請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95121完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周綠蘋 | zh_TW |
| dc.contributor.advisor | Lu-Ping Chow | en |
| dc.contributor.author | 劉子榆 | zh_TW |
| dc.contributor.author | Tzu-Yu Liu | en |
| dc.date.accessioned | 2024-08-29T16:10:23Z | - |
| dc.date.available | 2024-09-05 | - |
| dc.date.copyright | 2024-08-29 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | 1. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer Statistics, 2021. CA Cancer J Clin. 71, 7–33 (2021). https://doi.org/10.3322/CAAC.21654
2. Park, W., Chawla, A., O’Reilly, E.M.: Pancreatic Cancer: A Review. JAMA. 326, 851–862 (2021). https://doi.org/10.1001/JAMA.2021.13027 3. Cancer site ranking. 4. Wong, M.C.S., Jiang, J.Y., Liang, M., Fang, Y., Yeung, M.S., Sung, J.J.Y.: Global temporal patterns of pancreatic cancer and association with socioeconomic development. Scientific Reports 2017 7:1. 7, 1–9 (2017). https://doi.org/10.1038/s41598-017-02997-2 5. Hu, Z.I., O’Reilly, E.M.: Therapeutic developments in pancreatic cancer. Nature Reviews Gastroenterology & Hepatology 2023 21:1. 21, 7–24 (2023). https://doi.org/10.1038/s41575-023-00840-w 6. Survival Rates for Pancreatic Cancer | American Cancer Society, https://www.cancer.org/cancer/types/pancreatic-cancer/detection-diagnosis-staging/survival-rates.html 7. Pancreatic cancer survival rates now almost 8% | Pancreatic Cancer Awareness | PCA, https://pancreaticcanceraction.org/news/pancreatic-cancer-survival-rates-now-almost-8/ 8. Pancreatic Cancer Types | Johns Hopkins Medicine, https://www.hopkinsmedicine.org/health/conditions-and-diseases/pancreatic-cancer/pancreatic-cancer-types 9. TNM staging system - Wikipedia, https://en.wikipedia.org/wiki/TNM_staging_system 10. Kang, H., Kim, S.S., Sung, M.J., Jo, J.H., Lee, H.S., Chung, M.J., Park, J.Y., Park, S.W., Song, S.Y., Park, M.S., Bang, S.: Evaluation of the 8th Edition AJCC Staging System for the Clinical Staging of Pancreatic Cancer. Cancers (Basel). 14, 4672 (2022). https://doi.org/10.3390/CANCERS14194672/S1 11. Pancreatic Cancer Awareness Month - Dr. Harsh J Shah, https://www.gastroclinix.com/blog/pancreas/pancreas-cancer/pancreatic-cancer-awareness-month/ 12. Magnetic resonance cholangiopancreatography - Wikipedia, https://en.wikipedia.org/wiki/Magnetic_resonance_cholangiopancreatography 13. Yousaf, M.N., Chaudhary, F.S., Ehsan, A., Suarez, A.L., Muniraj, T., Jamidar, P., Aslanian, H.R., Farrell, J.J.: Endoscopic ultrasound (EUS) and the management of pancreatic cancer. BMJ Open Gastroenterol. 7, 408 (2020). https://doi.org/10.1136/BMJGAST-2020-000408 14. Adamo, P., Cowley, C.M., Neal, C.P., Mistry, V., Page, K., Dennison, A.R., Isherwood, J., Hastings, R., Luo, J.L., Moore, D.A., Howard Pringle, J., Miguel Martins, L., Pritchard, C., Manson, M., Shaw, J.A.: Profiling tumour heterogeneity through circulating tumour DNA in patients with pancreatic cancer. Oncotarget. 8, 87221–87233 (2017). https://doi.org/10.18632/ONCOTARGET.20250 15. Lee, J.S., Park, S.S., Lee, Y.K., Norton, J.A., Jeffrey, S.S.: Liquid biopsy in pancreatic ductal adenocarcinoma: current status of circulating tumor cells and circulating tumor DNA. Mol Oncol. 13, 1623–1650 (2019). https://doi.org/10.1002/1878-0261.12537 16. Bosetti, C., Lucenteforte, E., Silverman, D.T., Petersen, G., Bracci, P.M., Ji, B.T., Negri, E., Li, D., Risch, H.A., Olson, S.H., Gallinger, S., Miller, A.B., Bueno-de-Mesquita, H.B., Talamini, R., Polesel, J., Ghadirian, P., Baghurst, P.A., Zatonski, W., Fontham, E., Bamlet, W.R., Holly, E.A., Bertuccio, P., Gao, Y.T., Hassan, M., Yu, H., Kurtz, R.C., Cotterchio, M., Su, J., Maisonneuve, P., Duell, E.J., Boffetta, P., La Vecchia, C.: Cigarette smoking and pancreatic cancer: An analysis from the International Pancreatic Cancer Case-Control Consortium (PANC4). Annals of Oncology. 23, 1880–1888 (2012). https://doi.org/10.1093/annonc/mdr541 17. Wang, Y.T., Gou, Y.W., Jin, W.W., Xiao, M., Fang, H.Y.: Association between alcohol intake and the risk of pancreatic cancer: A dose-response meta-analysis of cohort studies. BMC Cancer. 16, 1–11 (2016). https://doi.org/10.1186/S12885-016-2241-1/FIGURES/5 18. Sung, H., Siegel, R.L., Rosenberg, P.S., Jemal, A.: Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry. Lancet Public Health. 4, e137–e147 (2019). https://doi.org/10.1016/S2468-2667(18)30267-6 19. Johansen, D., Stocks, T., Jonsson, H., Lindkvist, B., Björge, T., Concin, H., Almquist, M., Häggström, C., Engeland, A., Ulmer, H., Hallmans, G., Selmer, R., Nagel, G., Tretli, S., Stattin, P., Manjer, J.: Metabolic Factors and the Risk of Pancreatic Cancer: A Prospective Analysis of almost 580,000 Men and Women in the Metabolic Syndrome and Cancer Project. Cancer Epidemiology, Biomarkers & Prevention. 19, 2307–2317 (2010). https://doi.org/10.1158/1055-9965.EPI-10-0234 20. Pati, S., Irfan, W., Jameel, A., Ahmed, S., Shahid, R.K.: Obesity and Cancer: A Current Overview of Epidemiology, Pathogenesis, Outcomes, and Management. Cancers (Basel). 15, (2023). https://doi.org/10.3390/CANCERS15020485 21. Salem, A.A., Mackenzie, G.G.: Pancreatic cancer: A critical review of dietary risk. Nutrition Research. 52, 1–13 (2018). https://doi.org/10.1016/J.NUTRES.2017.12.001 22. Amri, F., Belkhayat, C., yeznasni, A., Koulali, H., Jabi, R., Zazour, A., Abda, N., Bouziane, M., Ismaili, Z., Kharrasse, G.: Association between pancreatic cancer and diabetes: insights from a retrospective cohort study. BMC Cancer. 23, (2023). https://doi.org/10.1186/S12885-023-11344-W 23. Andersen, D.K., Korc, M., Petersen, G.M., Eibl, G., Li, D., Rickels, M.R., Chari, S.T., Abbruzzese, J.L.: Diabetes, Pancreatogenic Diabetes, and Pancreatic Cancer. Diabetes. 66, 1103–1110 (2017). https://doi.org/10.2337/DB16-1477 24. Hu, C., Hart, S.N., Polley, E.C., Gnanaolivu, R., Shimelis, H., Lee, K.Y., Lilyquist, J., Na, J., Moore, R., Antwi, S.O., Bamlet, W.R., Chaffee, K.G., DiCarlo, J., Wu, Z., Samara, R., Kasi, P.M., McWilliams, R.R., Petersen, G.M., Couch, F.J.: Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer. JAMA. 319, 2401–2409 (2018). https://doi.org/10.1001/JAMA.2018.6228 25. Golan, T., Kindler, H.L., Park, J.O., Reni, M., Macarulla, T., Hammel, P., van Cutsem, E., Arnold, D., Hochhauser, D., McGuinness, D., Locker, G.Y., Goranova, T., Schatz, P., Liu, Y.Z., Hall, M.J.: Geographic and ethnic heterogeneity of germline BRCA1 or BRCA2 mutation prevalence among patients with metastatic pancreatic cancer screened for entry into the POLO trial. Journal of Clinical Oncology. 38, 1442–1454 (2020). https://doi.org/10.1200/JCO.19.01890/ASSET/IMAGES/LARGE/JCO.19.01890F1.JPEG 26. Shindo, K., Yu, J., Suenaga, M., Fesharakizadeh, S., Cho, C., Macgregor-Das, A., Siddiqui, A., Witmer, P.D., Tamura, K., Song, T.J., Almario, J.A.N., Brant, A., Borges, M., Ford, M., Barkley, T., He, J., Weiss, M.J., Wolfgang, C.L., Roberts, N.J., Hruban, R.H., Klein, A.P., Goggins, M.: Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. Journal of Clinical Oncology. 35, 3382–3390 (2017). https://doi.org/10.1200/JCO.2017.72.3502/ASSET/IMAGES/LARGE/JCO.2017.72.3502TA3.JPEG 27. Amanam, I., Chung, V.: Targeted Therapies for Pancreatic Cancer. Cancers 2018, Vol. 10, Page 36. 10, 36 (2018). https://doi.org/10.3390/CANCERS10020036 28. Wood, L.D., Canto, M.I., Jaffee, E.M., Simeone, D.M.: Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology. 163, 386-402.e1 (2022). https://doi.org/10.1053/J.GASTRO.2022.03.056 29. Torphy, R.J., Fujiwara, Y., Schulick, R.D.: Pancreatic cancer treatment: better, but a long way to go. Surg Today. 50, 1117–1125 (2020). https://doi.org/10.1007/S00595-020-02028-0/TABLES/1 30. Hu, Z.I., O’Reilly, E.M.: Therapeutic developments in pancreatic cancer. Nature Reviews Gastroenterology & Hepatology 2023 21:1. 21, 7–24 (2023). https://doi.org/10.1038/s41575-023-00840-w 31. Evans, W.J., Morley, J.E., Argilés, J., Bales, C., Baracos, V., Guttridge, D., Jatoi, A., Kalantar-Zadeh, K., Lochs, H., Mantovani, G., Marks, D., Mitch, W.E., Muscaritoli, M., Najand, A., Ponikowski, P., Rossi Fanelli, F., Schambelan, M., Schols, A., Schuster, M., Thomas, D., Wolfe, R., Anker, S.D.: Cachexia: A new definition. Clinical Nutrition. 27, 793–799 (2008). https://doi.org/10.1016/J.CLNU.2008.06.013 32. Farkas, J., von Haehling, S., Kalantar-Zadeh, K., Morley, J.E., Anker, S.D., Lainscak, M.: Cachexia as a major public health problem: Frequent, costly, and deadly. J Cachexia Sarcopenia Muscle. 4, 173–178 (2013). https://doi.org/10.1007/S13539-013-0105-Y/TABLES/3 33. Baracos, V.E., Martin, L., Korc, M., Guttridge, D.C., Fearon, K.C.H.: Cancer-associated cachexia. Nature Reviews Disease Primers 2018 4:1. 4, 1–18 (2018). https://doi.org/10.1038/nrdp.2017.105 34. Sadeghi, M., Keshavarz-Fathi, M., Baracos, V., Arends, J., Mahmoudi, M., Rezaei, N.: Cancer cachexia: Diagnosis, assessment, and treatment. Crit Rev Oncol Hematol. 127, 91–104 (2018). https://doi.org/10.1016/J.CRITREVONC.2018.05.006 35. Cachexia: Causes, Symptoms, Diagnosis, and Treatments, https://www.verywellhealth.com/cachexia-overview-2249008 36. Lim, S., Brown, J.L., Washington, T.A., Greene, N.P.: Development and progression of cancer cachexia: Perspectives from bench to bedside. Sports Medicine and Health Science. 2, 177–185 (2020). https://doi.org/10.1016/J.SMHS.2020.10.003 37. Baracos, V.E., Martin, L., Korc, M., Guttridge, D.C., Fearon, K.C.H.: Cancer-associated cachexia. Nature Reviews Disease Primers 2018 4:1. 4, 1–18 (2018). https://doi.org/10.1038/nrdp.2017.105 38. Roeland, E.J., Bohlke, K., Baracos, V.E., Bruera, E., Fabbro, E. Del, Dixon, S., Fallon, M., Herrstedt, J., Lau, H., Platek, M., Rugo, H.S., Schnipper, H.H., Smith, T.J., Tan, W., Loprinzi, C.L.: Management of cancer cachexia: ASCO guideline. Journal of Clinical Oncology. 38, 2438–2453 (2020). https://doi.org/10.1200/JCO.20.00611/ASSET/IMAGES/LARGE/JCO.20.00611TA1.JPEG 39. Argilés, J.M., Busquets, S., Stemmler, B., López-Soriano, F.J.: Cancer cachexia: understanding the molecular basis. Nature Reviews Cancer 2014 14:11. 14, 754–762 (2014). https://doi.org/10.1038/nrc3829 40. Porporato, P.E.: Understanding cachexia as a cancer metabolism syndrome. Oncogenesis 2016 5:2. 5, e200–e200 (2016). https://doi.org/10.1038/oncsis.2016.3 41. Sadeghi, M., Keshavarz-Fathi, M., Baracos, V., Arends, J., Mahmoudi, M., Rezaei, N.: Cancer cachexia: Diagnosis, assessment, and treatment. Crit Rev Oncol Hematol. 127, 91–104 (2018). https://doi.org/10.1016/J.CRITREVONC.2018.05.006 42. Nishikawa, H., Goto, M., Fukunishi, S., Asai, A., Nishiguchi, S., Higuchi, K.: Cancer Cachexia: Its Mechanism and Clinical Significance. International Journal of Molecular Sciences 2021, Vol. 22, Page 8491. 22, 8491 (2021). https://doi.org/10.3390/IJMS22168491 43. Setiawan, T., Sari, I.N., Wijaya, Y.T., Julianto, N.M., Muhammad, J.A., Lee, H., Chae, J.H., Kwon, H.Y.: Cancer cachexia: molecular mechanisms and treatment strategies. Journal of Hematology & Oncology 2023 16:1. 16, 1–26 (2023). https://doi.org/10.1186/S13045-023-01454-0 44. Farkas, J., von Haehling, S., Kalantar-Zadeh, K., Morley, J.E., Anker, S.D., Lainscak, M.: Cachexia as a major public health problem: Frequent, costly, and deadly. J Cachexia Sarcopenia Muscle. 4, 173–178 (2013). https://doi.org/10.1007/S13539-013-0105-Y/TABLES/3 45. Evans, W.J., Morley, J.E., Argilés, J., Bales, C., Baracos, V., Guttridge, D., Jatoi, A., Kalantar-Zadeh, K., Lochs, H., Mantovani, G., Marks, D., Mitch, W.E., Muscaritoli, M., Najand, A., Ponikowski, P., Rossi Fanelli, F., Schambelan, M., Schols, A., Schuster, M., Thomas, D., Wolfe, R., Anker, S.D.: Cachexia: A new definition. Clinical Nutrition. 27, 793–799 (2008). https://doi.org/10.1016/J.CLNU.2008.06.013 46. Mariean, C.R., Tiucă, O.M., Mariean, A., Cotoi, O.S.: Cancer Cachexia: New Insights and Future Directions. Cancers (Basel). 15, (2023). https://doi.org/10.3390/CANCERS15235590 47. Roeland, E.J., Bohlke, K., Baracos, V.E., Bruera, E., Fabbro, E. Del, Dixon, S., Fallon, M., Herrstedt, J., Lau, H., Platek, M., Rugo, H.S., Schnipper, H.H., Smith, T.J., Tan, W., Loprinzi, C.L.: Management of cancer cachexia: ASCO guideline. Journal of Clinical Oncology. 38, 2438–2453 (2020). https://doi.org/10.1200/JCO.20.00611/ASSET/IMAGES/LARGE/JCO.20.00611TA1.JPEG 48. Argilés, J.M., Busquets, S., Stemmler, B., López-Soriano, F.J.: Cancer cachexia: understanding the molecular basis. Nature Reviews Cancer 2014 14:11. 14, 754–762 (2014). https://doi.org/10.1038/nrc3829 49. Porporato, P.E.: Understanding cachexia as a cancer metabolism syndrome. Oncogenesis 2016 5:2. 5, e200–e200 (2016). https://doi.org/10.1038/oncsis.2016.3 50. Nishikawa, H., Goto, M., Fukunishi, S., Asai, A., Nishiguchi, S., Higuchi, K.: Cancer Cachexia: Its Mechanism and Clinical Significance. International Journal of Molecular Sciences 2021, Vol. 22, Page 8491. 22, 8491 (2021). https://doi.org/10.3390/IJMS22168491 51. Sanders, K.J.C., Kneppers, A.E.M., van de Bool, C., Langen, R.C.J., Schols, A.M.W.J.: Cachexia in chronic obstructive pulmonary disease: new insights and therapeutic perspective. J Cachexia Sarcopenia Muscle. 7, 5–22 (2016). https://doi.org/10.1002/JCSM.12062 52. Remels, A.H.V., Gosker, H.R., Langen, R.C.J., Schols, A.M.W.J.: The mechanisms of cachexia underlying muscle dysfunction in COPD. J Appl Physiol. 114, 1253–1262 (2013). https://doi.org/10.1152/JAPPLPHYSIOL.00790.2012/ASSET/IMAGES/LARGE/ZDG0221203740001.JPEG 53. Mancini, D.M., Walter, G., Reichek, N., Lenkinski, R., McCully, K.K., Mullen, J.L., Wilson, J.R.: Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation. 85, 1364–1373 (1992). https://doi.org/10.1161/01.CIR.85.4.1364 54. Christensen, H.M., Kistorp, C., Schou, M., Keller, N., Zerahn, B., Frystyk, J., Schwarz, P., Faber, J.: Prevalence of cachexia in chronic heart failure and characteristics of body composition and metabolic status. Endocrine. 43, 626–634 (2013). https://doi.org/10.1007/S12020-012-9836-3/TABLES/4 55. Soto, M.E., Pérez-Torres, I., Rubio-Ruiz, M.E., Manzano-Pech, L., Guarner-Lans, V.: Interconnection between Cardiac Cachexia and Heart Failure—Protective Role of Cardiac Obesity. Cells 2022, Vol. 11, Page 1039. 11, 1039 (2022). https://doi.org/10.3390/CELLS11061039 56. Carrero, J.J., Thomas, F., Nagy, K., Arogundade, F., Avesani, C.M., Chan, M., Chmielewski, M., Cordeiro, A.C., Espinosa-Cuevas, A., Fiaccadori, E., Guebre-Egziabher, F., Hand, R.K., Hung, A.M., Ikizler, T.A., Johansson, L.R., Kalantar-Zadeh, K., Karupaiah, T., Lindholm, B., Marckmann, P., Mafra, D., Parekh, R.S., Park, J., Russo, S., Saxena, A., Sezer, S., Teta, D., Ter Wee, P.M., Verseput, C., Wang, A.Y.M., Xu, H., Lu, Y., Molnar, M.Z., Kovesdy, C.P.: Global Prevalence of Protein-Energy Wasting in Kidney Disease: A Meta-analysis of Contemporary Observational Studies From the International Society of Renal Nutrition and Metabolism. Journal of Renal Nutrition. 28, 380–392 (2018). https://doi.org/10.1053/J.JRN.2018.08.006 57. Mak, R.H., Ikizler, A.T., Kovesdy, C.P., Raj, D.S., Stenvinkel, P., Kalantar-Zadeh, K.: Wasting in chronic kidney disease. J Cachexia Sarcopenia Muscle. 2, 9–25 (2011). https://doi.org/10.1007/S13539-011-0019-5/FIGURES/5 58. Hanna, R.M., Ghobry, L., Wassef, O., Rhee, C.M., Kalantar-Zadeh, K.: A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease. Blood Purif. 49, 202–211 (2020). https://doi.org/10.1159/000504240 59. Koppe, L., Fouque, D., Kalantar-Zadeh, K.: Kidney cachexia or protein-energy wasting in chronic kidney disease: facts and numbers. J Cachexia Sarcopenia Muscle. 10, 479–484 (2019). https://doi.org/10.1002/JCSM.12421 60. Cheung, W.W., Paik, K.H., Mak, R.H.: Inflammation and cachexia in chronic kidney disease. Pediatric Nephrology. 25, 711–724 (2010). https://doi.org/10.1007/S00467-009-1427-Z/FIGURES/2 61. HIV wasting syndrome: Symptoms, causes, and more, https://www.medicalnewstoday.com/articles/hiv-wasting-syndrome 62. HIV Wasting Syndrome, an AIDS-Defining Condition, https://www.verywellhealth.com/hiv-wasting-syndrome-aids-defining-condition-48955 63. McGovern, J., Dolan, R.D., Horgan, P.G., Laird, B.J., McMillan, D.C.: Computed tomography‐defined low skeletal muscle index and density in cancer patients: observations from a systematic review. J Cachexia Sarcopenia Muscle. 12, 1408 (2021). https://doi.org/10.1002/JCSM.12831 64. Aleixo, G.F.P., Shachar, S.S., Nyrop, K.A., Muss, H.B., Malpica, L., Williams, G.R.: Myosteatosis and prognosis in cancer: Systematic review and meta-analysis. Crit Rev Oncol Hematol. 145, (2020). https://doi.org/10.1016/J.CRITREVONC.2019.102839 65. Shachar, S.S., Williams, G.R., Muss, H.B., Nishijima, T.F.: Prognostic value of sarcopenia in adults with solid tumours: A meta-analysis and systematic review. Eur J Cancer. 57, 58–67 (2016). https://doi.org/10.1016/J.EJCA.2015.12.030 66. Fearon, K., Strasser, F., Anker, S.D., Bosaeus, I., Bruera, E., Fainsinger, R.L., Jatoi, A., Loprinzi, C., MacDonald, N., Mantovani, G., Davis, M., Muscaritoli, M., Ottery, F., Radbruch, L., Ravasco, P., Walsh, D., Wilcock, A., Kaasa, S., Baracos, V.E.: Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–495 (2011). https://doi.org/10.1016/S1470-2045(10)70218-7 67. Argilés, J.M., Betancourt, A., Guàrdia-Olmos, J., Peró-Cebollero, M., López-Soriano, F.J., Madeddu, C., Serpe, R., Busquets, S.: Validation of the CAchexia SCOre (CASCO). Staging cancer patients: The use of miniCASCO as a simplified tool. Front Physiol. 8, 242078 (2017). https://doi.org/10.3389/FPHYS.2017.00092/BIBTEX 68. Argilés, J.M., López-Soriano, F.J., Toledo, M., Betancourt, A., Serpe, R., Busquets, S.: The cachexia score (CASCO): A new tool for staging cachectic cancer patients. J Cachexia Sarcopenia Muscle. 2, 87–93 (2011). https://doi.org/10.1007/S13539-011-0027-5/TABLES/6 69. Setiawan, T., Sari, I.N., Wijaya, Y.T., Julianto, N.M., Muhammad, J.A., Lee, H., Chae, J.H., Kwon, H.Y.: Cancer cachexia: molecular mechanisms and treatment strategies. Journal of Hematology & Oncology 2023 16:1. 16, 1–26 (2023). https://doi.org/10.1186/S13045-023-01454-0 70. Lecker, S.H., Solomon, V., Mitch, W.E., Goldberg, A.L.: Muscle protein breakdown and the critical role of the ubiquitin- proteasome pathway in normal and disease states. Journal of Nutrition. 129, (1999). https://doi.org/10.1093/jn/129.1.227s 71. Rom, O., Reznick, A.Z.: The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med. 98, 218–230 (2016). https://doi.org/10.1016/J.FREERADBIOMED.2015.12.031 72. Setiawan, T., Sari, I.N., Wijaya, Y.T., Julianto, N.M., Muhammad, J.A., Lee, H., Chae, J.H., Kwon, H.Y.: Cancer cachexia: molecular mechanisms and treatment strategies. Journal of Hematology & Oncology 2023 16:1. 16, 1–26 (2023). https://doi.org/10.1186/S13045-023-01454-0 73. Biswas, A.K., Acharyya, S.: Understanding cachexia in the context of metastatic progression. Nature Reviews Cancer 2020 20:5. 20, 274–284 (2020). https://doi.org/10.1038/s41568-020-0251-4 74. Argilés, J.M., López-Soriano, F.J., Stemmler, B., Busquets, S.: Cancer-associated cachexia — understanding the tumour macroenvironment and microenvironment to improve management. Nature Reviews Clinical Oncology 2023 20:4. 20, 250–264 (2023). https://doi.org/10.1038/s41571-023-00734-5 75. Tan, C.R., Yaffee, P.M., Jamil, L.H., Lo, S.K., Nissen, N., Pandol, S.J., Tuli, R., Hendifar, A.E.: Pancreatic cancer cachexia: A review of mechanisms and therapeutics. Front Physiol. 5 MAR, 79187 (2014). https://doi.org/10.3389/FPHYS.2014.00088/BIBTEX 76. Kordes, M., Larsson, L., Engstrand, L., Löhr, J.M.: Pancreatic cancer cachexia: three dimensions of a complex syndrome. British Journal of Cancer 2021 124:10. 124, 1623–1636 (2021). https://doi.org/10.1038/s41416-021-01301-4 77. Mueller, T.C., Burmeister, M.A., Bachmann, J., Martignoni, M.E.: Cachexia and pancreatic cancer: Are there treatment options? World Journal of Gastroenterology : WJG. 20, 9361 (2014). https://doi.org/10.3748/WJG.V20.I28.9361 78. Bresnick, A.R., Weber, D.J., Zimmer, D.B.: S100 proteins in cancer. Nature Reviews Cancer 2015 15:2. 15, 96–109 (2015). https://doi.org/10.1038/nrc3893 79. Allgöwer, C., Kretz, A.L., von Karstedt, S., Wittau, M., Henne-Bruns, D., Lemke, J.: Friend or Foe: S100 Proteins in Cancer. Cancers 2020, Vol. 12, Page 2037. 12, 2037 (2020). https://doi.org/10.3390/CANCERS12082037 80. Chen, H., Xu, C., Jin, Q., Liu, Z.: S100 protein family in human cancer. Am J Cancer Res. 4, 89 (2014) 81. Markowitz, J., Carson, W.E.: Review of S100A9 biology and its role in cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 1835, 100–109 (2013). https://doi.org/10.1016/J.BBCAN.2012.10.003 82. Chen, Y., Ouyang, Y., Li, Z., Wang, X., Ma, J.: S100A8 and S100A9 in Cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 1878, 188891 (2023). https://doi.org/10.1016/J.BBCAN.2023.188891 83. Fernandez, G.J., Ferreira, J.H., Vechetti, I.J., de Moraes, L.N., Cury, S.S., Freire, P.P., Gutiérrez, J., Ferretti, R., Dal-Pai-Silva, M., Rogatto, S.R., Carvalho, R.F.: MicroRNA-mRNA Co-sequencing Identifies Transcriptional and Post-transcriptional Regulatory Networks Underlying Muscle Wasting in Cancer Cachexia. Front Genet. 11, 538001 (2020). https://doi.org/10.3389/FGENE.2020.00541/BIBTEX 84. Shabani, F., Farasat, A., Mahdavi, M., Gheibi, N.: Calprotectin (S100A8/S100A9): a key protein between inflammation and cancer. Inflammation Research. 67, 801–812 (2018). https://doi.org/10.1007/S00011-018-1173-4/TABLES/2 85. Chang, C.C., Khan, I., Tsai, K.L., Li, H., Yang, L.W., Chou, R.H., Yu, C.: Blocking the interaction between S100A9 and RAGE V domain using CHAPS molecule: A novel route to drug development against cell proliferation. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1864, 1558–1569 (2016). https://doi.org/10.1016/J.BBAPAP.2016.08.008 86. Tasquinimod - Wikipedia, https://en.wikipedia.org/wiki/Tasquinimod 87. Vogl, D.T., Nefedova, Y., Wileyto, E.P., Nguyen, C.T., Diaczynsky, C., Etzweiler, A., Strakovsky, I., Lin, C., Bondesson, E., Tuvesson, H., Vahtola, E., Cohen, A.D., Susanibar-Adaniya, S.P., Waxman, A.J., Garfall, A.L., Stadtmauer, E.A.: Phase 1 study of tasquinimod, an S100A9 inhibitor, alone and in combination with IRd for relapsed and refractory multiple myeloma (RRMM). https://doi.org/10.1200/JCO.2023.41.16_suppl.8042. 41, 8042–8042 (2023). https://doi.org/10.1200/JCO.2023.41.16_SUPPL.8042 88. Wobus, M., Balaian, E., Lissner, M., Towers, R., Oelschlägel, U., Wehner, R., Chavakis, T., Törngren, M., Eriksson, H., Bondesson, E., Platzbecker, U., Bornhäuser, M., Sockel, K.: P752: TARGETING S100A9 IN THE MYELODYSPLASTIC INFLAMMATORY BONE MARROW MICROENVIRONMENT BY TASQUINIMOD IMPROVES THE SUPPORTIVE FUNCTION OF MESENCHYMAL STROMAL CELLS. Hemasphere. 6, 647–648 (2022). https://doi.org/10.1097/01.HS9.0000845892.14907.80 89. Lin, C., Garcia-Gerique, L., Bonner, E.E., Mastio, J., Rosenwasser, M., Cruz, Z., Lawler, M., Bernabei, L., Muthumani, K., Liu, Q., Poncz, M., Vogl, T., Törngren, M., Eriksson, H., Vogl, D.T., Gabrilovich, D.I., Nefedova, Y.: S100A8/S100A9 Promote Progression of Multiple Myeloma via Expansion of Megakaryocytes. Cancer Research Communications. 3, 420–430 (2023). https://doi.org/10.1158/2767-9764.CRC-22-0368/716643/AM/S100A8-S100A9-PROMOTE-PROGRESSION-OF-MULTIPLE 90. Raymond, E., Dalgleish, A., Damber, J.E., Smith, M., Pili, R.: Mechanisms of action of tasquinimod on the tumour microenvironment. Cancer Chemother Pharmacol. 73, 1–8 (2014). https://doi.org/10.1007/S00280-013-2321-8/FIGURES/1 91. Björk, P., Björk, A., Vogl, T., Stenström, M., Liberg, D., Olsson, A., Roth, J., Ivars, F., Leanderson, T.: Identification of Human S100A9 as a Novel Target for Treatment of Autoimmune Disease via Binding to Quinoline-3-Carboxamides. PLoS Biol. 7, e1000097 (2009). https://doi.org/10.1371/JOURNAL.PBIO.1000097 92. Vogl, D.T., Nefedova, Y., Wileyto, E.P., Sembhi, H., Strakovsky, I., Nguyen, C., Taneja, R., Bondesson, E., Eriksson, H., Tuvesson, H.: A Phase 1 Study of Tasquinimod in Patients with Relapsed or Refractory Multiple Myeloma. Blood. 136, 17–18 (2020). https://doi.org/10.1182/BLOOD-2020-137482 93. Fan, R., Satilmis, H., Vandewalle, N., De Bruyne, E., Menu, E., Chantry, A.D., Evans, H., Törngren, M., Eriksson, H., Breckpot, K., Maes, K., Vanderkerken, K., De Veirman, K.: Tasquinimod Targets Immunosuppressive Myeloid Cells, Increases Osteogenesis and Has Direct Anti-Myeloma Effects By Inhibiting c-Myc Expression in Vitro and In Vivo. Blood. 138, 1594 (2021). https://doi.org/10.1182/BLOOD-2021-147744 94. Wobus, M., Balaian, E., Oelschlaegel, U., Towers, R., Möbus, K., Habermann, I., Wehner, R., Stölzel, F., Chavakis, T., Törngren, M., Eriksson, H., Platzbecker, U., Röllig, C., Bornhäuser, M., Sockel, K.: Targeting the Inflammatory Niche in MDS By Tasquinimod Restores Hematopoietic Support and Suppresses Immune-Checkpoint Expression in Vitro. Blood. 138, 2596 (2021). https://doi.org/10.1182/BLOOD-2021-150455 95. Tasquinimod | C20H17F3N2O4 | CID 54682876 - PubChem, https://pubchem.ncbi.nlm.nih.gov/compound/Tasquinimod 96. Sarkar, A., Concilio, S., Sessa, L., Marrafino, F., Piotto, S.: Advancements and novel approaches in modified AutoDock Vina algorithms for enhanced molecular docking. Results Chem. 7, 101319 (2024). https://doi.org/10.1016/J.RECHEM.2024.101319 97. Trott, O., Olson, A.J.: AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 31, 455–461 (2010). https://doi.org/10.1002/JCC.21334 98. Fakultät, D., Und Pharmazie, C.: Resolving the ligand-binding to pattern recognition Receptor for Advanced Glycation End products (RAGE) INAUGULRALDISSERTATION Zur Erlangung des Doktorgrades. 99. Hollingsworth, S.A., Dror, R.O.: Molecular dynamics simulation for all. Neuron. 99, 1129 (2018). https://doi.org/10.1016/J.NEURON.2018.08.011 100. Sufian Badar, M., Shamsi, S., Ahmed, J., Afshar Alam, M., Nappo S Badar, S.M., Shamsi, S., Ahmed, J., Alam, M.: Molecular Dynamics Simulations: Concept, Methods, and Applications. 131–151 (2022). https://doi.org/10.1007/978-3-030-94651-7_7 101. González, M.A.: Force fields and molecular dynamics simulations. École thématique de la Société Française de la Neutronique. 12, 169–200 (2011). https://doi.org/10.1051/SFN/201112009 102. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Phys Today. 50, 66–66 (1997). https://doi.org/10.1063/1.881812 103. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem. 4, 187–217 (1983). https://doi.org/10.1002/JCC.540040211 104. and, J.C., Houk, K.N.: Molecular Modeling: Principles and Applications By Andrew R. Leach. Addison Wesley Longman Limited: Essex, England, 1996. 595 pp. ISBN 0-582-23933-8. $35. J Chem Inf Comput Sci. 38, 939–939 (1998). https://doi.org/10.1021/CI9804241 105. Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat Struct Biol. 9, 646–652 (2002). https://doi.org/10.1038/NSB0902-646 106. Páll, S., Abraham, M.J., Kutzner, C., Hess, B., Lindahl, E.: Tackling exascale software challenges in molecular dynamics simulations with GROMACS. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 8759, 3–27 (2015). https://doi.org/10.1007/978-3-319-15976-8_1/FIGURES/7 107. Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindah, E.: GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 1–2, 19–25 (2015). https://doi.org/10.1016/J.SOFTX.2015.06.001 108. GROMACS 2024.2 Manual. https://doi.org/10.5281/ZENODO.11148638 109. Wu, X.-W., Wang, S.: The Art of Molecular Dynamics Simulation By D.C.Rapaport. MATERIAL AND MANUFACTURING PROCESS. 13, 627–628 (1998). https://doi.org/10.1080/10426919808935287 110. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J Chem Phys. 103, 8577–8593 (1995). https://doi.org/10.1063/1.470117 111. Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J Chem Phys. 98, 10089–10092 (1993). https://doi.org/10.1063/1.464397 112. Berendsen, H.J.C., van der Spoel, D., van Drunen, R.: GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun. 91, 43–56 (1995). https://doi.org/10.1016/0010-4655(95)00042-E 113. Miller, B.R., McGee, T.D., Swails, J.M., Homeyer, N., Gohlke, H., Roitberg, A.E.: MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J Chem Theory Comput. 8, 3314–3321 (2012). https://doi.org/10.1021/CT300418H 114. Valdés-Tresanco, M.S., Valdés-Tresanco, M.E., Valiente, P.A., Moreno, E.: Gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J Chem Theory Comput. 17, 6281–6291 (2021). https://doi.org/10.1021/ACS.JCTC.1C00645 115. Duan, L., Liu, X., Zhang, J.Z.H.: Interaction entropy: A new paradigm for highly efficient and reliable computation of protein-ligand binding free energy. J Am Chem Soc. 138, 5722–5728 (2016). https://doi.org/10.1021/JACS.6B02682/SUPPL_FILE/JA6B02682_SI_001.PDF 116. Powrózek, T., Pigoń-Zajac, D., Mazurek, M., Otieno, M.O., Rahnama-Hezavah, M., Małecka-Massalska, T.: TNF-α Induced Myotube Atrophy in C2C12 Cell Line Uncovers Putative Inflammatory-Related lncRNAs Mediating Muscle Wasting. Int J Mol Sci. 23, 3878 (2022). https://doi.org/10.3390/IJMS23073878/S1 117. Zhang, W., Sun, W., Gu, X., Miao, C., Feng, L., Shen, Q., Liu, X., Zhang, X.: GDF-15 in tumor-derived exosomes promotes muscle atrophy via Bcl-2/caspase-3 pathway. Cell Death Discovery 2022 8:1. 8, 1–11 (2022). https://doi.org/10.1038/s41420-022-00972-z 118. Wu, H.Y., Trevino, J.G., Fang, B.L., Riner, A.N., Vudatha, V., Zhang, G.H., Li, Y.P.: Patient-Derived Pancreatic Cancer Cells Induce C2C12 Myotube Atrophy by Releasing Hsp70 and Hsp90. Cells 2022, Vol. 11, Page 2756. 11, 2756 (2022). https://doi.org/10.3390/CELLS11172756 119. Huang, Z., Zhong, L., Zhu, J., Xu, H., Ma, W., Zhang, L., Shen, Y., Law, B.Y.-K., Ding, F., Gu, X., Sun, H.: Inhibition of IL-6/JAK/STAT3 pathway rescues denervation-induced skeletal muscle atrophy. Ann Transl Med. 8, 1681–1681 (2020). https://doi.org/10.21037/ATM-20-7269 120. Sakai, H., Asami, M., Naito, H., Kitora, S., Suzuki, Y., Miyauchi, Y., Tachinooka, R., Yoshida, S., Kon, R., Ikarashi, N., Chiba, Y., Kamei, J.: Exogenous insulin-like growth factor 1 attenuates cisplatin-induced muscle atrophy in mice. J Cachexia Sarcopenia Muscle. 12, 1570–1581 (2021). https://doi.org/10.1002/JCSM.12760 121. Lenk, K., Schuler, G., Adams, V.: Skeletal muscle wasting in cachexia and sarcopenia: Molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 1, 9–21 (2010). https://doi.org/10.1007/S13539-010-0007-1/FIGURES/2 122. Fry, C.S., Nayeem, S.Z., Dillon, E.L., Sarkar, P.S., Tumurbaatar, B., Urban, R.J., Wright, T.J., Sheffield-Moore, M., Tilton, R.G., Choudhary, S.: Glucocorticoids increase skeletal muscle NF‐κB inducing kinase (NIK): links to muscle atrophy. Physiol Rep. 4, (2016). https://doi.org/10.14814/PHY2.13014 123. Wang, D., Li, X., Jiao, D., Cai, Y., Qian, L., Shen, Y., Lu, Y., Zhou, Y., Fu, B., Sun, R., Tian, Z., Zheng, X., Wei, H.: LCN2 secreted by tissue-infiltrating neutrophils induces the ferroptosis and wasting of adipose and muscle tissues in lung cancer cachexia. J Hematol Oncol. 16, 1–19 (2023). https://doi.org/10.1186/S13045-023-01429-1/FIGURES/7 124. Silva, K.A.S., Dong, J., Dong, Y., Dong, Y., Schor, N., Tweardy, D.J., Zhang, L., Mitch, W.E.: Inhibition of Stat3 Activation Suppresses Caspase-3 and the Ubiquitin-Proteasome System, Leading to Preservation of Muscle Mass in Cancer Cachexia. Journal of Biological Chemistry. 290, 11177–11187 (2015). https://doi.org/10.1074/JBC.M115.641514 125. Li, Y.-P., Chen, Y., John, J., Moylan, J., Jin, B., Mann, D.L., Reid, M.B.: TNF-α acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. The FASEB Journal. 19, 362–370 (2005). https://doi.org/10.1096/FJ.04-2364COM 126. Liu, S., Song, Y., Zhang, I.Y., Zhang, L., Gao, H., Su, Y., Yang, Y., Yin, S., Zheng, Y., Ren, L., Yin, H.H., Pillai, R., Nath, A., Medina, E.F., Cosgrove, P.A., Bild, A.H., Badie, B.: RAGE Inhibitors as Alternatives to Dexamethasone for Managing Cerebral Edema Following Brain Tumor Surgery. Neurotherapeutics. 19, 635–648 (2022). https://doi.org/10.1007/S13311-022-01207-W/FIGURES/5 127. Condamine, T., Ramachandran, I.R., Gabrilovich, D.I.: S100A9, inflammation, and regulation of immune suppression in cancer. Tumor-Induced Immune Suppression: Mechanisms and Therapeutic Reversal. 295–310 (2014). https://doi.org/10.1007/978-1-4899-8056-4_10/FIGURES/2 128. Mondet, J., Chevalier, S., Mossuz, P.: Pathogenic Roles of S100A8 and S100A9 Proteins in Acute Myeloid and Lymphoid Leukemia: Clinical and Therapeutic Impacts. Molecules 2021, Vol. 26, Page 1323. 26, 1323 (2021). https://doi.org/10.3390/MOLECULES26051323 129. Gupta, N., Ustwani, O. Al, Shen, L., Pili, R.: Mechanism of action and clinical activity of tasquinimod in castrate-resistant prostate cancer. Onco Targets Ther. 7, 223–234 (2014). https://doi.org/10.2147/OTT.S53524 130. Methods and Compounds for Preventing, Treating and Diagnosing an Inflammatory Condition. (2013) 131. Singh, H., Rai, V., Agrawal, D.K.: Discerning the promising binding sites of S100/calgranulins and their therapeutic potential in atherosclerosis. Expert Opin Ther Pat. 31, 1045–1057 (2021). https://doi.org/10.1080/13543776.2021.1937122 132. Lee, J., Kumar, S., Lee, S.Y., Park, S.J., Kim, M.H.: Development of Predictive Models for Identifying Potential S100A9 Inhibitors Based on Machine Learning Methods. Front Chem. 7, 453573 (2019). https://doi.org/10.3389/FCHEM.2019.00779/BIBTEX 133. Wu, R., Duan, L., Cui, F., Cao, J., Xiang, Y., Tang, Y., Zhou, L.: S100A9 promotes human hepatocellular carcinoma cell growth and invasion through RAGE-mediated ERK1/2 and p38 MAPK pathways. Exp Cell Res. 334, 228–238 (2015). https://doi.org/10.1016/J.YEXCR.2015.04.008 134. Vogl, T., Stratis, A., Wixler, V., Völler, T., Thurainayagam, S., Jorch, S.K., Zenker, S., Dreiling, A., Chakraborty, D., Fröhling, M., Paruzel, P., Wehmeyer, C., Hermann, S., Papantonopoulou, O., Geyer, C., Loser, K., Schäfers, M., Ludwig, S., Stoll, M., Leanderson, T., Schultze, J.L., König, S., Pap, T., Roth, J.: Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation. J Clin Invest. 128, 1852–1866 (2018). https://doi.org/10.1172/JCI89867 135. Xiang, H., Guo, F., Tao, X., Zhou, Q., Xia, S., Deng, D., Li, L., Shang, D.: Pancreatic ductal deletion of S100A9 alleviates acute pancreatitis by targeting VNN1-mediated ROS release to inhibit NLRP3 activation. Theranostics. 11, 4467 (2021). https://doi.org/10.7150/THNO.54245 136. Leri, M., Chaudhary, H., Iashchishyn, I.A., Pansieri, J., Svedružić, Ž.M., Gómez Alcalde, S., Musteikyte, G., Smirnovas, V., Stefani, M., Bucciantini, M., Morozova-Roche, L.A.: Natural Compound from Olive Oil Inhibits S100A9 Amyloid Formation and Cytotoxicity: Implications for Preventing Alzheimer’s Disease. ACS Chem Neurosci. 12, 1905–1918 (2021). https://doi.org/10.1021/ACSCHEMNEURO.0C00828/ASSET/IMAGES/MEDIUM/CN0C00828_M002.GIF | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95121 | - |
| dc.description.abstract | 惡質症(Cachexia)是一種多因素導致的消耗性代謝症候群,常見於癌症、愛滋病(HIV)、慢性阻塞性肺病(COPD)及鬱血性心衰竭(CHF)等慢性疾病患者。其主要特徵為骨骼肌的流失和全身性的發炎症狀。在癌症患者中,接近80%的癌症患者會在中後期併發惡質症,其中胰臟癌更是所有癌症中發生惡質症比例最高的一群。
實驗室過去研究發現,在胰臟癌患者中表現量顯著上調的鈣離子結合蛋白S100A9,會透過與小鼠肌肉細胞C2C12的Toll-Like Receptor 4, TLR4結合並活化IKK/NF-κB訊息路徑,從而促進會降解肌肉相關蛋白的E3-泛素連接酶,MuRF1和Atrogin-1的表達,最終造成肌肉細胞的萎縮。 Tasquinimod(TASQ)是一種口服小分子臨床藥物,作為S100A9特異性抑制劑,TASQ可以抑制S100A9與TLR4之間相互作用。我們透過對C2C12細胞進行S100A9和TASQ聯合處理的,發現TASQ有效抑制S100A9透過TLR4或經由訊息路徑,減少MuRF1和Atrogin-1的轉錄,進而緩解肌肉細胞的萎縮。為了進一步研究S100A9與TASQ之間的交互作用,我們透過分子對接與分子動力學模擬,發現TASQ會透過和S100A9中Helix III與Helix IV上的特定胺基酸形成氫鍵與疏水性作用,來與S100A9結合。 我們的研究結果表明,S100A9可以透過和小鼠肌肉細胞的TLR4結合,活化下游Myd88/IKK/NF-κB調控的訊息通路,誘導肌肉相關蛋白降解,造成肌肉細胞的萎縮。TASQ可以透過和S100A9結合,抑制S100A9造成的肌肉相關蛋白降解。透過探討S100A9與惡質症之間的機制,以及Tasquinimod的效果,對於未來針對胰臟癌致惡質症的治療策略提供了新的方向。 | zh_TW |
| dc.description.abstract | Cachexia is a multifactorial wasting syndrome commonly observed in patients with chronic diseases such as cancer, HIV, chronic obstructive pulmonary disease (COPD), and congestive heart failure (CHF). It is primarily characterized by skeletal muscle loss and systemic inflammation. In cancer patients, nearly 80% develop cachexia in the later stages of the disease, with pancreatic cancer having the highest incidence of cachexia among all cancer types.
Previous studies in our laboratory have identified the calcium-binding protein S100A9, which is significantly upregulated in pancreatic cancer patients. S100A9 interacts with Toll-Like Receptor 4 (TLR4) on mouse muscle cells (C2C12), activating the IKK/NF-κB signaling pathway. This activation promotes the expression of muscle-degrading E3 ubiquitin ligases, MuRF1 and Atrogin-1, leading to muscle cell atrophy. Tasquinimod (TASQ) is an oral small-molecule clinical drug that acts as a specific inhibitor of S100A9. TASQ can inhibit the interaction between S100A9 and TLR4. Our studies, involving co-treatment of C2C12 cells with S100A9 and TASQ, demonstrated that TASQ effectively inhibits S100A9-mediated signaling through the TLR4 pathway, reducing the transcription of MuRF1 and Atrogin-1 and consequently alleviating muscle cell atrophy. Further molecular docking and molecular dynamics simulations revealed that TASQ binds to S100A9 through the formation of hydrogen bonds and hydrophobic interactions with specific amino acids on Helix III and Helix IV of S100A9. Our findings indicate that S100A9 can bind to TLR4 on mouse muscle cells, activating the MyD88/IKK/NF-κB-regulated signaling pathway, inducing muscle protein degradation and resulting in muscle cell atrophy. TASQ, by binding to S100A9, can inhibit the muscle protein degradation caused by S100A9. Investigating the mechanisms between S100A9 and cachexia, as well as the effects of Tasquinimod, provides new insights for future therapeutic strategies against pancreatic cancer-induced cachexia. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-29T16:10:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-29T16:10:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
謝誌 II 中文摘要 III 英文摘要 IV 縮寫 VI 目錄 XI 第一節 導論 1 1.1 胰臟癌介紹 1 1.1.1 胰臟癌: 1 1.1.2 胰臟癌的分類: 2 1.1.3 胰臟癌的分期: 2 1.1.4 胰臟癌的診斷: 4 1.1.4.1 臨床症狀: 4 1.1.4.2 影像學診斷: 4 1.1.4.3 血液學: 4 1.1.5 胰臟癌的成因: 5 1.1.5.1 生活習慣: 5 1.1.5.2 基因與遺傳風險: 5 1.1.6 胰臟癌的症狀: 6 1.1.7 胰臟癌的治療: 6 1.1.7.1 手術: 6 1.1.7.2 化療: 7 1.1.7.3 放療: 7 1.1.7.4 標靶治療: 7 1.2 惡質症 8 1.2.1 惡質症流行病學: 8 1.2.2 惡質症的成因: 9 1.2.2.1 癌症(Cancer): 9 1.2.2.2 慢性阻塞性肺病(Chronic Obstructive Pulmonary Disease, COPD): 9 1.2.2.3 鬱血性心臟衰竭(Congestive Heart Failure, CHF): 9 1.2.2.4 慢性腎臟病(Chronic Kidney Disease, CKD): 10 1.2.2.5 愛滋病(Acquired Immunodeficiency Syndrome, AIDS): 10 1.2.2.6 其他: 11 1.2.3 惡質症的診斷與分期: 11 1.2.4 惡質症的相關機制: 13 1.2.4.1 合成代謝訊息調控: 13 1.2.4.2 分解代謝訊息調控: 14 1.2.5 惡質症的症狀與影響: 15 1.2.5.1 骨骼肌: 15 1.2.5.2 心臟: 15 1.2.5.3 脂肪組織: 16 1.2.5.4 骨骼: 16 1.2.5.5 肝臟: 16 1.2.5.6 腸道: 16 1.2.5.7 大腦: 17 1.2.6 惡質症的治療: 17 1.2.6.1 運動療法: 17 1.2.6.2 藥物治療: 18 1.2.6.3 營養治療: 18 1.2.7 惡質症與胰臟癌之關係: 18 1.3 S100蛋白家族 19 1.3.1 S100A9蛋白: 20 1.3.2 S100A9蛋白質結構 21 1.3.3 S100A9與TLR4結合位點 21 1.4 S100A9特異性抑制劑Tasquinimod(TASQ): 22 1.4.1 Tasquinimod 22 1.4.2 Tasquinimod和S100A9可能的結合位點 23 1.5 研究動機 24 第二節 25 2.1 細胞株 25 2.1.1 小鼠肌肉細胞株 25 2.2 抗體 25 2.2.1 初級抗體 25 2.2.2 次級抗體 25 2.3 藥品 26 2.4 試劑組 28 2.5 儀器 28 第三節 實驗方法 30 3.1 細胞培養 30 3.1.1 小鼠肌肉纖維母細胞繼代培養(Cell Culture of Mouse Myoblast C2C12 Cells) 30 3.1.2 小鼠肌肉纖維母細胞分化(Myogenic Differentiation of C2C12 Cells) 30 3.1.3 細胞計數(Cell Counting) 30 3.1.4 細胞凍存(Cell Freezing) 31 3.2 S100A9蛋白製備 31 3.2.1 S100A9蛋白之表現(Expression of S100A9) 31 3.2.2 S100A9之純化(Purification of Candidate Protein S100A9) 32 3.2.3 緩衝液與沖提液之準備 32 3.2.3.1 結合緩衝液(Binding Buffer) 32 3.2.3.2 沖提液(Elution Buffer) 33 3.3 小鼠肌肉細胞C2C12之型態觀察 33 3.3.1 免疫螢光染色(Immunofluorescence Staining) 33 3.3.1.1 細胞培養 33 3.3.1.2 免疫螢光染色 33 3.3.2 影像 34 3.4 蛋白質分析 34 3.4.1 蛋白質濃度測定(BCA Protein Assay) 34 3.4.1.1 蛋白質濃度測定原理(Principle of BCA Protein Assay): 34 3.4.1.2 蛋白質濃度測定試劑之成分(Reagents of BCA protein assay): 34 3.4.1.3 蛋白質定量步驟(Steps of Protein Quantification): 35 3.4.2 十二烷機硫酸鈉聚丙醯胺膠體電泳(SDS-PAGE) 35 3.4.2.1 膠體電泳原理(Principle of SDS-PAGE): 35 3.4.2.2 膠體製備與架設(Preparation of SDS-PAGE): 35 3.4.2.3 蛋白質樣品緩衝液(Preparation of protein sample buffer): 37 3.4.2.4 蛋白質樣品處理(Preparation of Protein Sample): 37 3.4.2.5 電泳緩衝液製備(Preparation of Running Buffer): 37 3.4.3 蛋白質電泳操作(SDS-PAGE Running): 37 3.4.4 膠體染色(SDS-PAGE Staining) 38 3.4.4.1 CBB染色原理(Principle of Coomassie Brilliant Blue Staining): 38 3.4.4.2 CBB 染色液製備(Preparation of CBB dye): 38 3.4.4.3 CBB 退染液製備(Preparation of CBB Destain Buffer): 38 3.4.4.4 CBB 染色步驟(Steps of CBB Staining): 38 3.4.5 蛋白質轉印(Protein Transferring) 39 3.4.5.1 蛋白質轉印緩衝液(Preparation of Protein Transfer Buffer): 39 3.4.5.2 蛋白質轉印步驟(Steps of Protein Transferring): 39 3.4.6 蛋白質轉印模之染色(PVDF Staining) 39 3.4.6.1 Fast green 染劑製備(Preparation of Fast Green Dye): 39 3.4.6.2 Fast green染色步驟(Steps of Fast Green Staining): 39 3.4.7 西方墨點法(Western Blot) 40 3.4.7.1 封閉(Blocking) 40 3.4.7.2 抗體結合(Antibody Hybridization): 40 3.4.7.3 顯影呈像(Imaging): 40 3.4.7.4 影像定量(Quantitative Image Analysis): 40 3.5 分子對接(Molecular Docking) 41 3.5.1 S100A9蛋白質與配體TASQ的準備 41 3.5.2 分子對接 (Molecular Docking) 41 3.5.3 AutoDock Vina和AutoDockTools 41 3.6 分子動力學模擬(Molecular Dynamics Simulation) 42 3.6.1 分子動力學模擬(Molecular Dynamics Simulation) 42 3.6.2 CHARMM(Chemistry at HARvard Macromolecular Mechanics)Force Field 42 3.6.2.1 鍵伸展位能(Bond stretching potential energy, Ubond stretching) 43 3.6.2.2 Urey-Bradley位能(Urey-Bradley potential, UUB) 43 3.6.2.3 鍵角彎曲位能(Bond angle potential energy, Uangle) 43 3.6.2.4 兩面角位能(Dihedral potential energy, Udihedral) 43 3.6.2.5 非正常二面角位能(Improper dihedral torsion potential energy, Uimproper) 44 3.6.2.6 L-J勢能函數(Lennard-Jones potential, ULJ) 44 3.6.2.7 靜電作用力(Electrostatic Interaction, Uelec) 44 3.6.3 GROMACS(GROningen MAchine for Chemical Simulations) 45 3.6.4 原子的位置與速度 45 3.6.5 週期性邊界條件(Periodic Boundary Conditions, PBC) 45 3.6.6 Particle-Mesh Ewald, PME 46 3.6.7 分子動力學模擬流程 46 3.6.8 分子力學/泊松-玻爾茲曼表面積法(Molecular Mechanics/Poisson-Boltzmann Surface Area) 47 第四節 實驗結果 49 4.1 S100A9誘導小鼠肌肉細胞C2C12萎縮: 49 4.2 Tasquinimod藉由抑制S100A9減少Atrogin-1/MuRF1表現量: 49 4.3 Tasquinimod藉由抑制S100A9減緩肌肉細胞的萎縮: 50 4.4 S100A9與TASQ的分子對接與分子動力學模擬: 50 4.4.1 分子對接(Molecular Docking)結果分析: 50 4.4.2 分子動力學模擬(Molecular Dynamics Simulation)結果分析: 51 第五節 討論 53 5.1 S100A9誘導小鼠肌肉細胞C2C12萎縮: 53 5.2 S100A9與惡質症之相關機制 53 5.3 TASQ抑制S100A9對小鼠肌肉細胞造成的影響: 54 5.4 S100A9與TASQ之間的結合位點與交互作用: 54 5.4.1 S100A9與其他配體之間的交互作用: 55 5.4.2 TASQ與S100A9之間的結合自由能: 56 5.5 未來展望: 56 第六節 參考文獻 57 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 分子對接 | zh_TW |
| dc.subject | S100A9 | zh_TW |
| dc.subject | 胰臟癌 | zh_TW |
| dc.subject | 他喹莫德 | zh_TW |
| dc.subject | 惡質症 | zh_TW |
| dc.subject | 分子動力學模擬 | zh_TW |
| dc.subject | MuRF1 | en |
| dc.subject | molecular docking | en |
| dc.subject | TLR4 | en |
| dc.subject | S100A9 | en |
| dc.subject | pancreatic cancer | en |
| dc.subject | cachexia | en |
| dc.subject | molecular dynamics simulation | en |
| dc.subject | Atrogin-1 | en |
| dc.title | 探討S100A9與特定小分子抑制劑Tasquinimod對於胰臟癌誘發惡質症的治療效果 | zh_TW |
| dc.title | Investigating the potential effect of specific inhibitors Tasquinimod on S100A9 in pancreatic cancer with cachexia | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃楓婷;許世宜 | zh_TW |
| dc.contributor.oralexamcommittee | Feng-Ting Huang;Sheh-Yi Sheu | en |
| dc.subject.keyword | 惡質症,胰臟癌,S100A9,他喹莫德,分子對接,分子動力學模擬, | zh_TW |
| dc.subject.keyword | cachexia,pancreatic cancer,S100A9,TLR4,MuRF1,Atrogin-1,molecular docking,molecular dynamics simulation, | en |
| dc.relation.page | 94 | - |
| dc.identifier.doi | 10.6342/NTU202403773 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | - |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
