Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9511
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊立民(Lee-Ming Chuang)
dc.contributor.authorYun-Chih Tsaien
dc.contributor.author蔡昀芝zh_TW
dc.date.accessioned2021-05-20T20:26:09Z-
dc.date.available2010-09-25
dc.date.available2021-05-20T20:26:09Z-
dc.date.copyright2008-09-25
dc.date.issued2008
dc.date.submitted2008-08-27
dc.identifier.citationAdams M, Reginato MJ, Shao D, Lazar MA, Chatterjee VK (1997) Transcriptional activation by peroxisome proliferator-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem 272(8): 5128-5132
Amanuma K, Kanaseki T, Ikeuchi Y, Ohkuma S, Takano T (1986) Studies on fine structure and location of lipids in quick-freeze replicas of atherosclerotic aorta of WHHL rabbits. Virchows Arch A Pathol Anat Histopathol 410(3): 231-238
Aouadi M, Laurent K, Prot M, Le Marchand-Brustel Y, Binetruy B, Bost F (2006) Inhibition of p38MAPK increases adipogenesis from embryonic to adult stages. Diabetes 55(2): 281-289
Berger J, Patel HV, Woods J, Hayes NS, Parent SA, Clemas J, Leibowitz MD, Elbrecht A, Rachubinski RA, Capone JP, Moller DE (2000) A PPARgamma mutant serves as a dominant negative inhibitor of PPAR signaling and is localized in the nucleus. Mol Cell Endocrinol 162(1-2): 57-67
Black BE, Holaska JM, Rastinejad F, Paschal BM (2001) DNA binding domains in diverse nuclear receptors function as nuclear export signals. Curr Biol 11(22): 1749-1758
Bridges D, Moorhead GB (2005) 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE 2005(296): re10
Burgermeister E, Chuderland D, Hanoch T, Meyer M, Liscovitch M, Seger R (2007) Interaction with MEK causes nuclear export and downregulation of peroxisome proliferator-activated receptor gamma. Mol Cell Biol 27(3): 803-817
Burgermeister E, Seger R (2007) MAPK kinases as nucleo-cytoplasmic shuttles for PPARgamma. Cell Cycle 6(13): 1539-1548
Burgermeister E, Tencer L, Liscovitch M (2003) Peroxisome proliferator-activated receptor-gamma upregulates caveolin-1 and caveolin-2 expression in human carcinoma cells. Oncogene 22(25): 3888-3900
Camp HS, Tafuri SR (1997) Regulation of peroxisome proliferator-activated receptor gamma activity by mitogen-activated protein kinase. J Biol Chem 272(16): 10811-10816
Camp HS, Tafuri SR, Leff T (1999) c-Jun N-terminal kinase phosphorylates peroxisome proliferator-activated receptor-gamma1 and negatively regulates its transcriptional activity. Endocrinology 140(1): 392-397
Chintharlapalli S, Smith R, 3rd, Samudio I, Zhang W, Safe S (2004) 1,1-Bis(3'-indolyl)-1-(p-substitutedphenyl)methanes induce peroxisome proliferator-activated receptor gamma-mediated growth inhibition, transactivation, and differentiation markers in colon cancer cells. Cancer Res 64(17): 5994-6001
Chou WL, Chuang LM, Chou CC, Wang AH, Lawson JA, FitzGerald GA, Chang ZF (2007) Identification of a novel prostaglandin reductase reveals the involvement of prostaglandin E2 catabolism in regulation of peroxisome proliferator-activated receptor gamma activation. J Biol Chem 282(25): 18162-18172
Colucci-Guyon E, Gimenez YRM, Maurice T, Babinet C, Privat A (1999) Cerebellar defect and impaired motor coordination in mice lacking vimentin. Glia 25(1): 33-43
Compe E, Drane P, Laurent C, Diderich K, Braun C, Hoeijmakers JH, Egly JM (2005) Dysregulation of the peroxisome proliferator-activated receptor target genes by XPD mutations. Mol Cell Biol 25(14): 6065-6076
Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20(5): 649-688
Diradourian C, Girard J, Pegorier JP (2005) Phosphorylation of PPARs: from molecular characterization to physiological relevance. Biochimie 87(1): 33-38
Eckes B, Colucci-Guyon E, Smola H, Nodder S, Babinet C, Krieg T, Martin P (2000) Impaired wound healing in embryonic and adult mice lacking vimentin. J Cell Sci 113 ( Pt 13): 2455-2462
Eckes B, Dogic D, Colucci-Guyon E, Wang N, Maniotis A, Ingber D, Merckling A, Langa F, Aumailley M, Delouvee A, Koteliansky V, Babinet C, Krieg T (1998) Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci 111 ( Pt 13): 1897-1907
Feige JN, Gelman L, Tudor C, Engelborghs Y, Wahli W, Desvergne B (2005) Fluorescence imaging reveals the nuclear behavior of peroxisome proliferator-activated receptor/retinoid X receptor heterodimers in the absence and presence of ligand. J Biol Chem 280(18): 17880-17890
Floyd ZE, Stephens JM (2002) Interferon-gamma-mediated activation and ubiquitin-proteasome-dependent degradation of PPARgamma in adipocytes. J Biol Chem 277(6): 4062-4068
Franke WW, Hergt M, Grund C (1987) Rearrangement of the vimentin cytoskeleton during adipose conversion: formation of an intermediate filament cage around lipid globules. Cell 49(1): 131-141
Gao Y, Sztul E (2001) A novel interaction of the Golgi complex with the vimentin intermediate filament cytoskeleton. J Cell Biol 152(5): 877-894
Genini D, Catapano CV (2006) Control of peroxisome proliferator-activated receptor fate by the ubiquitinproteasome system. J Recept Signal Transduct Res 26(5-6): 679-692
Gervois P, Torra IP, Chinetti G, Grotzinger T, Dubois G, Fruchart JC, Fruchart-Najib J, Leitersdorf E, Staels B (1999) A truncated human peroxisome proliferator-activated receptor alpha splice variant with dominant negative activity. Mol Endocrinol 13(9): 1535-1549
Gurnell M, Wentworth JM, Agostini M, Adams M, Collingwood TN, Provenzano C, Browne PO, Rajanayagam O, Burris TP, Schwabe JW, Lazar MA, Chatterjee VK (2000) A dominant-negative peroxisome proliferator-activated receptor gamma (PPARgamma) mutant is a constitutive repressor and inhibits PPARgamma-mediated adipogenesis. J Biol Chem 275(8): 5754-5759
Hartig R, Shoeman RL, Janetzko A, Tolstonog G, Traub P (1998) DNA-mediated transport of the intermediate filament protein vimentin into the nucleus of cultured cells. J Cell Sci 111 ( Pt 24): 3573-3584
Henrion D, Terzi F, Matrougui K, Duriez M, Boulanger CM, Colucci-Guyon E, Babinet C, Briand P, Friedlander G, Poitevin P, Levy BI (1997) Impaired flow-induced dilation in mesenteric resistance arteries from mice lacking vimentin. J Clin Invest 100(11): 2909-2914
Herrmann H, Fouquet B, Franke WW (1989) Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin. Development 105(2): 279-298
Hsieh JC, Shimizu Y, Minoshima S, Shimizu N, Haussler CA, Jurutka PW, Haussler MR (1998) Novel nuclear localization signal between the two DNA-binding zinc fingers in the human vitamin D receptor. J Cell Biochem 70(1): 94-109
Hu E, Kim JB, Sarraf P, Spiegelman BM (1996) Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 274(5295): 2100-2103
Hummasti S, Tontonoz P (2006) The peroxisome proliferator-activated receptor N-terminal domain controls isotype-selective gene expression and adipogenesis. Mol Endocrinol 20(6): 1261-1275
Iankova I, Petersen RK, Annicotte JS, Chavey C, Hansen JB, Kratchmarova I, Sarruf D, Benkirane M, Kristiansen K, Fajas L (2006) Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis. Mol Endocrinol 20(7): 1494-1505
Kampa M, Castanas E (2006) Membrane steroid receptor signaling in normal and neoplastic cells. Mol Cell Endocrinol 246(1-2): 76-82
Knouff C, Auwerx J (2004) Peroxisome proliferator-activated receptor-gamma calls for activation in moderation: lessons from genetics and pharmacology. Endocr Rev 25(6): 899-918
Kumar N, Robidoux J, Daniel KW, Guzman G, Floering LM, Collins S (2007) Requirement of vimentin filament assembly for beta3-adrenergic receptor activation of ERK MAP kinase and lipolysis. J Biol Chem 282(12): 9244-9250
Lazar MA (2002) Becoming fat. Genes Dev 16(1): 1-5
Lieber JG, Evans RM (1996) Disruption of the vimentin intermediate filament system during adipose conversion of 3T3-L1 cells inhibits lipid droplet accumulation. J Cell Sci 109 ( Pt 13): 3047-3058
Llaverias G, Vazquez-Carrera M, Sanchez RM, Noe V, Ciudad CJ, Laguna JC, Alegret M (2004) Rosiglitazone upregulates caveolin-1 expression in THP-1 cells through a PPAR-dependent mechanism. J Lipid Res 45(11): 2015-2024
Lopez-Egido J, Cunningham J, Berg M, Oberg K, Bongcam-Rudloff E, Gobl A (2002) Menin's interaction with glial fibrillary acidic protein and vimentin suggests a role for the intermediate filament network in regulating menin activity. Exp Cell Res 278(2): 175-183
Losel RM, Falkenstein E, Feuring M, Schultz A, Tillmann HC, Rossol-Haseroth K, Wehling M (2003) Nongenomic steroid action: controversies, questions, and answers. Physiol Rev 83(3): 965-1016
Marx N, Bourcier T, Sukhova GK, Libby P, Plutzky J (1999) PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease. Arterioscler Thromb Vasc Biol 19(3): 546-551
McDonnell DP (1999) The Molecular Pharmacology of SERMs. Trends Endocrinol Metab 10(8): 301-311
McGookey DJ, Anderson RG (1983) Morphological characterization of the cholesteryl ester cycle in cultured mouse macrophage foam cells. J Cell Biol 97(4): 1156-1168
McKenna NJ, O'Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108(4): 465-474
Mor-Vaknin N, Punturieri A, Sitwala K, Markovitz DM (2003) Vimentin is secreted by activated macrophages. Nat Cell Biol 5(1): 59-63
Nieminen M, Henttinen T, Merinen M, Marttila-Ichihara F, Eriksson JE, Jalkanen S (2006) Vimentin function in lymphocyte adhesion and transcellular migration. Nat Cell Biol 8(2): 156-162
Perlson E, Hanz S, Ben-Yaakov K, Segal-Ruder Y, Seger R, Fainzilber M (2005) Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 45(5): 715-726
Qi C, Zhu Y, Reddy JK (2000) Peroxisome proliferator-activated receptors, coactivators, and downstream targets. Cell Biochem Biophys 32 Spring: 187-204
Reddy JK, Rao MS (2006) Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 290(5): G852-858
Reginato MJ, Krakow SL, Bailey ST, Lazar MA (1998) Prostaglandins promote and block adipogenesis through opposing effects on peroxisome proliferator-activated receptor gamma. J Biol Chem 273(4): 1855-1858
Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391(6662): 79-82
Robidoux J, Kumar N, Daniel KW, Moukdar F, Cyr M, Medvedev AV, Collins S (2006) Maximal beta3-adrenergic regulation of lipolysis involves Src and epidermal growth factor receptor-dependent ERK1/2 activation. J Biol Chem 281(49): 37794-37802
Rochette-Egly C (2003) Nuclear receptors: integration of multiple signalling pathways through phosphorylation. Cell Signal 15(4): 355-366
Rosen ED, Spiegelman BM (2001) PPARgamma : a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem 276(41): 37731-37734
Saporita AJ, Zhang Q, Navai N, Dincer Z, Hahn J, Cai X, Wang Z (2003) Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor. J Biol Chem 278(43): 41998-42005
Schaffeld M, Herrmann H, Schultess J, Markl J (2001) Vimentin and desmin of a cartilaginous fish, the shark Scyliorhinus stellaris: sequence, expression patterns and in vitro assembly. Eur J Cell Biol 80(11): 692-702
Shao D, Rangwala SM, Bailey ST, Krakow SL, Reginato MJ, Lazar MA (1998) Interdomain communication regulating ligand binding by PPAR-gamma. Nature 396(6709): 377-380
Shibuya A, Wada K, Nakajima A, Saeki M, Katayama K, Mayumi T, Kadowaki T, Niwa H, Kamisaki Y (2002) Nitration of PPARgamma inhibits ligand-dependent translocation into the nucleus in a macrophage-like cell line, RAW 264. FEBS Lett 525(1-3): 43-47
Styers ML, Salazar G, Love R, Peden AA, Kowalczyk AP, Faundez V (2004) The endo-lysosomal sorting machinery interacts with the intermediate filament cytoskeleton. Mol Biol Cell 15(12): 5369-5382
Tang HL, Lung HL, Wu KC, Le AH, Tang HM, Fung MC (2008) Vimentin supports mitochondrial morphology and organization. Biochem J 410(1): 141-146
Thuillier P, Baillie R, Sha X, Clarke SD (1998) Cytosolic and nuclear distribution of PPARgamma2 in differentiating 3T3-L1 preadipocytes. J Lipid Res 39(12): 2329-2338
Tolstonog GV, Mothes E, Shoeman RL, Traub P (2001) Isolation of SDS-stable complexes of the intermediate filament protein vimentin with repetitive, mobile, nuclear matrix attachment region, and mitochondrial DNA sequence elements from cultured mouse and human fibroblasts. DNA Cell Biol 20(9): 531-554
Tolstonog GV, Wang X, Shoeman R, Traub P (2000) Intermediate filaments reconstituted from vimentin, desmin, and glial fibrillary acidic protein selectively bind repetitive and mobile DNA sequences from a mixture of mouse genomic DNA fragments. DNA Cell Biol 19(11): 647-677
Tsay YG, Wang YH, Chiu CM, Shen BJ, Lee SC (2000) A strategy for identification and quantitation of phosphopeptides by liquid chromatography/tandem mass spectrometry. Anal Biochem 287(1): 55-64
Tzivion G, Luo ZJ, Avruch J (2000) Calyculin A-induced vimentin phosphorylation sequesters 14-3-3 and displaces other 14-3-3 partners in vivo. J Biol Chem 275(38): 29772-29778
Varley CL, Stahlschmidt J, Lee WC, Holder J, Diggle C, Selby PJ, Trejdosiewicz LK, Southgate J (2004) Role of PPARgamma and EGFR signalling in the urothelial terminal differentiation programme. J Cell Sci 117(Pt 10): 2029-2036
Yamashita D, Yamaguchi T, Shimizu M, Nakata N, Hirose F, Osumi T (2004) The transactivating function of peroxisome proliferator-activated receptor gamma is negatively regulated by SUMO conjugation in the amino-terminal domain. Genes Cells 9(11): 1017-1029
Yang X, Wang J, Liu C, Grizzle WE, Yu S, Zhang S, Barnes S, Koopman WJ, Mountz JD, Kimberly RP, Zhang HG (2005) Cleavage of p53-vimentin complex enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis of rheumatoid arthritis synovial fibroblasts. Am J Pathol 167(3): 705-719
Zhu Y, Qi C, Korenberg JR, Chen XN, Noya D, Rao MS, Reddy JK (1995) Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci U S A 92(17): 7921-7925
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9511-
dc.description.abstract過氧化體增殖劑活化受體γ (PPARgamma)是nuclear receptor家族中受配體(ligand)調控而活化的轉錄因子,它調控了參與分化、新陳代謝和免疫反應的基因表現。配體對PPARγ的結合使得轉錄輔抑制子脫離,並促使轉錄輔活化子返回與PPARγ結合進而活化基因轉錄的進行。PPARγ是信息傳遞的中樞因子,它的活性在不同的胞內運作機制下受到很完善的調控。致裂原(mitogen)的刺激會對PPARγ進行負向調控進而抑制其基因調控的活性,這樣的負調控主要是由胞外調節激酶(extracellular signal-regulated kinase ; ERK)/致裂原活化蛋白激酶(mitogen-activated protein kinase; MAPK)下游的信息梯瀑所主導。在致裂原與配體的刺激之下,MEKs和ERKs會快速轉移至細胞核中,ERKs進而在PPARγ上絲胺酸(Serine) 82/112的位置將其磷酸化,再由MEKs藉其上的NES(nuclear export signal)調控PPARγ被磷酸化後的核輸出。這樣大量的核輸出會降低PPARγ活化核目標基因的能力,進一步抑制其基因調控的功能。然而,PPARγ核輸出的實際運作機制及其送至細胞質後際而的命運仍有待後續研究。
運用LC/MS/MS的分析技術,我們從誘導分化的3T3-L1脂肪細胞萃取物中鑑定出一蛋白質vimentin會與PPARγ進行結合。隨著脂肪細胞的分化過程,vimentin與PPARγ的蛋白質表現量會相對應增加。在3T3-L1脂肪細胞中,我們運用免疫沉澱-西方墨點法及免疫細胞化學染色分析進一步驗證了vimentin與PPARγ會在細胞質間進行結合。而在PPARγ的配體誘導之下,vimentin會擇優地與磷酸化的PPARγ結合。
我們的實驗同時指出,在配體誘導之下PPARγ會被磷酸化,進而被送至細胞質與vimentin進行結合,這樣的一個運輸路徑是依賴exportin 1/CRM1來執行並受到leptomycin B所抑制。進一步詳細的實驗也說明了,vimentin和pPPARγ的結合除了如預期在細胞萃取物中不溶性的細胞骨架可以見到,同時也會在粒線體和內質網進行。
zh_TW
dc.description.abstractPeroxisome proliferators activated receptor gamma (PPARγ) is a ligand activated transcription factor of the nuclear receptor family that regulates genes involved in differentiation, metabolism and immunity. Upon ligand binding, PPARγ releases bound corepressors and recruits coactivators for transcriptional activation. As a central signaling component, the activity of PPARγ is well regulated under various cellular processes. Mitogenic stimulation exerts negative regulation that suppresses PPARγ’s genomic activity. This downregulation is mediated largely by the extracellular signal regulated kinase 1/2 (ERKs)/mitogen activated protein kinases (MAPKs) signaling cascade. Upon mitogen and ligand stimulation, MEKs and ERKs rapidly translocate into the nucleus followed by ERK-mediated PPARγ phosphorylation on Serine 82/112. Upon binding onto the phosphorylated PPARγ, the NES in the MEKs then mediated the export of phosphorylated PPARγ out of the nucleus. This massive nuclear export reduces the ability of PPARγ to transactivate nuclear target genes and thereby inhibits its genomic function. However, the exact mechanism of nuclear export of PPARγ and the subsequent fate of cytoplasmic PPARγ remain further elucidated.
With advent of LC/MS/MS technique, we have identified a protein vimentin which was associated with PPARγ from the cell extracts of 3T3-L1 adipocytes upon induction of differentiation. During adipocyte differentiation, the expression of vimentin was increased in parallel of the increases of PPARγ. We confirmed the association of vimentin and PPARγ in the cytoplasmic compartment of 3T3-L1 adipocytes with immunoprecipitation-western blot and immunocytochemistry studies. Interestingly, vimentin was preferentially associated with the phospho-PPARγ especially after treatment of PPARγ ligand.
Our data also suggest that phosphorylation of PPARγ appears after ligand treatment which leads to subsequent export of phosphorylated PPARγ to cytoplasm, at a leptomycin B-sensitive exportin 1/CRM1 dependent pathway, where interaction with vimentin occurs. Further detailed studies showed that the interaction of vimentin and pPPARγ may take place in mitochondria and ER in addition to the expected cytoskeleton in the insoluble portion of cell extracts.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:26:09Z (GMT). No. of bitstreams: 1
ntu-97-R95448002-1.pdf: 2183899 bytes, checksum: 7cae4ec2a11f604090a43c875e33cc55 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents謝誌 I
摘要 III
Abstract V
Table of contents VII
Introduction 1
Peroxisome proliferator-activated receptors (PPARs) 1
1. Functional domain of PPARs 2
2. Activation of PPARγ 3
3. Selective PPAR modulator (SPPARM) model 5
4. Phosphorylation of PPARγ 6
5. Nuclear-cytoplasmic shuttle of PPARγ 7
Intermediate filament: Vimentin 9
1. Vimentin and signal transductions 10
2. The association of vimentin with cell organelles and DNA 11
3. The reorganization of vimentin filament 13
Materials and Methods 14
Cell Culture 14
Preparation of Whole Cell Extracts 14
Preparation of Nuclear/Cyto solic Extracts 15
Preparation of Four Subcellular Fractions 15
Immunoprecipitation 17
Western blot 17
Immunofluorescence microscopy 18
Peptide Identification by Mass Spectrometry and Bioinformatics Analysis 19
Results 21
Identification of PPARγ interacting proteins 21
Expression and interaction of vimentin with PPARγ during 3T3-L1 adipocyte differentiation 22
Subcellular compartment of interactions for vimentin and PPARγ during 3T3-L1 adipocyte differentiation 23
Identification of nuclear-cytoplasmic translocation of pPPARγ upon ligand treatment 26
Interaction of vimentin and PPARy/pPPARγ in cytoplasmic compartments 26
Discussion 28
Figures 34
Tables 49
References 50
dc.language.isoen
dc.title中間絲蛋白vimentin為PPARγ的結合蛋白之鑑定與研究zh_TW
dc.titleIdentification of intermediate filament protein vimentin as an interacting protein of PPARγen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂勝春(Sheng-Chung Lee),羅?升(Wan-Sheng Sunny Lo)
dc.subject.keywordPPARγ,vimentin,細胞核輸出,細胞內區間,非基因組信息傳遞,zh_TW
dc.subject.keywordPPARγ,vimentin,nuclear export,cellular compartment,nongenomic signaling,en
dc.relation.page57
dc.rights.note同意授權(全球公開)
dc.date.accepted2008-08-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf2.13 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved