao M, Ran X, Xing D, Liao Y, Liu W, Bai Y, et al. Evolution of knockdown resistance (kdr) mutations of Aedes aegypti and Aedes albopictus in Hainan Island and Leizhou Peninsula, China. Front cell infect microbiol. 2023; 13. doi: 10.3389/fcimb.2023.1265873. 88. Ould Lemrabott MA, Briolant S, Gomez N, Basco L, Ould Mohamed Salem Boukhary A. First report of kdr mutations in the voltage-gated sodium channel gene in the arbovirus vector, Aedes aegypti, from Nouakchott, Mauritania. Parasit Vectors 2023; 16(1): 1-8. doi: 10.1186/s13071-023-06066-8. 89. Lin HH, Li ZT, Tzeng HY, Chang C, Dai SM. Correlation between pyrethroid knockdown resistance and mutation frequency of voltage-gated sodium channel and its application in Aedes aegypti management. Pestic Biochem Physiol. 2023; 198: 105710. doi: 10.1016/j.pestbp.2023.105710. 90. Novelo M, Dutra HL, Metz HC, Jones MJ, Sigle LT, Frentiu FD, et al. Dengue and chikungunya virus loads in the mosquito Aedes aegypti are determined by distinct genetic architectures. PLoS Pathog. 2023; 19(4): e1011307. doi: 10.1371/journal.ppat.1011307. 91. Lien JC. Pictorial keys to the mosquitoes of Taiwan. 1st ed. Yi Hsien Publishing Co, Ltd. 2004. 92. Hickey WA, Craig GB, Jr. Genetic distortion of sex ratio in a mosquito, Aedes aegypti. Genetics. 1966; 53(6): 1177-96. doi: 10.1093/genetics/53.6.1177. 93. Kasai S, Ng LC, Lam-Phua SG, Tang CS, Itokawa K, Komagata O, et al. First detection of a putative knockdown resistance gene in major mosquito vector, Aedes albopictus. Jpn J Infect Dis. 2011; 64(3): 217-21. doi: 10.7883/yoken.64.217. 94. Chung HH, Tsai CH, Teng HJ, Tsai KH. The role of voltage-gated sodium channel genotypes in pyrethroid resistance in Aedes aegypti in Taiwan. PLoS Negl Trop Dis. 2022; 16(9): e0010780. doi: 10.1371/journal.pntd.0010780. 95. WHO. Space spray application of insecticides for vector and public health pest control: a practitioner's guide. 2003. 96. WHO. Monitoring and managing insecticide resistance in Aedes mosquito populations. 2016. 97. Kasai S, Caputo B, Tsunoda T, Cuong TC, Maekawa Y, Lam-Phua SG, et al. First detection of a Vssc allele V1016G conferring a high level of insecticide resistance in Aedes albopictus collected from Europe (Italy) and Asia (Vietnam), 2016: a new emerging threat to controlling arboviral diseases. Euro Surveill. 2019; 24(5): 1700847. doi: 10.2807/1560-7917.ES.2019.24.5.1700847. 98. Hitakarun A, Ramphan S, Wikan N, Smith DR. Analysis of the virus propagation profile of 14 dengue virus isolates in Aedes albopictus C6/36 cells. BMC Res Notes. 2020; 13: 1-6. doi: 10.1186/s13104-020-05325-6. 99. Heitmann A, Jansen S, Luhken R, Leggewie M, Schmidt-Chanasit J, Tannich E. Forced salivation as a method to analyze vector competence of mosquitoes. J Vis Exp. 2018; (138): 57980. doi: 10.3791/57980. 100. Duong V, Lambrechts L, Paul RE, Ly S, Lay RS, Long KC, et al. Asymptomatic humans transmit dengue virus to mosquitoes. Proc Natl Acad Sci U S A. 2015; 112(47): 14688-93. doi: 10.1073/pnas.1508114112. 101. Tsai CH, Chen TH, Lin C, Shu PY, Su CL, Teng HJ. The impact of temperature and Wolbachia infection on vector competence of potential dengue vectors Aedes aegypti and Aedes albopictus in the transmission of dengue virus serotype 1 in southern Taiwan. Parasit Vectors. 2017; 10(1): 551. doi: 10.1186/s13071-017-2493-x. 102. Dzaki N, Ramli KN, Azlan A, Ishak IH, Azzam G. Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti. Sci Rep. 2017; 7: 43618. doi: 10.1038/srep43618. 103. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4): 402-8. doi: 10.1006/meth.2001.1262. 104. Smith LB, Kasai S, Scott JG. Voltage-sensitive sodium channel mutations S989P + V1016G in Aedes aegypti confer variable resistance to pyrethroids, DDT and oxadiazines. Pest Manag Sci. 2018; 74(3): 737-45. doi: 10.1002/ps.4771. 105. Hamid PH, Prastowo J, Widyasari A, Taubert A, Hermosilla C. Knockdown resistance (kdr) of the voltage-gated sodium channel gene of Aedes aegypti population in Denpasar, Bali, Indonesia. Parasit Vectors. 2017; 10(1): 283. doi: 10.1186/s13071-017-2215-4. 106. Brito LP, Carrara L, de Freitas RM, Lima JBP, Martins AJ. Levels of resistance to pyrethroid among distinct kdr alleles in Aedes aegypti laboratory lines and frequency of kdr alleles in 27 natural populations from Rio de Janeiro, Brazil. Biomed Res Int. 2018; 2018: 2410819. doi: 10.1155/2018/2410819. 107. Melo Costa M, Campos KB, Brito LP, Roux E, Melo Rodovalho C, Bellinato DF, et al. Kdr genotyping in Aedes aegypti from Brazil on a nation-wide scale from 2017 to 2018. Sci Rep. 2020; 10(1): 13267. doi: 10.1038/s41598-020-70029-7. 108. Estep AS, Sanscrainte ND, Waits CM, Bernard SJ, Lloyd AM, Lucas KJ, et al. Quantification of permethrin resistance and kdr alleles in Florida strains of Aedes aegypti (L.) and Aedes albopictus (Skuse). PLoS Negl Trop Dis. 2018; 12(10): e0006544. doi: 10.1371/journal.pntd.0006544. 109. Li CX, Kaufman PE, Xue RD, Zhao MH, Wang G, Yan T, et al. Relationship between insecticide resistance and kdr mutations in the dengue vector Aedes aegypti in Southern China. Parasit Vectors. 2015; 8: 325. doi: 10.1186/s13071-015-0933-z. 110. Ibanez-Justicia A, Gloria-Soria A, den Hartog W, Dik M, Jacobs F, Stroo A. The first detected airline introductions of yellow fever mosquitoes (Aedes aegypti) to Europe, at Schiphol International airport, the Netherlands. Parasit Vectors. 2017; 10(1): 603. doi: 10.1186/s13071-017-2555-0. 111. Uemura N, Furutani S, Tomita T, Itokawa K, Komagata O, Kasai S. Concomitant knockdown resistance allele, L982W+ F1534C, in Aedes aegypti has the potential to impose fitness costs without selection pressure. Pesticide Biochemistry and Physiology. 2023; 193: 105422. doi: 10.1016/j.pestbp.2023.105422. 112. Moore TC, Brown HE. Estimating Aedes aegypti (Diptera: Culicidae) flight distance: Meta-data analysis. J Med Entomol. 2022; 59(4): 1164-70. doi: 10.1093/jme/tjac070. 113. Cosme LV, Gloria-Soria A, Caccone A, Powell JR, Martins AJ. Evolution of kdr haplotypes in worldwide populations of Aedes aegypti: Independent origins of the F1534C kdr mutation. PLoS Negl Trop Dis. 2020; 14(4): e0008219. doi: doi.org/10.1371/journal.pntd.0008219. 114. Plernsub S, Stenhouse SA, Tippawangkosol P, Lumjuan N, Yanola J, Choochote W, et al. Relative developmental and reproductive fitness associated with F1534C homozygous knockdown resistant gene in Aedes aegypti from Thailand. Trop Biomed. 2013; 30(4): 621-30. 115. Metcalf RL. Insect resistance to insecticides. Pesticide science. 1989; 26(4): 333-58. doi: 10.1002/ps.2780260403. 116. Chadwick PR, Slatter R, Bowron MJ. Cross‐resistance to pyrethroids and other insecticides in Aedes aegypti. Pesticide science. 1984; 15(2): 112-20. doi: 10.1002/ps.2780150204. 117. 周宜樺, 王欽賢, 賴俊麟, 蔡遠鵬, 謝瑞煒, 李翠鳳. 2017年臺南市登革熱防治策略執行成效初探. 疫情報導. 2020; 36(14): 199-207. doi: 10.6524/EB.202007_36(14).0001. 118. Zheng X, Zhang D, Li Y, Yang C, Wu Y, Liang X, et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature. 2019; 572(7767): 56-61. doi: 10.1038/s41586-019-1407-9. 119. Crawford JE, Clarke DW, Criswell V, Desnoyer M, Cornel D, Deegan B, et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat Biotechnol. 2020; 38(4): 482-92. doi: 10.1038/s41587-020-0471-x. 120. Utarini A, Indriani C, Ahmad RA, Tantowijoyo W, Arguni E, Ansari MR, et al. Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N Engl J Med. 2021; 384(23): 2177-86. doi: 10.1056/NEJMoa2030243. 121. Berticat C, Rousset F, Raymond M, Berthomieu A, Weill M. High Wolbachia density in insecticide-resistant mosquitoes. Proc Biol Sci. 2002; 269(1498): 1413-6. doi: 10.1098/rspb.2002.2022. 122. Wuliandari JR, Hoffmann AA, Tantowijoyo W, Endersby-Harshman NM. Frequency of kdr mutations in the voltage-sensitive sodium channel (VSSC) gene in Aedes aegypti from Yogyakarta and implications for Wolbachia-infected mosquito trials. Parasit Vectors. 2020; 13(1): 429. doi: 10.1186/s13071-020-04304-x. 123. Garcia GA, Sylvestre G, Aguiar R, da Costa GB, Martins AJ, Lima JBP, et al. Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion. PLoS Negl Trop Dis. 2019; 13(1): e0007023. doi: 10.1371/journal.pntd.0007023. 124. Chen RE, Diamond MS. Dengue mouse models for evaluating pathogenesis and countermeasures. Curr Opin Virol. 2020; 43: 50-8. doi: 10.1016/j.coviro.2020.09.001. 125. Azar SR, Roundy CM, Rossi SL, Huang JH, Leal G, Yun R, et al. Differential vector competency of Aedes albopictus populations from the Americas for Zika virus. Am J Trop Med Hyg. 2017; 97(2): 330-9. doi: 10.4269/ajtmh.16-0969. 126. Gloria-Soria A, Brackney DE, Armstrong PM. Saliva collection via capillary method may underestimate arboviral transmission by mosquitoes. Parasit Vectors. 2022; 15(1): 103. doi: 10.1186/s13071-022-05198-7. 127. Styer LM, Kent KA, Albright RG, Bennett CJ, Kramer LD, Bernard KA. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog. 2007; 3(9): 1262-70. doi: 10.1371/journal.ppat.0030132. 128. Rivero A, Vezilier J, Weill M, Read AF, Gandon S. Insecticide control of vector-borne diseases: when is insecticide resistance a problem? PLoS Pathog. 2010; 6(8): e1001000. doi: 10.1371/journal.ppat.1001000. 129. Vontas J, Blass C, Koutsos AC, David JP, Kafatos FC, Louis C, et al. Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol Biol. 2005; 14(5): 509-21. doi: 10.1111/j.1365-2583.2005.00582.x. 130. Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog. 2008; 4(7): e1000098. doi: 10.1371/journal.ppat.1000098. 131. Despres L, Stalinski R, Faucon F, Navratil V, Viari A, Paris M, et al. Chemical and biological insecticides select distinct gene expression patterns in Aedes aegypti mosquito. Biol Lett. 2014; 10(12): 20140716. doi: 10.1098/rsbl.2014.0716. 132. Roxström-Lindquist K, Assefaw-Redda Y, Rosinska K, Faye I. 20-Hydroxyecdysone indirectly regulates Hemolin gene expression in Hyalophora cecropia. Insect Molecular Biology. 2005; 14(6): 645-52. doi: 10.1111/j.1365-2583.2005.00593.x. 133. Rivero A, Magaud A, Nicot A, Vezilier J. Energetic cost of insecticide resistance in Culex pipiens mosquitoes. J Med Entomol. 2011; 48(3): 694-700. doi: 10.1603/me10121. 134. Goindin D, Delannay C, Ramdini C, Gustave J, Fouque F. Parity and longevity of Aedes aegypti according to temperatures in controlled conditions and consequences on dengue transmission risks. PLoS One. 2015; 10(8): e0135489. doi: 10.1371/journal.pone.0135489. 135. Bedhomme S, Agnew P, Sidobre C, Michalakis Y. Virulence reaction norms across a food gradient. Proc Biol Sci. 2004; 271(1540): 739-44. doi: 10.1098/rspb.2003.2657. 136. Tseng M. Interactions between the parasite's previous and current environment mediate the outcome of parasite infection. Am Nat. 2006; 168(4): 565-71. doi: 10.1086/507997. 137. Hall SR, Simonis JL, Nisbet RM, Tessier AJ, Caceres CE. Resource ecology of virulence in a planktonic host-parasite system: an explanation using dynamic energy budgets. Am Nat. 2009; 174(2): 149-62. doi: 10.1086/600086. 138. Hegde S, Rasgon JL, Hughes GL. The microbiome modulates arbovirus transmission in mosquitoes. Curr Opin Virol. 2015; 15: 97-102. doi: 10.1016/j.coviro.2015.08.011. 139. Dada N, Sheth M, Liebman K, Pinto J, Lenhart A. Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors. Sci Rep. 2018; 8(1): 2084. doi: 10.1038/s41598-018-20367-4. 140. Apte-Deshpande A, Paingankar M, Gokhale MD, Deobagkar DN. Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to dengue-2 virus. PLoS One. 2012; 7(7): e40401. doi: 10.1371/journal.pone.0040401. 141. Guo Y, Zhou J, Zhao Y, Deng J, Su X, Tang J, et al. CRISPR/Cas9-mediated F1534S substitution in the voltage-gated sodium channel reveals its necessity and sufficiency for deltamethrin resistance in Aedes albopictus. Journal of Pest Science. 2023; 96(3): 1173-86. doi: 10.1007/s10340-022-01557-6. 142. Anderson JR, Rico-Hesse R. Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus. Am J Trop Med Hyg. 2006; 75(5): 886-92. 143. Viana M, Hughes A, Matthiopoulos J, Ranson H, Ferguson HM. Delayed mortality effects cut the malaria transmission potential of insecticide-resistant mosquitoes. Proc Natl Acad Sci U S A. 2016; 113(32): 8975-80. doi: 10.1073/pnas.1603431113. 144. Brito LP, Linss JG, Lima-Camara TN, Belinato TA, Peixoto AA, Lima JB, et al. Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost. PLoS One. 2013; 8(4): e60878. doi: 10.1371/journal.pone.0060878. 145. Chan M, Johansson MA. The incubation periods of Dengue viruses. PLoS One. 2012; 7(11): e50972. doi: 10.1371/journal.pone.0050972. 146. Silva JJ, Fisher CR, Dressel AE, Scott JG. Fitness costs in the presence and absence of insecticide use explains abundance of two common Aedes aegypti kdr resistance alleles found in the Americas. PLoS Negl Trop Dis. 2023; 17(11): e0011741. doi: 10.1371/journal.pntd.0011741. 147. Rigby LM, Rasic G, Peatey CL, Hugo LE, Beebe NW, Devine GJ. Identifying the fitness costs of a pyrethroid-resistant genotype in the major arboviral vector Aedes aegypti. Parasit Vectors. 2020; 13(1): 358. doi: 10.1186/s13071-020-04238-4. 148. Zwiebel LJ, Takken W. Olfactory regulation of mosquito-host interactions. Insect Biochem Mol Biol. 2004; 34(7): 645-52. doi: 10.1016/j.ibmb.2004.03.017. 149. Steib BM, Geier M, Boeckh J. The effect of lactic acid on odour-related host preference of yellow fever mosquitoes. Chem Senses. 2001; 26(5): 523-8. doi: 10.1093/chemse/26.5.523. 150. Djegbe I, Cornelie S, Rossignol M, Demettre E, Seveno M, Remoue F, et al. Differential expression of salivary proteins between susceptible and insecticide-resistant mosquitoes of Culex quinquefasciatus. PLoS One. 2011; 6(3): e17496. doi: 10.1371/journal.pone.0017496. 151. Mukherjee D, Das S, Begum F, Mal S, Ray U. The Mosquito Immune System and the Life of Dengue Virus: What We Know and Do Not Know. Pathogens. 2019; 8(2). Epub 2019/06/16. doi: 10.3390/pathogens8020077. PubMed PMID: 31200426; PubMed Central PMCID: PMCPMC6631187. 152. Holland JJd, De La Torre J, Steinhauer D. RNA virus populations as quasispecies. Genetic diversity of RNA viruses. 1992: 1-20. 153. Domingo E. Mutation rates and rapid evolution of RNA viruses. The evolutionary biology of viruses. 1994: 161-84. 154. Rajatileka S, Black WCt, Saavedra-Rodriguez K, Trongtokit Y, Apiwathnasorn C, McCall PJ, et al. Development and application of a simple colorimetric assay reveals widespread distribution of sodium channel mutations in Thai populations of Aedes aegypti. Acta Trop. 2008; 108(1): 54-7. doi: 10.1016/j.actatropica.2008.08.004. 155. Ishak IH, Jaal Z, Ranson H, Wondji CS. Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in the dengue vectors Aedes aegypti and Aedes albopictus from Malaysia. Parasit Vectors. 2015; 8: 181. doi: 10.1186/s13071-015-0797-2. 156. Yanola J, Somboon P, Walton C, Nachaiwieng W, Somwang P, Prapanthadara LA. High-throughput assays for detection of the F1534C mutation in the voltage-gated sodium channel gene in permethrin-resistant Aedes aegypti and the distribution of this mutation throughout Thailand. Trop Med Int Health. 2011; 16(4): 501-9. doi: 10.1111/j.1365-3156.2011.02725.x. 157. Alvarez LC, Ponce G, Saavedra-Rodriguez K, Lopez B, Flores AE. Frequency of V1016I and F1534C mutations in the voltage-gated sodium channel gene in Aedes aegypti in Venezuela. Pest Manag Sci. 2015; 71(6): 863-9. doi: 10.1002/ps.3846. 158. Linss JG, Brito LP, Garcia GA, Araki AS, Bruno RV, Lima JB, et al. Distribution and dissemination of the Val1016Ile and Phe1534Cys Kdr mutations in Aedes aegypti Brazilian natural populations. Parasit Vectors. 2014; 7: 25. doi: 10.1186/1756-3305-7-25. 159. Aponte HA, Penilla RP, Dzul-Manzanilla F, Che-Mendoza A, López AD, Solis F, et al. The pyrethroid resistance status and mechanisms in Aedes aegypti from the Guerrero state, Mexico. Pestic Biochem Physiol. 2013; 107(2): 226-34. doi: 10.1016/j.pestbp.2013.07.005. 160. Cornel AJ, Holeman J, Nieman CC, Lee Y, Smith C, Amorino M, et al. Surveillance, insecticide resistance and control of an invasive Aedes aegypti (Diptera: Culicidae) population in California. F1000Res. 2016; 5: 194. doi: 10.12688/f1000research.8107.3. 161. Kawada H, Higa Y, Futami K, Muranami Y, Kawashima E, Osei JH, et al. Discovery of point mutations in the voltage-gated sodium channel from African Aedes aegypti populations: potential phylogenetic reasons for gene introgression. PLoS Negl Trop Dis. 2016; 10(6): e0004780. 162. Pang S, Chiang L, Tan C, Vythilingam I, Lam-Phua S, Ng L. Low efficacy of delthamethrin-treated net against Singapore Aedes aegypti is associated with kdr-type resistance. Trop Biomed. 2015; 32(1): 140-50. 163. Barrera-Illanes AN, Micieli MV, Ibanez-Shimabukuro M, Santini MS, Martins AJ, Ons S. First report on knockdown resistance mutations in wild populations of Aedes aegypti from Argentina determined by a novel multiplex high-resolution melting polymerase chain reaction method. Parasit Vectors. 2023; 16(1): 222. doi: 10.1186/s13071-023-05840-y. 164. Granada Y, Mejía-Jaramillo AM, Strode C, Triana-Chavez O. A point mutation V419L in the sodium channel gene from natural populations of Aedes aegypti is involved in resistance to λ-cyhalothrin in Colombia. Insects. 2018; 9(1): 23. doi: doi: 10.3390/insects9010023. 165. Saavedra-Rodriguez K, Maloof FV, Campbell CL, Garcia-Rejon J, Lenhart A, Penilla P, et al. Parallel evolution of vgsc mutations at domains IS6, IIS6 and IIIS6 in pyrethroid resistant Aedes aegypti from Mexico. Sci Rep. 2018; 8(1): 6747. doi: 10.1038/s41598-018-25222-0. 166. Fagbohun IK, Oyeniyi TA, Idowu ET, Nwanya O, Okonkwo F, Adesalu KO, et al. Detection and co-occurrence of kdr (F1534C and S989P) mutations in multiple insecticides resistant Aedes aegypti (Diptera: Culicidae) in Nigeria. J Med Entomol. 2022; 59(5): 1741-8. doi: 10.1093/jme/tjac114. 167. Kosinski K, Lee Y, Romero-Weaver A, Chen T-y, Collier T, Wang X, et al. Two novel single nucleotide polymorphisms in the voltage-gated sodium channel gene identified in Aedes aegypti mosquitoes from Florida. JFMCA. 2022; 69(1). doi: 10.32473/jfmca.v69i1.130622. 168. Kelly ET, Mack LK, Campos M, Grippin C, Chen T-Y, Romero-Weaver AL, et al. Evidence of local extinction and reintroduction of Aedes aegypti in Exeter, California. Front trop dis. 2021; 2: 703873. doi: 10.3389/fitd.2021.703873. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95122 | - |
| dc.description.abstract | 埃及斑蚊因是登革、茲卡和屈公病毒的主要病媒而對熱帶和亞熱帶地區的公共衛生造成威脅。因對這些病原體缺乏有效的疫苗及抗病毒藥,使用除蟲菊酯類殺蟲劑仍是防治斑蚊媒介傳染病的重要策略。然而,重複使用同類型殺蟲劑會導致抗藥性的產生。埃及斑蚊電壓門鈉離子通道(vgsc)突變進而導致與除蟲菊酯殺蟲劑的結合力下降為重要的抗性機制,因此,藉由有效監測vgsc突變及時了解野外蚊蟲的抗藥性狀態對於病媒控制和疾病預防至關重要。另一方面,在選汰壓力下篩選出帶有抗性基因的埃及斑蚊對登革病毒感染的病媒適性對於疾病風險評估提供重要依據。因此,本研究旨在透過分子監測了解vgsc突變在埃及斑蚊抗性的角色並評估野外埃及斑蚊的抗性狀況;此外,亦探討帶有主要抗藥性相關vgsc基因型S989P+V1016G+F1534C異型合子的埃及斑蚊媒介登革病毒的病媒竸爭力。
本研究持續於2016至2023年分別於登革熱流行季節前(3月)和季間(10月)採集臺南市、高雄市和屏東縣埃及斑蚊,並比較2016年3月和10月收集的埃及斑蚊及以賽滅寧(cypermethrin)暴露後活和死的埃及斑蚊vgsc突變情形。接著進行2016至2023年之埃及斑蚊長期監測,以評估野外埃及斑蚊vgsc突變的變化趨勢及抗性現況。我們也自野外埃及斑蚊中分離帶有主要vgsc抗性相關基因型(S989P+V1016G+F1534C異型合子)的品系,藉由評估登革病毒感染該抗性品系的感染率、擴散率、傳染率、傳染效率、潛在傳染效率、病毒量和存活率來評估該品系媒介登革病毒的病媒竸爭力。 根據2016年3月和10月收集之野外監測數據及將經過賽滅寧生物檢定後之死和活的蚊蟲進行分子檢測,我們提出了由S989P、V1016G、F1534C和D1763Y所組成的6種與埃及斑蚊抗性相關的vgsc基因型,並發現埃及斑蚊帶有抗性相關基因型的比例與賽滅寧的抗性程度呈正相關;我們也建議使用vgsc基因型而非等位基因或單倍型作為抗性指標。而在2016至2023年間進行的vgsc基因分子監測中,我們總共自臺南市、高雄市和屏東縣採集並分析了1,761隻埃及斑蚊,除了已於2016年監測之S989P、V1016G、F1534C和D1763Y外,我們首次於台灣偵測到T1520I,並觀察到該些位點突變頻率均增加;此外,除了過去文獻提出的六種單倍型外,我們在臺灣首次監測到另外三種單倍型:PGTFY(分別代表989、1016、1520、1534、1763之胺基酸,底線代表突變)、SVICD和PGTCD,其中,PGTFY為首次在埃及斑蚊中被報導。而SVICD在野外族群中增加了19倍;值得注意的是,未突變的單倍型在野外已有2021年後即未被監測到,這意味著野外埃及斑蚊很有可能都至少含有一種vgsc突變;我們共觀察到了25種vgsc基因型,其中,SVTCD/SVTCD(分別代表二條單倍型,底線代表突變)、SGTFY/PGTFD、SVTCD/SGTFY、PGTFD/PGTFD、SVTCD/PGTFD5種與抗性相關基因型隨著時間增加,共佔野外族群的76%;我們也首次監測到抗性基因型SVICD/PGTFD,該基因型自其首次發現後在野外增加了13倍;另一方面,我們也觀察到vgsc突變在地理分布上有所不同,其中S989P主要分布在高雄;V1016G主要分布在高雄和屏東;T1520I的頻率在高雄明顯較高;而D1763Y主要出現在臺南。此外,我們將所建立帶有主要vgsc抗性相關基因型(SVTCD/PGTFD)的埃及斑蚊感染登革病毒第2型,發現具有該基因型的埃及斑蚊比未突變的埃及斑蚊具有更高的登革病毒感染率、傳播率和潛在傳染率以及類似的存活率,顯示帶有SVTCD/PGTFD的埃及斑蚊比未突變的品系有更好媒介登革病毒的竸爭力。 在本研究中,我們提出了vgsc突變的抗性角色,並發現使用vgsc基因型進行抗性監測比等位基因和單倍型更準確;而八年的抗藥性監測結果也顯示臺灣埃及斑蚊出現新的vgsc突變且這些突變持續擴大,這說明了臺灣乃至世界對埃及斑蚊產生抗藥性所造成的威脅持續增加。本研究闡述了埃及斑蚊vgsc突變的抗性角色和其動態變化,為使用除蟲菊酯殺蟲劑防治埃及斑蚊的地區提供有價值的資訊。此外,我們也證明了帶有SVTCD/PGTFD的埃及斑蚊對媒介登革病毒第2型有較好的病媒竸爭力。因帶有SVTCD/PGTFD的埃及斑蚊廣泛分布於亞洲和非洲,且該抗性基因可能有助於登革病毒的傳播,因此,我們強列建議有關部門持續對蚊蟲的抗藥性情形進行監測;化學防治需進行藥效試驗;並採取整合式病媒管理策略及抗藥性管理,以減緩抗性基因的演化;另一方面,我們也建議開發新病媒防治藥物(包括化學性及生物性)並及早建立並評估新的病媒控制策略,以有效因應未來對病媒的控制及蚊媒傳染病的預防。 | zh_TW |
| dc.description.abstract | Aedes aegypti is the major vector of dengue, Zika, and chikungunya virus that threatens public health in tropical and subtropical regions. Pyrethroid-based control strategies effectively control this vector, but repeated usage of the insecticide leads to resistance and hampered vector control efforts. Understanding the role of the mutant voltage-gated sodium channel (vgsc), the pyrethroid target site, and monitoring the vgsc variation efficiently provides the prompt status of insecticide resistance in local mosquito populations and is critical for vector control and disease prevention. On the other hand, the vector competence of the dengue virus in Ae. aegypti with resistant vgsc genotype selected under selection pressure needs to be clarified for disease risk assessment. Therefore, this study aims to understand the resistance role of vgsc mutations and assess the resistance status of field Ae. aegypti by molecular monitoring. In addition, the vector competence of dengue virus in Ae. aegypti harboring the predominant resistance-associated vgsc genotype, S989P+V1016G+F1534C heterozygous, was assessed in the study.
Ae. aegypti from Tainan, Kaohsiung, and Pingtung before (March) and during (October) dengue season between 2016 and 2023 were collected. The resistance role of vgsc mutations in Taiwan Ae. aegypti were evaluated by alive and dead mosquitoes exposed to cypermethrin, and mosquitoes collected in March and October of 2016. Long-term vgsc mutation surveillance was conducted to monitor the vgsc variation and evaluate the resistance status of field Ae. aegypti between 2016 and 2023. On the other hand, we established an Ae. aegypti strain with predominant resistance-associated vgsc genotype, S989P+V1016G+F1534C heterozygous, to assess the vector competence of this strain under dengue virus infection. The infection rate, dissemination rate, transmission rate, transmission efficiency, potential transmission efficiency, viral load, and survival rate were evaluated. According to cypermethrin bioassay and field surveillance data of Ae. aegypti in 2016, we proposed six resistance-associated vgsc genotypes comprising S989P, V1016G, F1534C, and D1763Y and found the proportion of resistance-associated genotypes in the field population positively correlated with the resistance level of cypermethrin. Therefore, we suggest using the vgsc genotype rather than the allele or the haplotype as a resistance indicator. Between 2016 and 2023, molecular surveillance based on the vgsc genotype was conducted. In total, 1,761 field-caught Ae. aegypti from Tainan, Kaohsiung, and Pingtung were genotyped. In addition to S989P, V1016G, F1534C, and D1763Y, T1520I was first detected in Taiwan. All of the mutation frequencies increased since their first detection. In addition to the six previously proposed haplotypes, three further haplotypes, PGTFY (the amino acids in 989, 1016, 1520, 1534, and 1763, the mutant form were underlined), SVICD, and PGTCD, were first detected in Taiwan. Among them, PGTFY was first documented in Ae. aegypti. SVICD increased by 19-fold in the field population. Moreover, the un-mutated haplotype vanished in Taiwan, implying that Ae. aegypti was fixed by at least one vgsc mutation. We observed 25 vgsc genotypes in the field. Among them, five resistance-associated genotypes, including SVTCD/SVTCD, SGTFY/PGTFD, SVTCD/SGTFY, PGTFD/PGTFD, and SVTCD/PGTFD, increased and accounted for 76% of the field population. We also first detected the resistance genotype, SVICD/PGTFD, which increased 13-fold in the field. On the other hand, we also observed that the vgsc mutations were geographically different among the three cities, with S989P mainly found in Kaohsiung and V1016G in Kaohsiung and Pingtung. The proportion of T1520I was noticeably higher in Kaohsiung, and D1763Y occurred mainly in Tainan. We assessed the vector competence of Ae. aegypti with predominant vgsc genotype, SVTCD/PGTFD, under dengue virus 2 infection and found Ae. aegypti with his genotype exhibited higher infection rate, dissemination rate, and potential transmission efficiency and comparable survival rate than the un-mutated counterpart, suggesting Ae. aegypti with SVTCD/PGTFD was a more competent vector than the wild type for dengue virus 2 transmission. In this study, we proposed the resistance role of vgsc mutations and suggested that the vgsc genotype is more accurate for resistance monitoring. The eight-year long-term resistance surveillance also found the emergence and expansion of vgsc mutations, suggesting the elevated threat of insecticide resistance in Taiwan and worldwide. The resistance role and dynamic variation of vgsc mutations in this study provide valuable information for the areas using pyrethroid for Ae. aegypti control. Additionally, we demonstrated the increased vector competence of dengue virus 2 in Ae. aegypti carrying the SVTCD/PGTFD, which is widespread in Asia and Africa. We urge the authority to adopt measures against resistance: 1) Monitor insecticide resistance continuously; 2) Evaluate the efficacy of insecticide for appropriate vector control; 3) Adopt integrated pest management and insecticide resistance management to decelerate the evolution toward resistance; 4) Develop novel chemical- and biological-based vector control agents; 5) Establish and evaluate novel vector control strategies, such the Wolbachia-based technology in advance for future vector control and disease prevention. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-29T16:10:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-29T16:10:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract v 1. Introduction 1 1.1. Dengue fever and disease vector 1 1.2. Chemical-based vector control strategy and resistance 1 1.3. Voltage-gated sodium channels (VGSCs) 2 1.4. vgsc mutation in Taiwan Ae. aegypti 7 1.5. Vector competence and fitness in insecticide-resistant Ae. aegypti 7 2. Research gaps 12 3. Specific aims 13 4. Framework 14 5. Materials and methods 14 5.1. Mosquitoes collection and maintenance 14 5.2. vgsc genotyping 15 5.3. Cypermethrin exposure bioassay 16 5.4. Establishment of Ae. aegypti strains with specific vgsc genotype 17 5.5. Cell culture 18 5.6. Virus amplification and titration 18 5.7. Oral infection and mosquito dissection 19 5.8. Viral RNA extraction and qRT-PCR 20 5.9. Vector competence assessment 22 5.10. Statistical analysis 23 6. Results 25 6.1. vgsc allele and genotypes in Aedes aegypti in 2016 25 6.2. vgsc allele and genotypes in dead or live Ae. aegypti after cypermethrin exposure 25 6.3. vgsc genotype and cypermethrin resistance 26 6.4. Surveillance of vgsc mutations in Ae. aegypti between 2016 and 2023. 27 6.5. vgsc mutant alleles distribution 27 6.6. Spatial and temporal analysis of T1520I in southern Taiwan 28 6.7. Surveillance of vgsc genotypes 29 6.8. Surveillance of vgsc haplotypes and their distribution 30 6.9. vgsc genotypes distribution 31 6.10. Establishment of Ae. aegypti with specific resistance vgsc genotypes 31 6.11. Vector competence evaluation based on infection parameters 32 6.12. Absolute quantification of viral load to evaluate the infection burden 34 6.13. Relative quantification of viral load to evaluate the infection burden 34 6.14. Survival rates of Ae. aegypti post DV2 infection. 35 7. Discussion 36 7.1. Summary of the findings in this study 36 7.2. Mutant vgsc alleles associated with resistance 37 7.3. Combined vgsc genotype and resistance 38 7.4. F1534C confers relatively lower resistance than S989P+V1016G 39 7.5. Prediction of resistance by vgsc genotype 39 7.6. Invaded mosquitoes and insecticide resistance 41 7.7. Application of combined vgsc genotyping in resistance monitoring 41 7.8. Variation of vgsc genotypes between 2016 and 2023 42 7.9. First detection of T1520I in Ae. aegypti in Taiwan 42 7.10. First detection of PGTFY, PGTCD, and SVICD in Ae. aegypti in Taiwan 43 7.11. The distribution of vgsc mutations is geographically different 45 7.12. vgsc surveillance and insecticide selection for vector control 46 7.13. An explanation of the vanished un-mutated vgsc genotype 47 7.14. Resistance information for Wolbachia-mediated vector control 48 7.15. The resistance-associated vgsc genotype and vector competence 48 7.16. Enhanced vector competence in PGTFD/SVTCD Ae. aegypti 49 7.17. Detecting pathogens in the salivary glands to predict transmission efficiency 50 7.18. Variation between two vector competence experiments 51 7.19. Viral loads in PGCheter and KHSM Ae. aegypti 52 7.20. Mechanisms involved in pathogen-host interaction in PGCheter and KHSM. 53 7.21. The survival rate impacts vector competence 55 7.22. Further assessments for SVTCD/PGTFD Ae. aegypti 55 7.23. Conclusion 57 8. References 59 9. Appendix 82 10. Figures 88 11. Tables 112 | - |
| dc.language.iso | en | - |
| dc.subject | 臺灣 | zh_TW |
| dc.subject | 除蟲菊酯殺蟲劑 | zh_TW |
| dc.subject | 病媒竸爭力 | zh_TW |
| dc.subject | 電壓門控鈉離子通道 | zh_TW |
| dc.subject | 殺蟲劑抗性 | zh_TW |
| dc.subject | 埃及斑蚊 | zh_TW |
| dc.subject | 擊昏抗性 | zh_TW |
| dc.subject | pyrethroid | en |
| dc.subject | Aedes aegypti | en |
| dc.subject | insecticide resistance | en |
| dc.subject | vgsc | en |
| dc.subject | kdr | en |
| dc.subject | vector competence | en |
| dc.subject | Taiwan | en |
| dc.title | 臺灣埃及斑蚊電壓門控鈉離子通道突變對殺蟲劑抗性及病媒競爭力之影響 | zh_TW |
| dc.title | The impact of voltage-gated sodium channel mutation on insecticide resistance and vector competence in Aedes aegypti in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 徐爾烈;許如君;陳維鈞;戴淑美;鄧華真 | zh_TW |
| dc.contributor.oralexamcommittee | Err-Lieh Hsu;Ju-Chun Hsu;Wei-June Chen;Shu-Mei Dai;Hwa-Jeng Teng | en |
| dc.subject.keyword | 埃及斑蚊,殺蟲劑抗性,電壓門控鈉離子通道,擊昏抗性,除蟲菊酯殺蟲劑,病媒竸爭力,臺灣, | zh_TW |
| dc.subject.keyword | Aedes aegypti,insecticide resistance,vgsc,kdr,pyrethroid,vector competence,Taiwan, | en |
| dc.relation.page | 118 | - |
| dc.identifier.doi | 10.6342/NTU202403174 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | 2026-12-31 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2026-12-31 | 4.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
